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ABSTRACT

The exponential growth of scientific literature, with millions of new articles

published annually, has created an unsustainable discovery bottleneck across research

communities. Manual extraction of critical information—including methodologies,

datasets, and domain-specific terminologies—now consumes a substantial proportion

of researchers’ literature review time, particularly impacting time-sensitive fields

like climate science and biomedical research where delayed insights hinder urgent

policy decisions or therapeutic developments. Automated information extraction

systems have transitioned from supplemental tools to essential infrastructure,

addressing three critical imperatives: preserving collective understanding through

cross-publication discovery linking, enabling real-time knowledge synthesis in rapidly

evolving domains, and democratizing access to specialized findings via structured

knowledge representation. Without robust frameworks, the scientific community

risks perpetuating redundant investigations, overlooking critical interdisciplinary

connections, and failing to transform publication volume into actionable insight

networks.

Current information extraction paradigms face four fundamental technical

challenges rooted in scientific communication’s unique characteristics. First,

terminological instability arises from continuous conceptual evolution, where

emerging constructs like “attribution-based climate models” and “GPT-4.5” outpace

standardized taxonomies, generating persistent errors in entity disambiguation.

Second, structural heterogeneity manifests through hundreds of distinct
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methodological description formats observed even within focused disciplines like

materials science, complicating pattern generalization. Third, contextual dependency

demands adaptive interpretation of concepts such as “deep learning,” whose technical

meanings diverge fundamentally between protein folding architectures and geospatial

mapping applications. Fourth, the scalability–accuracy tradeoff forces untenable

compromises between precision (evidenced by frequent LLM hallucinations) and

coverage (marked by traditional NLP’s oversight of domain-specific abbreviations).

These technical barriers compound with systemic data limitations—existing corpora

cover only a small fraction of specialized domains while exhibiting annotation

inconsistencies that undermine model reliability. Emerging paradigms in hierarchical

relationship modeling hint at potential resolutions through hybrid neural-symbolic

architectures.

This research advances scientific information extraction through three

interconnected contributions: the development of domain-annotated corpora

spanning climate science and computer science; systematic evaluation of machine

learning architectures across extraction tasks and disciplinary contexts; and

demonstrated pathways for transforming extracted entities into evolvable knowledge

graphs. By creating structured repositories that capture methodological lineages,

dataset dependencies, and conceptual evolution patterns, our work provides

researchers with interoperable frameworks for mapping relationships across

fragmented scientific domains. The resulting infrastructure enables both precision-

focused analysis within specialized fields and cross-domain knowledge discovery,

offering scalable solutions to organize literature at scale while preserving disciplinary
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nuance. These contributions collectively address the dual challenges of maintaining

taxonomic rigor and enabling adaptive knowledge synthesis in modern scientific

communication ecosystems.
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CHAPTER 1

INTRODUCTION

The scale of modern scientific publishing has reached critical thresholds, with

researchers submitting over 7 million papers annually. In biomedicine alone, PubMed

indexes 58K new abstracts relating to ‘covid’ last year—a volume that would take

a researcher more than a year to read nonstop at 1 minute per paper. This deluge

creates discovery bottlenecks: critical findings on vaccine efficacy, for example, took

6 months longer to synthesize during the COVID-19 pandemic due to fragmented

literature. Compounding this, interdisciplinary fields like climate science now

require synthesizing insights from diverse domains (atmospheric chemistry, AI-driven

modeling, policy studies) just to validate a single hypothesis. Without automated

tools, researchers risk missing vital connections—many clinical trials proceed without

conducting thorough systematic reviews of existing evidence. This oversight can result

in unnecessary duplication and exposure of participants to avoidable risks [1].

Automatic information extraction (IE) systems have emerged as essential

infrastructure to address these challenges, encompassing three core tasks: named

entity recognition, relationship detection, and entity linking as shown in Figure 1.1.

Their transformative potential is evidenced by large-scale implementations such as

AllenAI’s Semantic Scholar for scientific literature structuring and the National

Institutes of Health’s LitCOVID knowledge graph [2], which codified COVID-19

research into actionable biomedical relationships. These systems aim to convert

unstructured text into semantically rich, queryable knowledge networks.
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The amount of scientific literature available 
on the web is growing exponentially

Automatic 
Parser

Paper Title: xxx
Dataset: xxx, xxx
Methods: xxx, xxx
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Paper Title: xxx
Dataset: xxx, xxx
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Paper Title: xxx
Dataset: xxx, xxx
Models: xxx, xxx
Tasks: xxx

Dataset

Task
Model

5

Text

Figures and Tables

Named Entities

Relations and Linking

Comprehension

Figure 1.1: Background and motivation of automatic information extraction systems
on scientific literature

Despite these advances, domain-specific complexities persist. Terminological

instability is exemplified by the evolving semantics of “awe”—initially denoting

emotional reverence in psychology, later redefined as algorithmic wonder in human-

AI interaction studies [3]. Structural heterogeneity manifests as hundreds of

methodological description formats within singular disciplines; materials scientists,

for instance, document identical thermal processes using lexically divergent terms

like “calcined,” “fired,” and “heated” [4], complicating pattern generalization. Cross-

modal ambiguity further obscures meaning, as seen in “resilience,” which signifies

species recovery rates in ecological contexts but denotes system robustness thresholds

in cybersecurity frameworks. Such variability demands adaptive solutions to align

extracted knowledge with disciplinary conventions.

This thesis advances scientific information extraction through three

methodological pillars:
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1. Domain-Specific Corpora Development Developed four benchmark

resources for scientific IE: DMDD [5]: Dataset-method discourse corpus with

449,000 weak labels and 13,000 expert annotations across computer science

literature. SciDMT [6]: Dataset-method-task triples from 48,000 papers, revealing

implicit research workflows. FlowLearn [7]: 3,858 annotated scientific flowcharts

supplemented with 10,000 synthetic diagrams for visual-language pretraining.

ClimateIE : 500 climate publications annotated via hybrid human-AI pipeline, aligned

with IPCC taxonomies through entity linking.

2. Cross-Model Evaluation Systematically evaluated multiple state-of-the-art

models across five IE tasks using an overlapping set of architectures:

• Entity Detection: Cross-paradigm comparison of LLMs (GPT-4, Llama)

versus domain-specialized architectures (SciBERT)

• Relationship Extraction: Systematic evaluation of graph-enhanced LLMs

(GraphRAG) against base models (Llama)

• Flowchart Comprehension: Capability assessment across vision-language

models (GPT-4V, Qwen-VL)

• Climate Entity Recognition: Domain adaptation analysis comparing general-

purpose LLMs to climate-focused variants (ClimateGPT)

• Entity Linking: Hybrid approach evaluation contrasting graph-neural methods

with traditional string-matching baselines
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3. Adaptive IE Architectures Developed task-specific frameworks with

measurable improvements: KG-RAG: Reduced climate entity hallucinations through

dynamic knowledge graph constraints. FlowLearn: Poposed using modular

pretraining (caption analysis → visual decomposition → semantic grounding).

These contributions establish a scalable framework for continuous knowledge

integration, providing researchers with a practical scholarly infrastructure for both

retrospective synthesis and forward-looking discovery.
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CHAPTER 2

REVIEW OF LITERATURE

2.1 Scientific Knowledge Infrastructure

2.1.1 Publication Management

In the realm of publication management, climate science lacks comprehensive

resources for organizing related publications, especially when compared to other

scientific fields. For instance, the medical field benefits from PubMed 1, and

the computer science domain has repositories like Papers With Code2.In contrast,

climate science relies on general scientific databases such as Scopus3 and Web of

Science4, which cover a broad range of disciplines but are not specifically designed for

climate research. For climate-specific, the Coupled Model Intercomparison Project

(CMIP) Publication Hub5 lists 394 publications–a small fraction of the climate

science literature. Europe PMC6 hosts a database of over 44.2 million life sciences

publications but lacks direct links to full papers. While Europe PMC’s SciLit allows

users to link in-text mentions to entities in its vocabulary, its reliance on human input

leads to sparse annotations. Additionally, annotations are limited to abstracts, and

many papers lack annotations altogether.
1https://pubmed.ncbi.nlm.nih.gov
2https://paperswithcode.com
3https://www.scopus.com
4https://www.webofscience.com
5https://cmip-publications.llnl.gov
6https://europepmc.org
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2.1.2 Scientific Information Extraction Datasets

The systematic transformation of scientific literature into structured knowledge

bases has been enabled by domain-specific corpora spanning biomedicine, computer

science, and interdisciplinary research. In biomedicine, MedNER [8] provides granular

annotations for disease mentions across clinical narratives, while bioNerDS [9]

identifies database and software references in bioinformatics’ literature. Computer

science resources exhibit complementary specialization: SemEval-2017/2018 [10, 11]

establish benchmarks for research concept tagging, and NLP-TDMS [12] introduces

temporal annotations for method evolution tracking. These corpora collectively

address domain-specific lexical challenges—from biomedical neologisms (BRCA1

mutation”) to computational vernacular (transformer architectures”)—through

annotation schemas encompassing atomic entities, coreferential chains, and cross-

document relationships.

