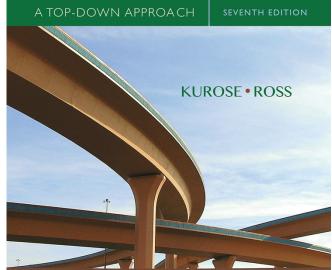
Chapter 6 The Link Layer and LANs

A note on the use of these Powerpoint slides:


We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we' d like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

C All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Chapter 6: Link layer and LANs

our goals:

- understand principles behind link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
 - local area networks: Ethernet, VLANs
- instantiation, implementation of various link layer technologies

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

6.5 link virtualization: MPLS


- 6.6 data center networking
- 6.7 a day in the life of a web request

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - LANs
- layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

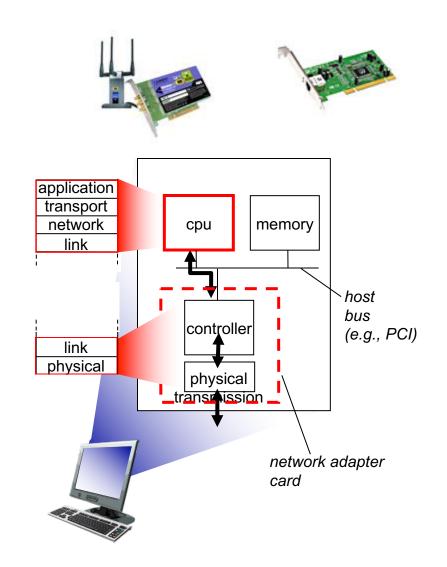
Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

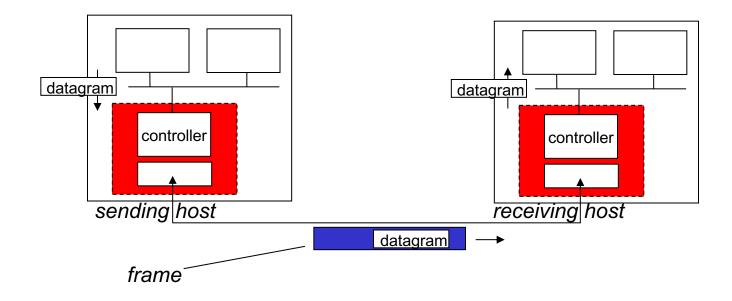
transportation analogy:

- trip from Princeton to Lausanne
 - limo: Princeton to JFK
 - plane: JFK to Geneva
 - train: Geneva to Lausanne
- tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing algorithm

Link layer services


- framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - "MAC" addresses used in frame headers to identify source, destination
 - different from IP address!
- reliable delivery between adjacent nodes
 - we learned how to do this already (chapter 3)!
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and end-end reliability?

Link layer services (more)


- flow control:
 - pacing between adjacent sending and receiving nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- error correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- in each and every host
- link layer implemented in "adaptor" (aka network interface card NIC) or on a chip
 - Ethernet card, 802.11 card; Ethernet chipset
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

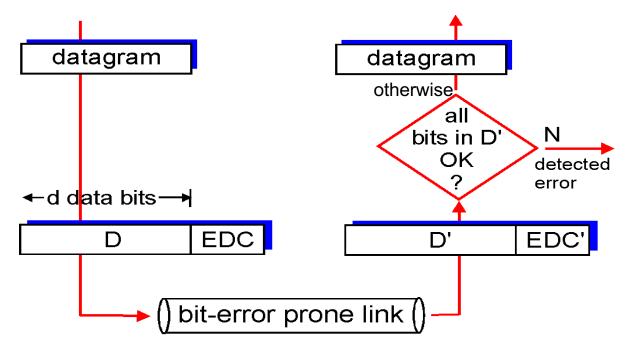
Adaptors communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.

- receiving side
 - looks for errors, rdt, flow control, etc.
 - extracts datagram, passes to upper layer at receiving side

Link layer, LANs: outline

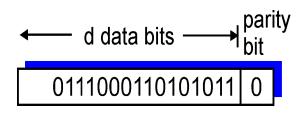
- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS


6.5 link virtualization: MPLS

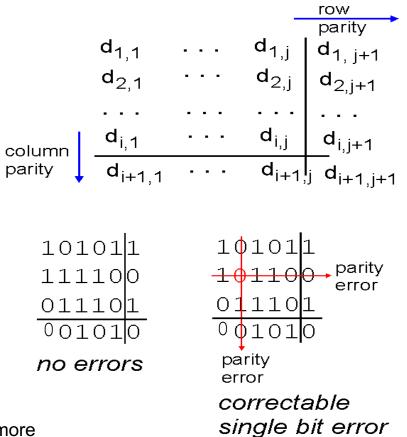
- 6.6 data center networking
- 6.7 a day in the life of a web request

Error detection

EDC= Error Detection and Correction bits (redundancy)


- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction

Parity checking


single bit parity:

 detect single bit errors

two-dimensional bit parity:

detect and correct single bit errors

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Link Layer and LANs 6-12

Internet checksum (review)

goal: detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (l's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless?

Cyclic redundancy check

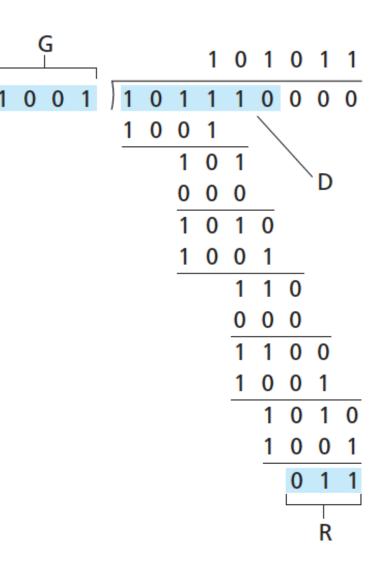
- more powerful error-detection coding
- view data bits, D, as a binary number
- choose r+l bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi, ATM)

$$\longleftarrow d \text{ bits} \longrightarrow \longleftarrow r \text{ bits} \longrightarrow bit$$

$$D: \text{ data bits to be sent } R: CRC \text{ bits} pattern$$

$$pattern$$

Link Layer and LANs 6-14


CRC example

want: $D \cdot 2^r XOR R = nG$ equivalently: $D \cdot 2^r = nG XOR R$ equivalently: if we divide $D \cdot 2^r$ by G, want remainder R

to satisfy:

$$R = remainder[\frac{D \cdot 2^r}{G}]$$

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

6.5 link virtualization: MPLS

- 6.6 data center networking
- 6.7 a day in the life of a web request

Multiple access links, protocols

two types of "links":

point-to-point

- PPP for dial-up access
- point-to-point link between Ethernet switch, host

broadcast (shared wire or medium)

- old-fashioned Ethernet
- upstream HFC
- 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustical)

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal multiple access protocol

given: broadcast channel of rate R bps desiderata:

- I. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC protocols: taxonomy

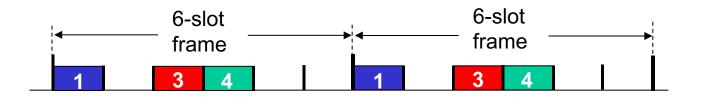
three broad classes:

channel partitioning

- divide channel into smaller "pieces" (time slots, frequency, code)
- allocate piece to node for exclusive use

random access

- channel not divided, allow collisions
- "recover" from collisions


"taking turns"

 nodes take turns, but nodes with more to send can take longer turns

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no *a priori* coordination among nodes
- two or more transmitting nodes \rightarrow "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA