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Poisson distribution, revisited

Poisson distribution, review

Example

Calls arriving at a telephone exchange — the exchange is connected to a
large number of people who make phone calls now and then.

Telephone calls arrive at random times X1,X2, · · · at the telephone
exchange during a time interval [0, t].

168 12 The Poisson process

12.2 Taking a closer look at random arrivals

A well-known example that is usually modeled by the Poisson process is that
of calls arriving at a telephone exchange—the exchange is connected to a large
number of people who make phone calls now and then. This will be our leading
example in this section.

Telephone calls arrive at random times X1, X2, . . . at the telephone exchange
during a time interval [0, t].

|
0

Time

X1 X2 X3 X4 X5

× × × × ×+ + + + + |
t

The two basic assumptions we make on these random arrivals are

1. (Homogeneity) The rate λ at which arrivals occur is constant over time:
in a subinterval of length u the expectation of the number of telephone
calls is λu.

2. (Independence) The numbers of arrivals in disjoint time intervals are in-
dependent random variables.

Homogeneity is also called weak stationarity. We denote the total number of
calls in an interval I by N(I), abbreviating N([0, t]) to Nt. Homogeneity then
implies that we require

E[Nt] = λt.

To get hold of the distribution of Nt we divide the interval [0, t] into n intervals
of length t/n. When n is large enough, every interval Ij,n = ((j − 1) t/n, j t/n]
will contain either 0 or 1 arrival: For such a large n (which also satisfies
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n > λt), let Rj be the number of arrivals in the time interval Ij,n. Since Rj is
0 or 1, Rj has a Ber(pj) distribution for some pj . Recall that for a Bernoulli
random variable E[Rj ] = 0 · (1 − pj) + 1 · pj = pj. By the homogeneity
assumption, for each j

pj = λ · length of Ij,n =
λt

n
.

Summing the number of calls in the intervals gives the total number of calls,
hence

Nt = R1 + R2 + · · · + Rn.

The rate λ at which arrivals occur is constant over time
Consider the total number of calls in an interval [0, t], denoted by
N([0, t]), abbreviating to Nt

Nt = R1 + R2 + · · ·+ Rn has a Bin(n, p) distribution, with p = λt/n
P(Nt = k) =

(n
k

)
(λtn )

k(1− λt
n )

n−k for k = 0, · · · , n
lim
n→∞

P(Nt = k) = lim
n→∞

(n
k

)
1
nk
·(λt)k ·(1− λt

n )
n ·(1− λt

n )
−k = (λt)k

k! e−λt
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Poisson distribution, revisited

Poisson distribution, review

Definition

A discrete random variable X has a Poisson distribution with parameter µ,
where µ > 0 if its probability mass function p is given by

p(k) = P(X = k) =
µk

k!
e−µ for k = 0, 1, 2, · · ·

Remark

Let λ be the intensity of occurrence

µ = λ · t
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Poisson distribution, review

quick exercise

Consider the event “exactly one call arrives in the interval [0,2s].” The
probability of this event is

P(N2s = 1) = λ · 2s · e−λ2s

But note that this event is the same as “there is exactly one call in the
interval [0,s) and no calls in the interval [s,2s], or no calls in [0,s) and
exactly one call in [s,2s].” Verify that you get the same answer if you
compute the probability of the event in this way.

hint: the probability of exactly one call in [0,s) and no calls in [s,2s] equals

P(N([0, s)) = 1,N([s, 2s]) = 0) = P(N([0, s)) = 1)P(N([s, 2s]) = 0)

= P(N([0, s)) = 1)P(N([0, s]) = 0)

= λse−λs · e−λs
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Poisson distribution, revisited Properties of Poisson distribution

Interarrival times

168 12 The Poisson process

12.2 Taking a closer look at random arrivals

A well-known example that is usually modeled by the Poisson process is that
of calls arriving at a telephone exchange—the exchange is connected to a large
number of people who make phone calls now and then. This will be our leading
example in this section.