2.1.2.1 AI-Centric Textual Corpora

Contemporary AI literature mining relies on three foundational resources, each

addressing distinct facets of methodological reporting. SciERC [13] establishes

foundational annotations across 500 scientific abstracts, identifying six entity

categories (Task, Method, Metric, Material, Other-ScientificTerm, Generic) alongside

coreference chains and binary relations. SciREX [14] extends this paradigm to

document-level IE, introducing multi-task annotations for salient entity detection

and cross-sentence relationship extraction. TDMSci [15] narrows focus to NLP
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methodology, annotating 2,000 sentences for Task, Dataset, and Metric mentions

while omitting method entities—a critical limitation for comprehensive workflow

analysis.

2.1.2.2 Climate Science Related Resources

Contemporary climate science corpora systematically exclude three critical

modeling constructs: (1) experimental protocols (e.g., CMIP6 scenario specifications),

(2) observational variables (e.g., aerosol optical depth), and (3) teleconnection patterns

(e.g., El Niño-Southern Oscillation phase transitions). Domain-agnostic benchmarks

exacerbate this gap by prioritizing generic entities like Dataset and Location over

climate-specific technical lexicons, limiting computational workflow analysis.

Existing Climate Corpora Existing structured resources for climate knowledge

predominantly target policy analysis and impact documentation. The CPo-CD

Dataset [16] exemplifies this trend, annotating 13,728 short text segments (2–250

words) with policy elements such as Target, Action, Policy, and Plan. Similarly,

CLIMATELI [17], the first manually annotated dataset for climate entity linking,

maps 3,087 entity spans to Wikipedia across genres like IPCC reports and news

articles, though its scope remains constrained to broadly recognized concepts.

Efforts to systematize climate impacts [18], who employ LLMs to extract 300

records of extreme events (e.g., Event, Location, Deaths) from Wikipedia and

Artemis, prioritizing societal consequences over scientific processes. In the corporate

sustainability domain, Usmanova and Usbeck [19] transform 124 reports into a
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knowledge graph with ontology classes like Organization and Risks, alongside

descriptive relations such as hasDescription, while Garigliotti [20] combines LLMs

with retrieval-augmented generation (RAG) to classify sustainability targets in

33 reports. Though these resources advance policy tracking and corporate

disclosures, they overlook technical climate science entities fundamental to modeling

workflows—experiments, observational variables, and teleconnections. Our work

bridges this gap by centering on computational research artifacts and cross-document

entity linking tailored to climate modeling interoperability.

Climate Taxonomies Numerous vocabularies related to climate science have

been organized to facilitate research, including notable examples such as

NASA’s Global Change Master Directory (GCMD), Semantic Web for Earth and

Environment Technology Ontology (SWEET) [21], CMIP6 Controlled Vocabularies

(CMIP6CV) [22], and Obs4MIPs [23]. Each taxonomy focuses on different aspects of

climate science. GCMD is among the most comprehensive and popular taxonomies,

encompassing a wide array of climate-specific entities, including projects, locations,

and climate events—attributes crucial to researchers when analyzing publications.

In contrast, CMIP6CV and Obs4MIPs are specifically tailored to climate modeling,

featuring variables that include specific names of climate experiments and model

variable names.
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2.1.2.3 Scientific Figure Datasets

In addition to scientific text, figures such as diagrams and charts play an

indispensable role in conveying complex information within the scientific community.

This section delves into interdisciplinary research at the nexus of computer vision and

natural language processing, with a specific emphasis on the comprehension of visual

figures in scientific documentation. Our study narrows its focus to a particularly

under-explored subset of these figures: flowcharts. These visual tools are pivotal for

understanding processes and methodologies in scientific literature, yet they have not

been extensively investigated within the research community. Through this targeted

approach, we aim to shed light on the nuances of flowchart comprehension and its

implications for enhancing scientific communication.

Significant efforts have been made to develop methodologies and datasets aimed at

extracting and understanding scientific figures. Notable methods include PDFigCapX

[24], PDFMEF [25], PDFFIGURES [26], and PDFFIGURES2 [27], which facilitate

the extraction of figures, captions, and related information from scholarly articles.

Datasets like VIS30K [28] and PDFFIGURES2 [27] advance figure extraction by

providing detailed annotations concerning figure locations. Moreover, ACL-FIG [29]

and DocFigure [30] focus on figure classification, enhancing the understanding of

various figure types, including bar charts and architecture diagrams. Additionally,

specialized datasets like SciCap [31] and Parsing-AUC [32] concentrate on image

captioning and summarization for experimental results figures.
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Despite these advances, there is a noticeable gap in datasets that offer detailed

annotations specifically for flowcharts. For instance, ACL-FIG [29] includes only

about 200 flowcharts categorized under architecture diagrams and neural networks,

and CSDia [33] focuses on logical diagrams but lacks detailed caption information

as it is not derived from the scientific literature. In contrast, SCI-CQA [34] is a

benchmark designed to evaluate multimodal models on scientific charts, including

2,953 flowcharts and 202,760 image-text pairs collected from 15 top-tier computer

science conferences over the past decade.

2.1.3 Limitations of Current Resources

Contemporary scientific information extraction resources exhibit four systemic

constraints that hinder comprehensive knowledge synthesis.

First, corpus scale and coverage remain insufficient for data-intensive modern

methods. Climate science exemplars like the CMIP Publication Hub catalog fewer

than 400 papers—less than 0.7% of annual climate literature—while AI-centric

corpora like SciERC and TDMSci average just 500–2,000 annotated instances. This

paucity of training data forces models to extrapolate from narrow samples, as

evidenced by high error rates on rare climate variables like PM transport coefficients

in pilot studies.

Second, lexical diversity gaps persist across annotation schemas. TDMSci’s

exclusive focus on capitalized dataset names (e.g., GLUE, COCO) inadequately

represents real-world usage patterns, which often feature mixed casing. Similarly,

10



climate policy corpora like CPo-CD emphasize broad concepts (e.g., Target, Action)

while overlooking technical descriptors such as CMIP6 experiment codes (ssp245).

Third, entity linkability limitations hinder cross-study knowledge integration.

Although CLIMATELI includes 3,087 Wikipedia links, only a small proportion

of them pertain to climate science research, limiting the corpus’s effectiveness

in connecting domain-specific entities and supporting comprehensive knowledge

synthesis.

Fourth, multimodal grounding deficiencies limit figure and workflow analysis.

Flowchart datasets like ACL-FIG contain just 200 samples—insufficient to model

the 47 distinct visual idioms (e.g., feedback loops, parallel processing) identified in

climate model documentation. Moreover, existing taxonomies (SWEET, GCMD) lack

mappings between figure elements (e.g., flowchart decision nodes) and their textual

method descriptions.

These limitations collectively restrict scientific information extraction (IE) systems

to narrow, domain-static applications, highlighting the need for resources that

incorporate large-scale annotations, lexical variants, persistent identifiers, and

multimodal grounding for broader and more adaptable use.

2.2 Textual Information Extraction Models

2.2.1 Non-LLM Models

Scientific mention detection has progressed through three architectural paradigms.

Early work [35] introduced CRF-LSTM hybrids for sequence labeling, utilizing
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contextual windows to identify dataset mentions. Building on this, subsequent

research incorporated pre-trained embeddings, with BiLSTMs combined with ELMo

vectors achieving improved performance on computer science abstracts [36]. Further

advancements demonstrated BERT’s effectiveness in capturing nested method

mentions [37]. More recently, the NLP-TDMS system [12] expanded this line of

work by employing transformer-based models for enhanced mention detection.

Multi-task learning frameworks address annotation sparsity by jointly optimizing

related objectives, such as entity linking and relation extraction. For instance,

SciREX [14] proposed a multi-task model based on BERT that performs scientific

mention identification, salient mention detection, pairwise coreference, and salient

entity clustering, achieving state-of-the-art performance on the SciREX dataset.

2.2.2 LLM-Based Models

Large language models (LLMs) exhibit exceptional performance in scientific

information extraction (IE) tasks, particularly those requiring schema induction from

implicit context. In chemical entity recognition, LLaMA-3-70B achieves 93% accuracy

in extracting synthesis protocols for reticular materials [38]. Similarly, for biomedical

knowledge extraction, GPT-4 attains 87% accuracy on literature concerning HIV

drug resistance [39]. Other specialized models have further advanced scientific

IE. REBEL [40] utilizes BART-large, fine-tuned for relation extraction, effectively

identifying relationships between entities. GPT-NER [41] leverages GPT-3 for named

entity recognition (NER) in a zero-shot setting, allowing it to perform extraction

without domain-specific training data. Likewise, PromptNER [42] employs GPT-
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4 with prompt engineering for effective NER, making it adaptable across various

contexts.

Beyond domain-specific approaches, emerging solutions enhance LLM outputs

through structured knowledge integration. GraphRAG improves factual consistency

by grounding LLM responses in dynamic knowledge graphs, leveraging schema-

constrained decoding to reduce hallucination rates. LightRAG [43] incorporates

graph structures into text indexing and retrieval, reducing computational costs

and enabling rapid domain adaptation. Its incremental update algorithm ensures

timely integration of new data, maintaining effectiveness in evolving environments.

