Introduction to Probability, Statistics and Random Processes Chapter 1: Basic Concepts

Hossein Pishro-Nik www.probabilitycourse.come

Chapter 1

Review of Set Theory Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets Functions

• A set is a collection of things called elements.

- A set is denoted in capital letters and defined by simply listing its elements in curly brackets. Example:
 A = {b, c}.
- Can also be defined as
 A = {x:x satisfies some property}.
- Ordering does not matter in sets. Thus $\{1, 2, 3, 4\}$ and $\overline{\{3, 2, 1, 4\}}$ are the same set.
- $b \in A$ b belongs to A where \in means belongs to.
- ▶ And $d \notin A$, where \notin means does not belong.

Review of Set Theory

Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets Functions

Important Sets

• The set of natural numbers, $\mathbb{N} = \{1, 2, 3, 4, \ldots\}$

- The set of integers, $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- The set of rational numbers Q.
- ► The set of real numbers ℝ and the set of complex numbers ℂ.
- Closed intervals on the real line. Example: [2,3] is set of real numbers such that 2 ≤ x ≤ 3.
- Open intervals on the real line. Example: (1,2) is the set of real numbers such that 1 < x < 2.</p>

Chapter 1

Review of Set Theory

Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets Functions

More on Sets

- Set A is a subset of set B if every member of A is also a member of B. We write A ⊂ B, where ⊂ indicates subset.
- Equivalently B is the superset of A, $B \supset A$.
- Two sets are equal A = B, if they contain the same elements, that is A ⊂ B and B ⊂ A
- The universal set S or Ω is the set of all things that we could possibly consider in the context we are studying.
- The universal set in probability is also called the sample space.
- The set with no elements is called the empty or null set φ = Ø.

Review of Set Theory

Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets Functions

Venn Diagrams

- Venn Diagrams are very useful in visualizing relations between sets.
- In Venn Diagrams, a set is depicted by a closed region.

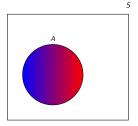


Figure: Venn Diagram

(日) (同) (日) (日) (日) (39,0)

Review of Set Theory Ven Diagrams Set Operations Cardinality Cardinality Cardinality in infinite set countable vs. uncountal sets Products of sets

Chapter 1

Venn Diagrams

- The figure below shows two sets, A and B, where $B \subset A$.
- Both A and B are subsets of the universal set S.

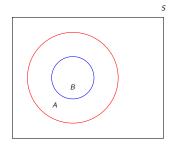


Figure: Venn Diagram for two sets A and B, where $B \subset A$.

169.0

Review of Set Theory Ven Diagrams Set Operations Cardinality Cardinality in infinite sets countable vs. uncountabl sets Products of sets Functions

Chapter 1

Set Operations: Union

- The union of two sets is a set containing all elements that are in A or in B.
- Example: $\{1,2\} \cup \{2,3\} = \{1,2,3\}.$
- In general the union of n sets A₁, A₂,..., A_n is represented as ∪ⁿ_{i=1} A_i.

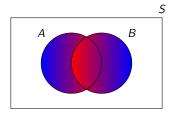


Figure: The shaded area shows the set $B \cup A$.

Review of Set Theory Venn Diagrams Set Operations Cardinality Cardinality Cardinality in infinite sets countable vs. uncountable sets Products of sets Functions

Chapter 1

Set Operations: Intersection

The intersection of two sets A and B is a set containing all elements that are in A and B.

• Example:
$$\{1,2\} \cap \{2,3\} = \{2\}.$$

► In general, the intersection of n sets ∩ⁿ_{i=1} A_i is the set consisting of elements that are in all n sets.

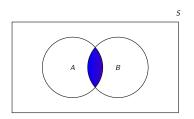


Figure: The shaded area shows the set $B \cap A$.

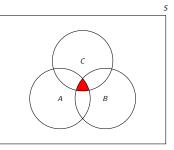


Figure: The shaded area shows the set $A \cap B \cap C$.

course website

Chapter 1

Review of Set Theory Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets

Set Operations: Complement

The complement of a set A is the set of all elements that are in the universal set S but not in A.

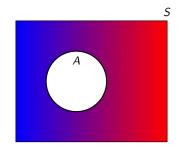


Figure: The shaded area shows the set $\bar{A} = A^c$.

(ロト (個) (目) (目) (目) (1000)

Review of Set Theory

Set Operations

Cardinality

Cardinality in infinite sets, countable vs. uncountable sets

Products of sets

Functions

Set Operations: Difference (Subtraction)

- The set A B consists of elements that are in A but not in B.
- Example: $A = \{1, 2, 3\}$ and $B = \{3, 5\}$, then $A B = \{1, 2\}$

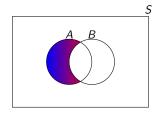


Figure: The shaded area shows the set A - B.

Chapter 1

Review of Set Theory Venn Diagrams Set Operations

Cardinality Cardinality in infinite sets, countable vs. uncountable sets

Functions

Mutually Exclusive or Disjoint Sets

- Sets A and B are mutually exclusive or disjoint if they do not have any shared elements.
- The intersection of two sets that are disjoint is the empty set i.e. A ∩ B = Ø.
- In general, several sets are disjoint if they are pairwise disjoint.