Telephone calls arrive at random times X1, X2, . . . at the telephone exchange
during a time interval [0, t].
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The two basic assumptions we make on these random arrivals are

1. (Homogeneity) The rate λ at which arrivals occur is constant over time:
in a subinterval of length u the expectation of the number of telephone
calls is λu.

2. (Independence) The numbers of arrivals in disjoint time intervals are in-
dependent random variables.

Homogeneity is also called weak stationarity. We denote the total number of
calls in an interval I by N(I), abbreviating N([0, t]) to Nt. Homogeneity then
implies that we require

E[Nt] = λt.

To get hold of the distribution of Nt we divide the interval [0, t] into n intervals
of length t/n. When n is large enough, every interval Ij,n = ((j − 1) t/n, j t/n]
will contain either 0 or 1 arrival: For such a large n (which also satisfies
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n > λt), let Rj be the number of arrivals in the time interval Ij,n. Since Rj is
0 or 1, Rj has a Ber(pj) distribution for some pj . Recall that for a Bernoulli
random variable E[Rj ] = 0 · (1 − pj) + 1 · pj = pj. By the homogeneity
assumption, for each j

pj = λ · length of Ij,n =
λt

n
.

Summing the number of calls in the intervals gives the total number of calls,
hence

Nt = R1 + R2 + · · · + Rn.

The differences Ti = Xi − Xi−1 are called interarrival times

Define T1 = X1, the time of the first arrival

Event T1 > t: the first call arrives after t, that is Nt = 0 (no calls in
[0, t])

P(T1 ≤ t) = 1− P(T1 > t) = 1− P(Nt = 0) = 1− e−λt .

T1 has an exponential distribution with parameter λ.
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Interarrival times

consider the conditional probability that T2 > t, given that T1 = s

P(T2 > t|T1 = s) = P(no arrivals in (s, s + t]|T1 = s)

= P(no arrivals in (s, s + t])

= P(N((s, s + t]) = 0) = e−λt .

Hence P(T2 > t) = e−λt , T2 ∼ Exp(λ)

Analogously, Ti ∼ Exp(λ)
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Poisson distribution, revisited Properties of Poisson distribution

Interarrival times

Definition

The one-dimensional Poisson process with intensity λ is a sequence
X1,X2,X3, λ of random variables having the property that the interarrival
times X1, X2 − X1, X3 − X2, · · · are independent random variables, each
with an Exp(λ) distribution.
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n > λt), let Rj be the number of arrivals in the time interval Ij,n. Since Rj is
0 or 1, Rj has a Ber(pj) distribution for some pj . Recall that for a Bernoulli
random variable E[Rj ] = 0 · (1 − pj) + 1 · pj = pj. By the homogeneity
assumption, for each j

pj = λ · length of Ij,n =
λt

n
.

Summing the number of calls in the intervals gives the total number of calls,
hence

Nt = R1 + R2 + · · · + Rn.

What is the distribution of Xi?

Xi is a sum of i independent exponentially distributed random
variables

The points of Poisson process

For i = 1, 2, · · · , the random variable Xi has a Gam(i , λ) distribution.
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The distribution of points

if we know that n points are generated in an interval, where do these
points lie?

Let this interval be [0, a].

We start with the simplest case, N([0, a]) = 1

P(X1 ≤ s|N([0, a]) = 1) =
P(X1 ≤ s,N([0, a]) = 1)

P(N([0, a]) = 1)

=
P(N([0, s]) = 1,N((s, a]) = 0)

P(N([0, a]) = 1)

=
λs · e−λs · e−λ(a−s)

λa · e−λa

=
s

a
.

X1 is uniformly distributed over the interval [0, a].

· · ·
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The distribution of points

Location of the points, given their number.

Given that the Poisson process has n points in the interval [a, b], the
locations of these points are independently distributed, each with a
uniform distribution on [a, b].
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