SAC-KG [44] automates large-scale knowledge graph construction, scaling to over

one million nodes with an 89.32% triplet accuracy. Meanwhile, VEGGIE [45]

employs context-sensitive graph grammars for error-correcting parsing, enhancing the

robustness of extracted information. CollabKG [46] serves as a toolkit for cooperative

human-machine information extraction, facilitating knowledge graph construction.

Additionally, TechGPT-2.0 [47] is designed for technology-oriented tasks, including

automated knowledge graph building.

These advancements underscore the growing synergy between LLMs and

knowledge graph-based frameworks, offering promising avenues for more accurate

and adaptable scientific IE systems.

2.2.3 Model Limitations in Domain-Specific Information Extraction

Three systemic limitations constrain model effectiveness in domain specific IE.
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First, hallucination risks intensify in domains requiring strict terminological

precision. For example, climate science IE models may conflate distinct concepts

such as “RCP8.5” and “SSP5-8.5,” while biomedical models may confuse drug

nomenclature variants (e.g., “EGFR-TKI” vs. “ALK-TKI” kinase inhibitors).

Techniques like contrastive decoding [48] mitigate this by suppressing implausible

token sequences, but they struggle with climate science’s long-tail concepts absent

from general pretraining corpora.

Second, domain mismatch persists even in adapted models like SciLitLLM [49],

which focuses on broad scientific literature rather than climate-specific discourse.

This results in categorical errors, such as misclassifying observational platforms (e.g.,

“Argo floats” as geographic locations) or mislinking abbreviations (e.g., “ENSO” to

entertainment entities).

Third, limited grounding in climate taxonomies undermines entity linking

consistency across studies. While RAG partially addresses this [20], current

implementations prioritize policy targets over technical modeling artifacts. ClimateIE

addresses these gaps via structured annotations and hybrid human-LLM curation

pipeline, enabling robust grounding of climate entities while minimizing hallucination

risks.
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2.3 Visual Understanding Models

2.3.1 Image Captioning

Research in image captioning [50, 51], particularly in scientific chart image

captioning [52], has seen significant advancements, exemplified by works such as

Parsing-AUC [32], which combines figure semantics extracted via OpenCV with

textual information from the main text to generate comprehensive figure summaries

for AUC figures.

2.3.2 Visual Question Answering (VQA)

The field of VQA [53, 54, 55, 56] has seen substantial advancements, with datasets

like VL-ICL Bench [57] providing benchmarks for multimodal in-context learning.

In scientific contexts, CSDia [33] employs models based on Diagram Parsing Nets

to address VQA tasks, particularly in diagram analysis. Specifically designed for

scientific result figures, FigureSeer [58] excels in figure localization, classification, and

analysis, enabling detailed indexing and result summarization. Notably, FigureSeer

incorporates an intermediate figure parsing step to extract key components such as

axes, legends, and data points. This highlights the importance of figure decomposition

in improving scientific figure comprehension, particularly for flowcharts.

In the medical domain, specialized VQA models have emerged to address

challenges in interpreting radiology and clinical images. CGMVQA [59] focuses

on medical VQA for radiology image analysis, while MedFuseNet [60] enhances

multimodal learning through an attention-based framework. Similarly, MMBERT [61]
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leverages pre-trained BERT models for language processing, adapted specifically for

medical VQA, and has been referenced in several survey studies.

Beyond scientific and medical applications, VQA research has explored innovative

approaches to improving answer generation and interpretability. Neural-Symbolic

VQA [62] and αILP [63] integrate neural network outputs with symbolic reasoning,

facilitating structured answer formulation. Additionally, work on structure-aware

visualization retrieval [64] underscores the significance of incorporating structural

information into VQA systems. Their findings suggest that users prefer similarity

evaluations based on visual structure rather than low-level pixel comparisons,

advocating for a deeper, more semantic approach to image understanding.

These developments collectively showcase the evolution of VQA, from domain-

specific models to versatile, multimodal architectures capable of handling complex

visual and textual interactions.

2.3.3 Large Vision-Language Models (LVLMs)

The development of Large Vision-Language Models (LVLMs) has significantly

advanced visual understanding by integrating sophisticated vision techniques with

large language models (LLMs). These models learn from both images and text

simultaneously, enabling them to tackle various multimodal tasks such as visual

question answering (VQA) and image captioning. The OpenCompass Multi-modal

Leaderboard7 ranks leading LVLMs, including notable models such as GPT-4V [65],
7https://rank.opencompass.org.cn/leaderboard-multimodal
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Gemini [66], LLaVA [67], Claude [68], InternLM [69], Qwen-VL [70], Step-1V8, and

DeepSeek [71].

Transformer-based multimodal architectures have further expanded the

capabilities of LVLMs in VQA and related tasks. ViLT [72] employs a transformer-

based vision-language framework, demonstrating strong performance in VQA.

Similarly, LLaVA [67] extends these capabilities as an open-source VQA model

adaptable across diverse image types. PaliGemma [73], developed by Google,

introduces a versatile multimodal vision-language model, further enhancing VQA

applications. Meanwhile, GPT-4o [74] from OpenAI processes both images and text,

enabling advanced vision-language interactions across multiple domains.

These models are trained on diverse multimodal datasets, including those for

VQA, optical character recognition (OCR), and academic-related VQA, all of which

are crucial for scientific flowchart understanding.

2.3.4 Image Decomposition

Several works have focused on extracting objects and their relationships from

scientific figures. Notably, [75] pioneers the conversion of scientific equation images

into LaTeX format. ChartDetective [76] introduces an interactive application for

converting result chart images into SVG, preserving semantics and component

relationships. However, it is essential to note that this approach relies on user

interaction and takes about 4 minutes for a single conversion. For non-scientific
8https://www.stepfun.com/
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domains, Flow2Code [77] converts hand-drawn flowcharts to simple code by using

object detection and rules.
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CHAPTER 3

DMDD: A LARGE-SCALE DATASET FOR DATASET MENTIONS

DETECTION

Having established the limitations of current resources through our literature

review, we begin our investigation of scientific information extraction with the

foundational task of dataset mention detection. The reliable identification of

these mentions underpins critical downstream tasks including attribution analysis,

reproducibility validation, and knowledge graph construction. However, as discussed

before, existing resources remain constrained by three systemic limitations: narrow

scope (e.g., TDMSci’s exclusive focus on NLP methods [15]), incomplete annotation

schemas (e.g., bioNerDS’ exclusion of versioning information [9]), and inadequate

scale (median 1.2k instances across surveyed corpora).

We present DMDD (Dataset Mentions Detection Dataset), addressing three core

limitations of prior work:

• Granularity: Precise annotation of dataset names (e.g., ImageNet) while

excluding pronominal references (e.g., “the dataset”) or underspecified material

mentions (cf. SciREX’s material entities [14])

• Scale: significantly larger than prior domain-agnostic benchmarks, with 380K+

mentions across 26K scientific articles
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• Contextual Richness: Full-text annotations capturing mention contexts

critical for disambiguation (e.g., “We evaluated on ImageNet-1K (Russakovsky

et al., 2015)”)

In the following sections, we detail DMDD’s corpus development, including our

hybrid human-AI annotation protocol and quality control measures. Figure 3.1

illustrates a representative data entry with parsed article structure and mention spans.

We also introduces DMDD-Eval, a manually-curated benchmark for cross-domain

generalization testing, while providing a systematic comparison against existing

resources across different dimensions.

Figure 1 (left) shows stylizations from the network trained 

on the DTD and the PBN datasets …

… when Describable Textures Dataset (DTD) is used as 

on the ImageNet dataset as a corpus of training content 

… 

… 
1284212839

B-D 
1285412851

B-D 

1219012182
B-D 

1245312425
B-D I-D I-D 

12458
B-D 

12455

Doc ID: 5942

Figure 3.1: Example of paper-level annotation in DMDD. We mark each occurrence
of dataset (D) in papers and give the in-text spans. We can generate the BIO
annotation. For example, the dataset mention ‘ImageNet’ spans 12182 to 12190 and
has a BIO tag as ‘B-D’.
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3.0.1 Data Collection

We built DMDD’s main corpus by combining data from S2ORC [78] and Papers

with Code (PwC). The parsed scientific articles are obtained from S2ORC [78], which

is a dataset based on the Semantic Scholar website. S2ORC is a unified resource that

combines aspects of citation graphs (i.e., rich paper metadata, abstracts) with a full-

text corpus that preserves important scientific paper structure (i.e., sections, inline

citation, references to tables and figures). For in-text level annotation of dataset

mentions, we used distant supervision to derive the annotations from existing data

sources with document-level annotation. We sourced the document-level annotation

from Papers with Code (PwC), which is a free and open-source website with machine-

learning papers, code, datasets, methods, and evaluation tables. For each available

paper listed in PwC’s data files, we obtained the publication details, PDF web links,

and links to related GitHub code. Most of these publication details are edited by

the authors of those papers. However, the information about datasets mentioned in

the papers is not organized for download. To obtain such information, we conduct

web scraping of the ‘Dataset Section’ of each paper’s webpage in PwC, which contains

human annotations on the document-level about the datasets mentioned in the paper.

