Introduction to Probability, Statistics and Random Processes

Chapter 8: Statistical inference with classical methods

Anduo Wang Temple University Email: anduo.wang@gmail.com https://cis-linux1.temple.edu/~tug29203/25spring-2033/index.html

Example

Calls arriving at a telephone exchange — the exchange is connected to a large number of people who make phone calls now and then.

Telephone calls arrive at random times X_1, X_2, \cdots at the telephone exchange during a time interval [0, t].

- The rate λ at which arrivals occur is constant over time
- Consider the total number of calls in an interval [0, t], denoted by N([0, t]), abbreviating to N_t
- $N_t = R_1 + R_2 + \cdots + R_n$ has a Bin(n, p) distribution, with $p = \lambda t/n$

•
$$P(N_t = k) = {n \choose k} (\frac{\lambda t}{n})^k (1 - \frac{\lambda t}{n})^{n-k}$$
 for $k = 0, \cdots, n$

• $\lim_{n \to \infty} P(N_t = k) = \lim_{n \to \infty} {n \choose k} \frac{1}{n^k} \cdot (\lambda t)^k \cdot (1 - \frac{\lambda t}{n})^{n} \cdot (1 - \frac{\lambda t}{n})^{n} = \frac{\lambda t}{k!} e^{-\lambda t}$

Definition

A discrete random variable X has a Poisson distribution with parameter μ , where $\mu > 0$ if its probability mass function p is given by

$$p(k) = P(X = k) = \frac{\mu^k}{k!}e^{-\mu}$$
 for $k = 0, 1, 2, \cdots$

Definition

A discrete random variable X has a Poisson distribution with parameter μ , where $\mu > 0$ if its probability mass function p is given by

$$p(k) = P(X = k) = \frac{\mu^k}{k!}e^{-\mu}$$
 for $k = 0, 1, 2, \cdots$

Remark

Let λ be the intensity of occurrence

$$\mu = \lambda \cdot t$$

イロト イポト イヨト イヨト

quick exercise

Consider the event "exactly one call arrives in the interval [0,2s]." The probability of this event is

$$P(N_{2s}=1) = \lambda \cdot 2s \cdot e^{-\lambda 2s}$$

But note that this event is the same as "there is exactly one call in the interval [0,s) and no calls in the interval [s,2s], or no calls in [0,s) and exactly one call in [s,2s]." Verify that you get the same answer if you compute the probability of the event in this way.

quick exercise

Consider the event "exactly one call arrives in the interval [0,2s]." The probability of this event is

$$P(N_{2s}=1)=\lambda\cdot 2s\cdot e^{-\lambda 2s}$$

But note that this event is the same as "there is exactly one call in the interval [0,s) and no calls in the interval [s,2s], or no calls in [0,s) and exactly one call in [s,2s]." Verify that you get the same answer if you compute the probability of the event in this way.

hint: the probability of exactly one call in [0,s) and no calls in [s,2s] equals P(N([0,s)) = 1, N([s,2s]) = 0) = P(N([0,s)) = 1)P(N([s,2s]) = 0) = P(N([0,s)) = 1)P(N([0,s]) = 0) $= \lambda s e^{-\lambda s} \cdot e^{-\lambda s}$

- The differences $T_i = X_i X_{i-1}$ are called interarrival times
- Define $T_1 = X_1$, the time of the first arrival
- Event $T_1 > t$: the first call arrives after t, that is $N_t = 0$ (no calls in [0, t])

$$P(T_1 \le t) = 1 - P(T_1 > t) = 1 - P(N_t = 0) = 1 - e^{-\lambda t}$$

5/9

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The differences $T_i = X_i X_{i-1}$ are called interarrival times
- Define $T_1 = X_1$, the time of the first arrival
- Event $T_1 > t$: the first call arrives after t, that is $N_t = 0$ (no calls in [0, t])

$$P(T_1 \le t) = 1 - P(T_1 > t) = 1 - P(N_t = 0) = 1 - e^{-\lambda t}$$

• T_1 has an exponential distribution with parameter λ .

• consider the conditional probability that $T_2 > t$, given that $T_1 = s$

$$P(T2 > t | T1 = s) = P(\text{no arrivals in } (s, s + t] | T_1 = s)$$
$$= P(\text{no arrivals in } (s, s + t])$$
$$= P(N((s, s + t]) = 0) = e^{-\lambda t}.$$

イロト イヨト イヨト イヨト 二日

6/9

- Hence $P(T_2 > t) = e^{-\lambda t}$, $T_2 \sim Exp(\lambda)$
- Analogously, $T_i \sim Exp(\lambda)$

Definition

The one-dimensional Poisson process with intensity λ is a sequence X_1, X_2, X_3, λ of random variables having the property that the interarrival times $X_1, X_2 - X_1, X_3 - X_2, \cdots$ are independent random variables, each with an $Exp(\lambda)$ distribution.

イロト 不得 トイラト イラト 一日

- What is the distribution of X_i?
- X_i is a sum of *i* independent exponentially distributed random variables

The points of Poisson process

For $i = 1, 2, \dots$, the random variable X_i has a $Gam(i, \lambda)$ distribution.

イロト 不得 トイヨト イヨト

The distribution of points

- if we know that n points are generated in an interval, where do these points lie?
- Let this interval be [0, a].

. . .

• We start with the simplest case, N([0, a]) = 1

$$P(X_1 \le s | N([0, a]) = 1) = \frac{P(X_1 \le s, N([0, a]) = 1)}{P(N([0, a]) = 1)}$$

= $\frac{P(N([0, s]) = 1, N((s, a]) = 0)}{P(N([0, a]) = 1)}$
= $\frac{\lambda s \cdot e^{-\lambda s} \cdot e^{-\lambda(a-s)}}{\lambda a \cdot e^{-\lambda a}}$
= $\frac{s}{a}$.

• X_1 is uniformly distributed over the interval [0, a].

The distribution of points

Location of the points, given their number.

Given that the Poisson process has n points in the interval [a, b], the locations of these points are independently distributed, each with a uniform distribution on [a, b].