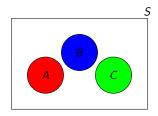


Figure: Sets A, B, and C are disjoint.

course website

Chapter 1

Review of Set Theory Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets Europeing

Partition of Sets

A collection of non-empty set A₁, A₂, ... is a partition of A if they are disjoint and their union is A.

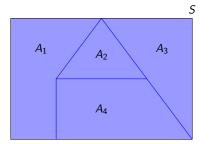


Figure: The collection of sets A_1, A_2, A_3 and A_4 is a partition of S.

course website

Chapter 1

Review of Set Theory

Set Operations

Important Theorems

Review of Set Theory

Venn Diagrams

Set Operations

Cardinality in infinite sets, countable vs. uncountable sets

Products of sets

Functions

• De Morgan's Law: For any sets A_1, A_2, \dots, A_n , we have: • $(A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n)^c = A_1^c \cap A_2^c \cap A_3^c \cap \dots \cap A_n^c$

 $\blacktriangleright (A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n)^c = A_1^c \cup A_2^c \cup A_3^c \cup \ldots \cup A_n^c$

Distributive Law

For any sets

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$\blacktriangleright A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Cardinality in Finite sets

- Cardinality is basically the size of the set.
- If set A only has a finite number of elements, its cardinality is simply the number of elements in A.
- For example, if $A = \{2, 4, 6, 8, 10\}$, then |A| = 5.

(日) (同) (日) (日) (日) (140,0)

We will discuss cardinality of infinite sets later.

Chapter 1

Review of Set Theory Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets Functions

Inclusion-Exclusion Principle

 The inclusion-exclusion principle states that for two finite sets A, B and C.

►
$$|A \cup B| = |A| + |B| - |A \cap B|,$$

► $|A \cup B \cup C| =$
 $|A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$

• In general for n finite sets A_1, A_2, \ldots, A_n

$$\left|\bigcup_{i=1}^{n} A_{i}\right| = \sum_{i=1}^{n} |A_{i}| - \sum_{i < j} |A_{i} \cap A_{j}|$$
$$+ \sum_{i < j < k} |A_{i} \cap A_{j} \cap A_{k}| - \cdots$$
$$+ (-1)^{n+1} |A_{1} \cap \cdots \cap A_{n}|.$$

Review of Set Theory Venn Diagrams Set Operations Cardinality in infinite set countable vs. uncountab sets

Chapter 1

Products of sets

Functions

Cardinality in Infinite Sets

- There are two kinds of infinite sets: countable sets and uncountable sets.
- The difference between the two is that you can list elements in a countable set, so A = {a₁, a₂, ...}, but you cannot list elements in an uncountable set.
- The set ℝ is uncountable and much *larger* than countably infinite sets N and Z.

course website

Review of Set Theory Venn Diagrams Set Operations Cardinality Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets Functions

Countable vs. Uncountable Sets

A more rigorous definition of a countable set A is

- if it is a finite set, $|A| < \infty$; or
- ▶ it can be put in one-to-one correspondence with natural numbers N, in which case the set is said to be countably infinite.
- ▶ $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and any of their subsets are countable.
- Any set containing an interval on the real line such as [a, b], (a, b], [a, b) and (a, b), where a < b is uncountable.

Review of Set Theory Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets

Useful Theorems on Countability

- Any subset of a countable set is countable. Any superset of an uncountable set is uncountable.
- ▶ If A_1, A_2, \cdots is a list of countable sets, then the set $\bigcup_i A_i = A_1 \cup A_2 \cup A_3 \cdots$ is also countable.
- If A and B are countable, then $A \times B$ is also countable.

Review of Set Theory Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets

Products of sets

Functions

The Cartesian Product

The Cartesian Product of two sets A and B, written as A × B, is the set containing ordered pairs from A and B.

• Thus
$$A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$$

- For example, if $A = \{1, 2, 3\}$ and $B = \{H, T\}$, then $A \times B = \{(1, H), (1, T), (2, H), (2, T), (3, H), (3, T)\}$
- It is important to note that the pairs are ordered, thus (1, H) ≠ (H, 1) and A × B ≠ B × A.

Chapter 1

Review of Set Theory Ven Diagrams Set Operations Cardinality Cardinality

Multiplication Principle

- Multiplication principle: If two finite sets A has M elements and B has N elements, then A × B has M × N elements.
- ▶ In general for sets $A_1, A_2, \ldots A_n$ with $|A_1| = M_1, |A_2| = M_2, \ldots, |A_n| = M_n$, we have $|A_1 \times A_2 \times \ldots \times A_n| = M_1 \times M_2 \times \ldots \times M_n$.
- An important example is ℝⁿ where n is a natural number. ℝ² = ℝ × ℝ is set of all points in the 2-D plane.

Review of Set Theory Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets

Functions

- A function maps elements from the domain set to elements in another set called the co-domain.
- Each input in the domain is mapped to exactly one output in the co-domain.
- It is denoted as $f: A \rightarrow B$.
- The range of a function is the set of all possible values of f(x) and is a subset of the co-domain.

course website

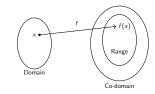


Figure: Function $f : A \rightarrow B$, the range is always a subset of the co-domain. Chapter 1

Review of Set Theory Venn Diagrams Set Operations Cardinality Cardinality in infinite sets, countable vs. uncountable sets Products of sets Functions