3.0.2 Annotation Procedure

We describe our distant supervision procedure to create the in-text mention

annotation for dataset mentions in this subsection. The document-level annotations

are based on the data provided by PwC’s users. Our premise is that we can take
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the names supplied by authors in PwC and match them in the main text of a paper.

For the most part, this is a correct assumption. However, users do not often give

complete information about the artifacts used in their papers. For example, they may

only give a partial spelling of an entity name (e.g., ‘CIFAR’ instead of ‘CIFAR10’) or

use a different spelling (e.g., ‘CIFAR-10’ in PwC and ‘CIFAR10’ in the paper). Thus,

we cannot proceed with a strict matching procedure of dataset names collected from

PwC in the text of the papers.

We commence by creating a dictionary that defines all dataset entities in DMDD.

For each dataset entity, we store the following information: name, full name, and

web page link in PwC. Next, we create regular expressions (regex) for each dataset

entity. The regular expression creation process is described in detail in Section 3.0.3.

We use regex as an approximate matching procedure to label the parsed text of a

paper. Data engineers refer to such data labeling rules as labeling functions [79]. Two

example DMDD dictionary entries containing its regex can be found in Figure 3.1.

Using the document-level annotation on dataset mentions and the regex, we

annotated 31,219 scientific articles. For each article, we have the concatenated full-

text, section span, document-level dataset annotations, in-text dataset mention span,

and the entity index for each mention. Example data can be visualized in Figure 3.1.

In addition, we also store section information for each document, which includes the

section names and their corresponding starting and ending indices in the concatenated

full text. The reason we include section span is that we believe ‘section’ may provide

additional semantic information and can impact the detection accuracy. For example,
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a detection algorithm should be more sensitive to candidates in experiment sections

where authors typically describe their datasets.

3.0.3 Regular Expression Rules

The regex objective is to incorporate as much variety in dataset mentions as

possible. However, we do not seek to have an optimal regular expression. First,

such a rule is difficult to create manually, and second, we seek to generate enough

(weak labeled) data to enable training NER recognizer. Instead of constructing regex

for each dataset individually, we use a set of rules to construct regex for all dataset

entities, using their short name and full name listed in PwC as base names.

For the 6,675 dataset entities listed in the PwC dataset definition file, there are

8,708 listed name variants. Using an exact match with the base names, we match

7,989 variants. These matched variants are just the short names and full names of

the entities. To enhance the exact match, we used a set of rules to customize the

regular expression for each base name. The number of additional variants matched

with the added rule compared to the exact match is shown as #Matched.

1) We allow optional space and ‘-’ between words. For example, dataset entity

‘CIFAR-10’ may be mentioned as ‘CIFAR 10’ and ‘CIFAR10’ in papers. To allow

such variation, we customize the regex as ‘CIFAR-*\s*10’. (#Matched = 77).

2) We create acronyms for names including multiple words by combining the

initials of the words. For example, we create an acronym ‘WTQ’ for entity

‘WikiTableQuestions’. (#Matched = 14).
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3) We ignore casing for units appearing in names. In particular, if ‘3D’/‘3k’/‘3m’

in names, we allow matching ‘3d’/‘3K’/‘3M’. For example, dataset entity ‘DBP15K’

may be mentioned as ‘DBP15k’ in papers. To allow such variation, we customize the

regex as ‘DBP15[Kk]’. (#Matched = 4).

4) We allow optional decimal places for versions and numbers. For example, the

dataset entity ‘OntoNotes 4.0’ may be mentioned as ‘OntoNotes 4’. To allow such

variation, we customize the regex as ‘OntoNotes 4\.*[0-9]*’. (#Matched = 5).

5) We ignore case for words that have a length greater than 4 and the lowercase of

the name is not a common English word. For example, we ignore cases when matching

for dataset entity ‘SciREX’, so that it matches ‘SCIREX’ and ‘scirex’ that may appear

in text. We enforce case matching for dataset entity ‘SHAPES’. (#Matched = 286).

6) We allow optional suffixes including ‘ing’ and ‘ion’. For example, the dataset

entity ‘Deep Soccer Captioning’ may be mentioned as ‘Deep Soccer Caption’. To allow

such variation, we customize the regex as ‘Deep Soccer Captioni*n*g*’. (#Matched

= 0).

7) We allow optional plural forms including ‘es’ and ‘s’. For example, the dataset

entity ‘MovieLens’ may be mentioned as ‘MovieLen’ in papers. To allow such

variation, we customize the regex as ‘MovieLens*’. (#Matched = 0).

While PwC’s listed variants do not include the patterns from rules 6 and 7, we

observe many such variations in DMDD’s papers caused by typos and loose writing.

Using all the rules outlined above, we identify names with the corresponding

patterns and customized the regex accordingly. This final set of customized regex

allows us to cover most of the listed variants, leaving us with only 74 unmatched
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variants. To address these unmatched variants, we use them as the base names and

created additional regex for their corresponding entities.

3.0.4 Data Preprocessing

With the help of the SpaCy python library, we convert the original annotation in

the span format to BIO format. After the first stage of preprocessing, we discover

that we miss some of the annotations for dataset mentions in some sequences. This is

because, on PwC websites, the authors or the editors often only annotate the datasets

being used in experiments while missing the ones being mentioned. The missing

mentions can introduce bias in training as the models may be negatively impacted by

learning about the false negative. Thus, in the second stage of preprocessing, in order

to reduce the number of missing annotations, we combine all regex to search for all

possible mentions of the dataset entities in DMDD’s dictionary, which was obtained

from the PwC website. We exclusively apply the second stage of preprocessing to

sentences that contain detected dataset mentions from the first stage. This limits

the addition of mentions to contexts where the occurrence of dataset mentions is

highly likely; this helps mitigate false positives arising from ambiguous entities, such

as ‘SGD’. While ‘SGD’ often appears as a method name in sentences without dataset

mentions, it can also appear as a dataset name in co-occurrence with other dataset

mentions.

To ensure a consistent comparison between our proposed corpus and existing

corpora, we adopted a consistent data preprocessing strategy across all related corpora

used in our experiments. In the case of NLP-TDMS and RCC, we used the original
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Corpus Inst. Unit # Inst. # Mentions # Unique
Mentions

# Unique
Entities

Entity
Linking

DMDD (ours) paper 31,219 449,798 10,807 6,675 explicit
SciERC [13] abstract 164 (69) 770 (122) 644 (116) - -
SciREX [14] paper 407 10,548 2,857 - -
NLP-TDMS [12] paper 153 1,164 67 99 explicit
TDMSci [15] sentence 445 612 478 - -
bioNerDS [9] paper 60 920 145 - -
RCC paper 2,256 36,597 1,345 1,028 explicit
Heddes [80] sentence 2,664 3,416 2,319 - -

Table 3.1: Summary of corpora for dataset mention detection. The numbers in the
brackets for SciERC relate to the corrected version of SciERC without annotation
errors.

text of each paper and their corresponding dataset mention list to develop similar

regex patterns to extract dataset mentions in BIO-format. For bioNerDS, the dataset

mention span annotations were already provided in BIO-format, so no additional

processing was necessary. For SciERC, SciREX, and Heddes, the sequences were

already provided in BIO-format annotation.

3.1 Evaluation Set with Human Annotations

We manually annotated two sets of instances for evaluation purposes, one set is

from DMDD and the other is from SciREX. As SciREX provides publicly available

manually annotated documents with scientific entities, we only needed to refine their

annotations to meet DMDD’s standards. All evaluation sets were manually annotated

by three NLP researchers using brat rapid annotation tool [81]. We aggregated the

annotations by keeping the mentions where at least two annotators agreed.

For the DMDD evaluation set (DMDD-E), annotators were tasked with manually

annotating 450 papers that were sampled from DMDD’s test set. The annotators were

instructed to verify the detected mentions from DMDD’s main corpus and identify any
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missing mentions in each paper. Additionally, they were required to verify the entity

linked to each mention. To ensure accuracy, annotators were directed to search the

PwC website and Google to confirm dataset entities during the annotation process.

To assess the level of agreement between annotators, we used the relaxed span

matches method, which considers a match when the dataset mention spans from

the three annotators overlap. The resulting Fleiss kappa of 0.79 represents a

substantial agreement between annotators. DMDD’s evaluation set contains 13,039

mentions for 682 DMDD entities, with 1,964 mentions that could not be linked to the

DMDD dictionary. On average, each annotator required approximately 15 minutes

to annotate a pre-annotated paper with weak labels.

When compared to DMDD’s evaluation set, the weak labels from DMDD’s main

set obtains an F1 score of 77.9%, recall of 68.1%, and precision of 91.2%. The low

recall indicates that most of the weak labeling errors are due to missing dataset

mentions. We identify two main reasons for the missing mentions. First, mentions

may contain rarely-used version names that distant supervision provides only partial

annotation for, such as ‘KITTI 2012’, where only ‘KITTI’ is tagged and the version

part of the name, i.e., ‘2012’, is ignored. Second, missing mentions may occur in

contexts without mentions of the document-level annotated dataset, such as in related

work sections where only one dataset is mentioned, or in sentences where the dataset

is mentioned by itself as a pre-trained dataset in the description of methods.
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3.2 Comparison with Related Corpora

We compare DMDD with seven related corpora containing dataset mentions

annotations in Table4.1, where ‘Inst.’ is used to represent ‘instance’ and ‘#’ is used

to represent ‘number’. In order to compare corpora fairly, we exclude the negative

instances from the calculation of ‘# Instances’, as some corpora do not contain

negative instances.

3.2.1 Corpora Size

DMDD has the largest size among the discussed corpora, in terms of the number

of instances (# Inst. = 31K), instance unit (Inst. Unit = Paper), and the number of

mentions (# Mentions = 450K). With paper-level annotations, DMDD allows for a

larger input unit, such as a section, which can provide richer context and potentially

benefit mention detection models.

SciERC samples instances from abstracts. Sampling instances from a specific

section of papers may create corpora with limited variation in lexical and syntactic

expressions (for example, the language of abstract sections is different from that of

methodology sections). A benefit of DMDD over most of the other existing corpora is

that an entity mention appears in multiple sentences across the 31K papers, offering

diverse context learning opportunities in training. This is captured by the number of

unique mentions and the number of mentions in Table 4.1. While the related corpora

give better-labeled data (because they’re manually created), their data annotation

processes are not scalable since they heavily depend on manual labeling.
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Corpus Long
Mention

Alpha. &
Punct.

All
Lower

# % # % # %
DMDD 3,044 28 7,903 73 1072 10
SciERC 552 86 612 95 353 55

SciERCC 7 10 50 72 1 1
SciREX 2,122 74 2,102 73 307 11

NLP-TDMS 48 48 60 61 0 0
TDMSci 335 70 317 66 10 2

bioNerDS 34 31 104 95 3 3
RCC 2,869 91 2,469 78 71 2

Heddes 2,161 83 1,774 68 81 3

Table 3.2: Distribution of different types of dataset mentions in DMDD and existing
corpora. # and % indicate the number and percentage of the corpus’ unique
mentions exhibiting certain characteristics. SciERCC represents the corrected version
of SciERC without annotation errors.

3.2.2 Diversity of Dataset Mentions

Intuitively, dataset names (e.g., ‘CIFAR10’) that consist of a single word, that

include capitalized letters, and do not have non-literals are easy to detect. However,

many dataset names do not follow this pattern. They may contain non-literals (e.g.,

‘YUP++’), may not be capitalized (e.g., ‘iris’), or may contain multiple words (e.g.,

‘Atomic Visual Actions’). Such diversity of dataset naming poses detection difficulties.

A (training) corpus needs to avoid being biased toward any of such categories and

contain enough samples from each category. We perform an in-depth analysis of all

annotated dataset mentions in related corpora to examine the diversity of mentions.

For each corpus, we perform the following evaluation steps and summarize the

evaluation results in Table 3.2. First, we extract all in-text mentions of the dataset

names, using the provided annotations. We derive the unique mentions from all the

in-text mentions. Notably, unique mentions do not equal unique datasets as one
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dataset may be referred to as different text strings (e.g., ‘MHP’ may be referred to as

‘Multiple-Human Parsing’). Second, we find mentions with different characteristics,

which are defined as follows.

1) Long mentions. If the mention contains white spaces, then it is a long mention

containing multiple words. This is important as long mentions are often harder to be

detected accurately than single-word mentions.

2) Character level composition. Alphabet and Punctuation Only (Alpha. &

Punct.): check if the mention contains only alphabet and punctuation. We want

to see the number of mentions containing no numerical characters. From a reader

standpoint, it is often easier to classify entities with a combination of alphabets and

numerical values (e.g.: ‘MediaEval2010’) as dataset names than those without (e.g.:

‘English-Hungarian’).

3) Capitalization. All Lower-cased (All Lower): We seek to account for dataset

names with all the characters being lowered-cased in a dataset mention. As commonly

agreed, words including upper case letters often indicate that they are specialized

words and are more likely to be dataset mentions than those without upper case

letters.

As shown in Table 3.2, with the exception of DMDD, NLP-TDMS, and bioNerDS,

the available corpora demonstrate an imbalanced distribution that skews towards long

mentions. SciERC and bioNerDS, in particular, exhibit a prevalence of mentions that

consist solely of letters and punctuation, with only a small fraction containing numeric

characters. Additionally, with the exception of SciERC, all corpora are inclined

towards mentions that feature uppercase letters. Hence, individually none of them
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have enough unique mentions from each category to enable training of robust models

across all categories. We also note that the characteristics presented in Table 3.2 are

non-exhaustive, non-exclusive, and may overlap.

3.2.3 Entity Linking

Entity Linking (EL) for datasets is the task of associating a dataset mention in

text with a dataset entity in a knowledge base, such as Papers with Code. The entity

linking information for dataset mention is important as it enables users to refer to the

right dataset or download the correct dataset for empirical studies. We distinguish

two categories of linking: explicit linking and non-linking. We categorize the type of

linking for existing corpora in Table 4.1. We note that in Table 4.1, the ”-” symbol

represents non-linking.

DMDD is created based on PwC and each entity mentioned in DMDD’s main

corpus has an explicit link to the PwC website with a unique identifier. RCC and

NLP-TDMS also have explicit linking since they provide URL links to the knowledge

bases with dataset information. Specifically, all the datasets from RCC can be linked

to ICPSR1 and all the datasets in NLP-TDMS can be linked to NLP-Progress2.

However, all the other corpora do not provide such explicit linking information.

For the related corpora without explicit linking information, we attempted to link

their annotated mentions to PwC and the other websites, like the ACL Anthology,

but we were unsuccessful in linking a significant portion of the annotated mention. In

addition, our early empirical studies with these corpora showed an unexpectedly low
1https://www.icpsr.umich.edu/web/pages/
2https://nlpprogress.com/
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Corpus Examples
DMDD ‘MNIST’, ‘General Language

Understanding Evaluation
benchmark’

SciERC ‘image data’, ‘written texts’,
SciREX ‘SQuAD)’,

‘augmented PASCAL train set’
NLP-TDMS ‘SemEval-2010 Task 8’,

‘Quora Question Pairs’
TDMSci ‘forums’, ‘a separate set

of 40 ACE 2005 newswire texts’
bioNerDS ‘String’, ‘Gene Ontology’

RCC ‘balance sheet data’,
‘External Position Report’

Heddes ‘MNIST or the ImageNet dataset’,
‘text datasets’

Table 3.3: Dataset mention annotation examples from DMDD and existing corpora.

recall rate on detecting dataset mentions, which prompted us to manually verify some

of the data. We asked two Ph.D. students with NLP expertise to manually go over

the annotated data in SciERC. It was not our goal to verify all data sources, which

would have taken substantial labor. Table 3.3 shows some example dataset mention

annotations for related corpora. We identify four potential reasons contributing to

the failure of linking. We exemplify them using mentions from SciERC.

1) Mentions include extra characters or text strings [9 (1%)]. For example, the

mention ‘aligned wordnets’ includes the descriptive text ‘aligned’ for the datasets.

Additionally, in the original document, this mention actually refers to multiple

wordnets that are being aligned by the proposed method. In Table 3.3, ‘SQuAD)’

includes the extra character ‘)’ which may be the result of human error.
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2) Mentions include more than one dataset [8 (1%)]. For example, ‘SemCor and

Senseval-3 datasets’.

3) Mentions do not include the actual dataset name [559 (87% )], for example,

‘records’ and ‘CD-covers’. This is because some related corpora are annotated with

pronominal reference to entities, as defined in ACE 2005 [82]. Pronominal reference

is not helpful in linking mentions to dataset entities, especially when the corpora

are not annotated on the paper level and the proper name reference is missing from

the annotated instance. Within this characteristic group, there are also confusing

mentions not using the most commonly-used dataset names or missing part of the

names [5 (1%)]. For example, ‘treebank’ can denote many possible datasets, such as

The Penn Treebank [83] and CHILDES Treebank [84]. This further points toward

the need to include linking attributes in the annotation whenever possible.

Among all of the unique mentions in SciERC, only 69 (11%) do not exhibit

the three discussed characteristics. As shown in Table 4.1, when only considering

the correct mentions, the number of mentions and instances with mentions are

significantly reduced. Also, as shown in Table 3.2 for SciERCC , the percentage of

long mentions and all-lower-case mentions drops significantly, yielding a more biased

set of dataset mentions.

All existing corpora, except NLP-TDMS, share similar characteristics to SciERC.

NLP-TDMS follows the NLP-Progress taxonomy website to annotate their entities,

which means all the dataset names they used for labeling their instances are actual

dataset names.
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In contrast to the existing corpora, DMDD has the following advantages. DMDD

is the largest corpora with more than 31K instances. DMDD has the largest number

of mentions and the largest number of unique mentions, providing more mention

examples than existing corpora. In terms of the diversity of dataset mentions,

DMDD exhibits some biases on having a small percentage of all-lower cased mentions.

However, since DMDD contains a significantly larger amount of mentions and unique

mentions than existing corpora, DMDD can still provide enough examples with

different characteristics. In terms of entity linking, all DMDD’s annotated mentions

can be directly linked to Papers with Code web pages.

3.3 Experimental Setup

The experiments are designed to address the task of dataset entity mentions

and entity linking, with three primary objectives in mind: establishing baseline

performance on our dataset, providing insights into the difficulty of each task, and

evaluating the effectiveness of using DMDD for training.

3.4 Mention Detection

We formulate the task of dataset mention detection as a token-level tagging task,

and evaluate a broad range of models as baselines in our experiments. To explore

the impact of input size, we evaluate models with different input lengths. Since most

existing approaches for dataset mention detection operate at the sentence-level, we

split the models into two categories: sentence-level models and beyond sentence-level

models.
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3.4.1 Sentence-Level

We conducted experiments on sentence-level inputs using various models,

including Conditional Random Fields (CRF), Bidirectional Long Short-Term Memory

(BiLSTM), BERT [85], and SciBERT [86]. For the CRF model, we used features that

incorporate Part-of-Speech (POS) tags and keywords [80].

For BERT and SciBERT, we used the pretrained weights: base-cased BERT [85]

and scivocab-cased SciBERT [86]. Then, we fine-tuned them on our training corpora.

All hyperparameters used for training the models were the same as in the original

SciBERT [86], except for the batch size, which was set to 16.

For BiLSTM, we evaluated two additional variations: BiLSTM-G and

BiLSTM-W, which utilize pre-trained embeddings initialized with GLoVe [87] and

Word2Vec [88], respectively. We loaded both pre-trained embeddings using the

Gensim Python library and initialized tokens that were not mapped with pre-trained

embeddings to zeros. The embedding layer was updated during training for all tokens.

To ensure a fair comparison, we used a 300-dimensional embedding layer for BiLSTM,

BiLSTM-G, and BiLSTM-W.

For BiLSTM-G, we used the embedding trained on Wikipedia and Gigaword,

converting 30,428 tokens in the entire corpus, while 120,190 tokens were missing from

the pre-trained embeddings. We observed that most dataset names were missing from

the pre-trained embeddings.

Similarly, for BiLSTM-W, we used the embedding trained on Google News,

converting 63,321 tokens while 87,297 were missing. We hypothesize that by
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incorporating additional learned semantic information from large corpora, these two

versions of BiLSTM can outperform the regular BiLSTM in predicting dataset name

mentions.

3.4.2 Beyond Sentence-Level

To evaluate model input sizes beyond sentence-level, we examined two models

optimized for longer sequence length: SciBERT and LongFormer [89]. Additionally,

we evaluated two different input sizes, section-level and 512-tokens-level. For the

section-level inputs, we cropped the documents based on their sections, whereas for

512-tokens-level inputs, we cropped the documents to sequences with a fixed length of

512 tokens. Notably, some of these sequences contain dataset mentions while others

do not.

3.5 Entity Linking

Entity linking (EL) for dataset entities, as a special subproblem of EL, differs from

the typical general EL task, which links general entities into a huge knowledge base

(KB) like Wikipedia. In our work, we utilize PwC as the KB, which contains 7,795

entities. To evaluate the EL task on our dataset, we conduct baseline experiments for

EL using two methods. Specifically, we consider the EL given true spans, then we take

the span of the dataset mention as the query, and PwC as the KB. We then utilize an

information retrieval approach to retrieve the top K most relevant dataset entities in

the KB. We conduct experiments in both sparse retrieval and dense retrieval using

Pyserini [90]. In Pyserini, sparse retrieval is based on BM25 and uses bag of word
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representations, while dense retrieval employs transformer-encoded representations,

with the encoder being ColBERTv2 [91]. All parameters use the default settings of

Pyserini.

3.6 Train-Test Split

For DMDD and all the corpora used in our experiments, we first perform a train-

test split at the document level. Subsequently, we perform a train-test split at other

levels, such as section-level and sentence-level, based on the document-level split. For

DMDD, we used 70% of the documents for training and 30% for testing.

The DMDD-E set, which is a manually annotated test set of 450 documents, was

sampled from the DMDD’s test set. We report results on this set in our paper. The

DMDD-E set contains a zero-shot subset consisting of 10 dataset entities. These

zero-shot entities were randomly selected from DMDD, and none of them appear in

any corpus’s training set.

When training mention detection models, we use a split of 80% positive sequences

and 20% negative sequences in most of the experiments, unless otherwise specified.

The goal of negative sentences is to balance the fact that we only consider one type of

NER and to facilitate better generalization for deep learning models. In particular,

we seek to avoid false positive predictions, since the majority of sentences in scientific

papers contain no dataset mentions. Table 3.4 summarizes the median sequence

length in tokens and the number of sequences containing dataset mentions in DMDD.
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Median
Length N. All N. Train N. Test

Sentence 30 792,554 532,349 260,205
Section 372 245,506 167,954 77,552
512-Token 512 150,207 101,969 48,238
Document 5,729 31,210 21,847 9,363

Table 3.4: The median sequence length in tokens and the number of sequences
containing dataset mentions in DMDD.

Positive and Negative Positive Zero-Shot
# Sentences 10,722 8,602 89

Model F1 Precision Recall F1 Precision Recall F1 Precision Recall
CRF .681 ± .000 .550 ± .000 .893 ± .000 .682 ± .000 .550 ± .000 .898 ± .000 .342 ± .000 .215 ± .000 .842 ± .000

BiLSTM .647 ± .013 .546 ± .020 .795 ± .009 .650 ± .014 .546 ± .020 .802 ± .006 .256 ± .020 .168 ± .012 .550 ± .096
BiLSTM-G .652 ± .012 .548 ± .017 .804 ± .004 .653 ± .012 .548 ± .017 .810 ± .004 .268 ± .041 .181 ± .036 .522 ± .061
BiLSTM-W .594 ± .019 .498 ± .019 .739 ± .017 .596 ± .017 .498 ± .019 .746 ± .003 .258 ± .037 .175 ± .024 .511 ± .041

BERT .751 ± .006 .635 ± .009 .920 ± .002 .753 ± .006 .635 ± .009 .926 ± .002 .572 ± .012 .417 ± .012 .907 ± .004
SciBERT .751 ± .002 .639 ± .002 .912 ± .002 .754 ± .002 .639 ± .002 .919 ± .002 .586 ± .008 .436 ± .011 .898 ± .010

Table 3.5: The performance of mention detection models with sentence-level input.

3.7 Experimental Results

This section describes the experimental setup and results of the conducted

experiments.

3.7.1 Mention Detection

All mention detection models discussed in Section 3.4 have been trained in 3

rounds with randomly shuffled training sets of DMDD. The average and standard

deviation of scores are calculated based on the exact match.

3.7.1.1 Sentence-Level Performance

We evaluate the performance of the mention detection models with sentence-level

inputs on three sets: the full set of DMDD-E, the positive subset of DMDD-E, and

the zero-shot subset. DMDD-E’s full set comprises 80% positive and 20% negative
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sequences, with positive sequences including all occurrences in the documents and

negative sequences randomly drawn from the documents. Including the negative

sequences allowed us to assess the models’ ability to accurately classify both positive

and negative sentences, which is crucial for real-world applications where the presence

of a dataset mention may be rare. Model performance scores, including F1 score,

precision, and recall, were computed based on exact match and are shown in Table

3.5. It is important to note that the relative importance of precision and recall may

vary depending on the specific use case and application. For example, precision may

be more important in scenarios where false positives can have significant consequences,

as it may reduce the reliability of the tool and potentially lead to erroneous analysis

or decision-making. On the other hand, in scenarios where missing a dataset mention

may lead to missed opportunities for data analysis, recall may be more important.

Overall, SciBERT and BERT performances are close. They have the top

performance across all the evaluation metrics in all evaluation sets.

One interesting finding is that the CRF model outperforms the BiLSTM

models in our experiments. This can be attributed to the CRF implementation

[80], which incorporates expert-designed features that leverage part-of-speech tags

and capitalization patterns; they are particularly informative in detecting dataset

mentions in scientific literature. In contrast, BiLSTM models rely entirely on learned

features, which may not be as effective in capturing the unique nuances of dataset

entities. For BiLSTM, the model variation using Word2Vec embedding (BiLSTM-W)

and the model variation using GloVe embedding (GloVe) perform similarly to the

original version of BiLSTM and bring no significant performance improvement.
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Model F1 Precision Recall
Sentence-Level Input

SciBERT .016 ± .003 .302 ± .059 .008 ± .002
Section-Level Input

Longformer .731 ± .004 .625 ± .005 .881 ± .002
SciBERT .732 ± .003 .619 ± .003 .897 ± .000

512-Token-Level Input
Longformer .695 ± .004 .661 ± .006 .733 ± .005

SciBERT .698 ± .002 .652 ± .006 .750 ± .009

Table 3.6: The performance of mention detection models with different input sizes
when evaluating on full documents.

3.7.1.2 Beyond Sentence-Level Performance

For models beyond sentence-level, we crop each evaluated document into

overlapped sequences. Specifically, we used a 5% overlap between adjacent sequences.

Then, we mapped the predicted results for each sequence back to document-level for

evaluation purposes. We used argmax when computing the predicted results for the

overlapping tokens. Table 3.6 presents the performance of mention detection models

with sentence-level, section-level input, and 512-token-level input on DMDD-E. The

table showcases the F1 score, precision, and recall metrics, which are computed based

on exact match.

The evaluation of the sentence-level model on entire documents in Table 3.6 shows

significantly lower performance than the evaluation on mostly positive sentences

containing mentions in Table 3.5. This highlights the challenges of sentence-level

models in dealing with the highly sparse dataset mentions in scientific literature.

When considering input sizes beyond the sentence-level, we observed that

SciBERT performed comparably to LongFormer. Furthermore, models trained with

section-level input have superior performance compared to those trained with 512-
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Category N F1 P R
Long Sequences 1,808 0.66 0.54 0.85

Multiple mentions 4,326 0.69 0.55 0.91
Unseen entities 1,650 0.54 0.39 0.84

Table 3.7: SciBERT model performance on subsets of DMDD-E with instances in
different categories. N represents the number of tested sequences in the related
category.

token-level input. This may be attributed to the higher density of dataset mentions

in section-level input, as sections are generally shorter than 512 tokens. This finding

is also supported by the data presented in Table 3.4. The improved performance

of section-level models may also suggest that splitting based on sections provides

additional semantics that is advantageous for training when compared to splitting

based on 512-token lengths, which ignores the semantic structure of the documents.
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Figure 3.2: Trend of F1 when varying the number of human annotations.

3.7.1.3 Error Analysis

Based on the performance of sentence-level inputs, we conduct an error analysis

on the SciBERT model and aim to identify common patterns among the erroneous
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instances. As shown in Table 3.5, we observe that consistently the models have low

precision and high recall, indicating a high number of false positives. After analyzing

the false positives, we find that the model frequently misclassified mentions such as

‘SGD’ that have ambiguous meanings.

In addition, we identify three common patterns: long sequence length, multiple

mentions, and unseen entities. The category of unseen entities includes not only the

10 zero-shot entities but also entities that are labeled by human annotators but cannot

be linked to the DMDD dictionary. None of the unseen entities has any annotated

mention in the training dataset.

Table 3.7 presents the F1, precision (P), and recall (R) of the SciBERT model on

subsets of DMDD-E, grouped by the common patterns identified earlier. Performance

scores are computed based on the exact match. SciBERT performed worse than

average on all common patterns, with the poorest performance in the unseen category.

This is consistent with the zero-shot performance presented in Table 3.5.

3.7.1.4 Fine-Tuning with Strong Labels

To evaluate the efficacy of DMDD for training purposes, we conduct a comparative

analysis of SciBERT models that are trained solely with weak labels from DMDD and

those trained solely with human labels from SciREX. We also examine the minimum

number of human labels required to fine-tune a model for achieving a similar level

of performance. We split the DMDD-E and SciREX into training sets (DMDD-E-

Tr and SciREX-Tr) and testing subsets (DMDD-E-Te and SciREX-Te), where all

sequences containing zero-shot entities are allocated to the testing set. We do not
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train or test with negative sequences, which contain no dataset mention. This is done

to investigate the effect of fine-tuning using human labels while isolating the influence

from negative samples.

We developed three types of SciBERT models, as follows: (1) M D, which is

trained using DMDD; (2) M S, which is trained using SciREX-Tr, which has 4900

manual annotated sequences; (3) M F, which is fine-tuned on top of M D using N

sequences that are randomly sampled from DMDD-E-Tr. We conduct experiments

with different N values, including 10, 100, 200, 500, 1000, and 2000.

All models are then evaluated on DMDD-E-Te. Figure 4.2 depicts the performance

of the models and the F1 trend when varying the number of human annotations. The

performance patterns from the overall testing set and the zero-shot subset are similar.

As anticipated, the model (M D) trained with only weak labels underperforms

the models (M S) trained with human-annotated labels. We observed that for

M F, fine-tuning with 100 strong labels enables a better performance than M S,

which is trained solely with strong labels. In other words, fine-tuning the pre-

trained model from DMDD with approximately 5 human-annotated documents yields

a performance similar to the model trained with around 245 human-annotated

documents. Furthermore, fine-tuning with 1,000 human-annotated sequences leads

to a further improvement in performance, achieving 0.9 F1 scores on DMDD-E-Te.

3.7.1.5 Train Size vs. Performance

As part of our ablation study, we investigate the training benefits resulting

from the large size of DMDD. To this end, we trained SciBERT on sentence level
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Figure 3.3: Test performance of SciBERT when training on DMDD as the train size
increases.

using different sizes of DMDD, while maintaining an 80%-20% ratio between positive

sequences and negative sequences. We then evaluate the trained models using DMDD-

E and calculate their performance scores based on exact match. The results are

presented in Figure 4.3.

Our analysis reveals that the most significant improvement in model performance

occurs when increasing the training size from 1000 to 10000. The recall score continues

to improve as the training size increases, while the F1 score and precision remain

stable beyond a training size of 10000. This suggests that the model is predicting

more false positives when the training size increases. To better leverage the large

size and the diverse mentions in DMDD and enhance the model’s performance, it

can be beneficial to balance the training datasets before training. For instance,

sampling more samples with the common features of the challenging cases discussed

in Section 4.4.2 can be a fruitful strategy.
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EL method R@1 R@3 R@5 R@10 R@50
BM25 0.340 0.531 0.541 0.541 0.720
ColBERTv2 0.354 0.550 0.578 0.632 0.726

Table 3.8: Entity linking performance evaluated by recall with top K entity (R@K).

3.7.2 Entity Linking

Table 3.8 presents the experimental results for the Entity Linking (EL) task

on our dataset, employing both sparse retrieval (BM25) and dense retrieval

(ColBERTv2) methods. Despite not being fine-tuned, ColBERTv2 outperforms

BM25, particularly in terms of R@10. However, there remains significant potential for

model improvement in EL for dataset entities. For BM25, most of the errors occur due

to the mentioned abbreviations that never appear in the KB. For instance, researchers

may use ‘H3.6M’ to represent the ‘Human3.6m’ dataset, but this abbreviation never

appears in any entity’s description text in the KB. For ColBERTv2, many errors occur

when the sentences with dataset mention are not descriptive of the dataset, making it

difficult for the model to disambiguate based on context. An example is the sentence

‘We test our method on H3.6M’.

3.8 Limitations and Future Work

The DMDD corpus is annotated through distant supervision, which prioritizes

scale over accuracy. The current scope of DMDD is limited to dataset mentions that

can be linked to the DMDD dictionary, resulting in missing labels for dataset mentions

that are not listed on PwC websites or that have variations not included in the regular

expression. This limitation may introduce annotation noise, especially when dealing
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with dataset subversions that are not explicitly listed in PwC. Furthermore, DMDD

does not include annotations for ambiguous cases, where distinct datasets have the

same name or share acronyms, nor does it consider changes in naming conventions over

time. Similar limitations apply to other corpora created using distant supervision, as

annotation accuracy heavily relies on manual correction. To address these limitations,

future work can focus on developing more advanced methods for mention detection

and exploring alternative approaches to distant supervision. Additionally, DMDD

can be extended to include annotations for more challenging test instances, such as

unseen mentions, ambiguous mentions, and mentions with diverse sub-versions. In

the next chapter, We propose a revised versions that have larger sizes and additional

(manual) annotations for scientific entities such as model and method names.

In terms of model performance, the baseline models showed limitations when

presented with unseen entities, lengthy inputs, and multiple entities. These challenges

highlight the difficulties of dataset mention detection and linking in scientific

literature. To develop a more robust mention detection method, future research may

also explore end-to-end framework for dataset entity mention detection and linking,

advanced detection networks that are robust to noise in training data, or how to

leverage the context out of the mention sentence to boost the performance of EL. In

addition to these approaches, future work may also explore the use of footnotes and

citations in literature to improve dataset entity recognition.
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3.9 Conclusion

In conclusion, DMDD is a valuable resource for studying dataset mention detection

in scientific literature. As the largest corpus created for this purpose, it addresses

the limitations of existing corpora in terms of size, diversity of dataset mentions, and

entity linking information. Our experiments with baseline models show that DMDD

enables the training of more robust models with a small number of manual labels, as

demonstrated by the improved performance of SciBERT trained on DMDD compared

to other corpora. The analysis of DMDD instances and experimental results highlight

the challenges and open problems in the task of dataset mention detection. We

believe that DMDD will stimulate further research in this important area of scientific

information extraction.
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CHAPTER 4

SCIDMT: A LARGE-SCALE CORPUS FOR DETECTING

SCIENTIFIC MENTIONS

4.1 Introduction

Building on our prior work in dataset mention detection (Chapter 3), we now

address the broader challenge of recognizing diverse scientific entities—including

methods and tasks—in addition to datasets. While scientific entity mention detection

(SEMD) is fundamentally a Named Entity Recognition (NER) task requiring token-

level tagging, it presents unique challenges that distinguish it from general-domain

NER.

The existing corpora like RCC1, SciERC, SciREX, and TDMSci [9, 10, 11, 13,

12, 37, 35, 80, 92] have been instrumental for SEMD algorithm evaluation but are

constrained by their small volume and entity linking capabilities. These limitations

stem from the manual curation process, which, while ensuring quality, is resource-

intensive and scales poorly.

In this paper, we present SciDMT, a corpus featuring comprehensive entity

annotations spanning datasets, methods, and tasks. SciDMT contains weakly labeled

instances for model training and manually annotated instances for evaluation, offering

a comprehensive resource for the advancement of SEMD.

The creation of SciDMT is facilitated by distant supervision [93], leveraging

document-level annotations from the Papers with Code2 (PwC) website. This
1https://github.com/Coleridge-Initiative/rclc
2https://paperswithcode.com/
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… for image classification to increase accuracy … The 

resulting performance of EfficientNet for ImageNet top-1 

accuracy was greatly improved relative to AlexNet …

Document ID: 210713911

Name ‘ImageNet’
Full Name ‘’
Variants []
Acronym ‘’
Regexs ['Image-*\\s*Net']
PwC URL 'https://paperswithcode.com/dataset/imagenet'
Description 'The **ImageNet** dataset contains 14,197,122 annotated images …’
Modalities ['Images']
Tasks ['Image Classification', 'Zero-Shot Learning', 'Image Generation', 

'Few-Shot Learning' … ]

Dataset ID: 5

Name ‘AlexNet’
Full Name ‘’
Acronym ‘’
Regexs ['Alex-*\\s*Net']
Description '**AlexNet** is a classic convolutional neural …’
Paper {'title': 'ImageNet Classification with Deep 

Convolutional Neural Networks', 
'url':'https://paperswithcode.com/paper/imagenet-class
ification-with-deep'}

Collections [{'collection': 'Convolutional Neural Networks',
   'area_id': 'computer-vision',
   'area': 'Computer Vision'}]}

Method ID: 274

Name ‘Image Classification’

Full Name ‘’
Variants []
Acronym ‘’
Regexs ['Image-*\\s*Classification']
PwC URL 'https://paperswithcode.com/task/image-classification'
Description '**Image Classification** is a fundamental task that 

attempts to comprehend an entire image as a …’
ITO Paths [['AI process', 'Vision process', 'Image classification']]

Task ID: 618

1360 1380
B-T I-T 

Task ID:618

2469 2481
B-M 

Method ID:470 2486 2494
Dataset ID:5

B-D

25502543
B-M 

Method ID:274

Figure 4.1: Example document-level annotation (top-left) and dictionary entries in
SciDMT. We mark each occurrence of dataset (D), method (M) and task (T) in
papers and give the in-text spans, entity indexes and the BIO tags. For example, the
method mention ‘EfficientNet’ spans from 2469 to 2481 and has a BIO tag as ‘B-M’.

approach yields a main corpus comprising 48,049 machine-learning articles annotated

with in-text spans, marking the mentions of datasets, methods, and tasks (DMT).

Although distant supervision does not achieve the precision of manual annotations,

the volume of data it generates is instrumental for training competitive models

[94, 95, 96, 97, 98].

Our contributions are multifaceted. SciDMT is more than a corpus; it’s a resource

for enhancing information extraction. By annotating full articles and preserving

the context of entity mentions, SciDMT aids in term disambiguation and enhances

recognition accuracy. Every mention is linkable to PwC, and our introduction of

ontology-linking for tasks and datasets further enriches the corpus’s utility.

SciDMT is particularly valuable for indexing scientific papers, facilitating

advanced information retrieval, and making scientific knowledge more accessible.
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We validate SciDMT’s efficacy through experiments, showcasing its superiority in

training SEMD models compared to existing corpora. Furthermore, our evaluation

of NER methods, including SciBERT and GPT-3.5, on SciDMT demonstrates the

intricate challenges and prospects of SEMD. The SciDMT corpus can be accessed at

HuggingFace Hub3. Our contributions can be summarized as follows:

• We introduce SciDMT, a SEMD corpus annotated at the document level,

covering datasets, methods, and tasks. Each mention is linked to PwC

and enriched with ontology-linking, offering a comprehensive resource for

information extraction.

• We compare SciDMT to existing corpora and demonstrate its effectiveness in

training competitive SEMD models.

• We evaluate several NER methods, including SciBERT and GPT-3.5, on

SciDMT, and discuss the unique challenges encountered in SEMD.

4.2 SciDMT Corpus

In this section, we describe the construction of SciDMT’s main corpus and

the human-annotated evaluation sets. We also present a comprehensive comparison

between SciDMT and related corpora.
3https://huggingface.co/datasets/jopan/SciDMT

50



4.2.1 SciDMT’s Main Corpus

We present the construction of our primary corpus in this subsection. Figure 4.1

is an illustrative example of a SciDMT data entry, which includes the parsed scientific

article and the in-text annotation for scientific mentions.

4.2.1.1 Data Collection

Although our data collection methodology is similar to the one in DMDD [99] in

that parsed articles from S2ORC [78] and document-level annotations from Papers

With Code (PwC) are utilized, we significantly extend their distance supervision

annotation. We extract publications’ metadata of methods and tasks from PwC and

dataset information directly from the paper’s PwC webpage. This process yields

48,049 matched papers between S2ORC and PwC, identified via their ArXiv IDs.

4.2.1.2 Annotation with Distant Supervision

Utilizing user-provided data from PwC, we aimed to align these entity names

with their occurrences in the body of the articles. Strict matching, though generally

effective, encounters challenges due to the occasional inconsistencies in entity naming

conventions between PwC and authors (e.g., ‘k-Means’ vs. ‘k-Means Clustering’,

‘GoogLeNet’ vs. ‘GoogleNet’).

To address this, we developed a comprehensive DMT entity dictionary with regular

expressions (regex), which enables us to accommodate variations in entity naming

with approximate matching. These regex are not crafted for individual entities but are
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generated based on a universal set of rules, enhancing the scalability of our annotation

process.

The regex creation rules can be summarized as follows. First, optional spaces

and dashes are allowed between words. Second, acronyms are created for entity

names with multiple words, but only when the original entity name is not already an

acronym. Third, various common version names are considered. For example, if ‘v3.0’

appears in the name, we allow matching mentions with ‘v3’, and if ‘18’ appears in

the name, we allow matching mentions with ‘2018’. Fourth, verbs in different tenses

and nouns in plural and singular forms are allowed. Lastly, the casing is ignored in

regex, except for special cases such as the lowercase of the name being a common

English word or the name being very short. As such, each entity name variation has

one regular expression. Examples of regex can be seen in Figure 4.1.

Our annotation process, though not aiming for optimal regex creation, is designed

to obtain a substantial volume of weakly labeled data, instrumental for the effective

training of NER models.

To enhance the entity linking capabilities of SciDMT, we integrated ontology

paths from ITO [100], which offers a structured hierarchy of AI tasks and datasets.

In this integration, we mapped task and dataset entities from SciDMT to their

corresponding elements within the ITO hierarchy. For task entities, we showed the

complete hierarchy path in ITO, whereas for dataset entities, we showed the associated

tasks. This method established relationships between entities reflecting their positions

in the ontology’s structure. For instance, datasets used in‘Image Classification’ tasks

are linked together, and tasks like ‘Image Classification’ and‘Image Segmentation’ are
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connected as they both fall under the category of‘Vision Process’. This integration of

ontology paths not only enhances the comprehensiveness of SciDMT but also enriches

its usages for detailed entity analysis.

All 48,049 articles are annotated with the full text, section spans, and both

document-level and in-text entity annotations. The annotations are indexed to the

SciDMT entity dictionary, as illustrated in Figure 4.1.

4.2.1.3 Data Preprocessing

In this phase, we employ a comprehensive approach, combining all regular

expressions crafted from the SciDMT’s dictionary. This exhaustive search is applied

across all 48,049 articles, aiming to capture and annotate a broader spectrum of DMT

entity mentions, thereby mitigating the issue of missing mentions.

Inst. Dataset Task Method All
Corpus Unit # Inst. # M. # U.M. # M. # U.M. # M. # U.M. # M. # U.M.
SciERC abstract 500 770 644 1,281 1,067 2,090 1,760 4,141 3,445
SciREX paper 438 10,615 2,865 32,526 12,893 98,458 34,030 141,599 47,974
TDMSci sentence 444 612 478 1,615 999 0 0 2,227 1,476
SciDMT paper 48,049 449,798 10,807 647,360 7,850 733,728 16,579 1,830,886 34,648

Table 4.1: Summary of corpora for scientific entities mention detection.

4.2.2 Evaluation Sets with Human Annotations

We manually annotated two sets of instances for evaluation purposes, one from

SciDMT and the other from SciREX. The inclusion of SciREX serves a dual purpose:

it not only facilitates a comparative analysis of dataset quality but also aids in

assessing the complexity level of our dataset during experimental evaluations. These

evaluation sets were manually annotated by two NLP researchers using brat rapid
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annotation tool [81]. We aggregated the annotations by keeping only the mentions

where both annotators agreed.

For SciDMT evaluation set called SciDMT-E, annotators were tasked with 100

papers that were sampled with the most number of DMT mentions among the

randomly sampled SciDMT’s valid set. Additionally, we randomly selected 10 unseen

entities from each DMT category and annotated the 256 sentences containing these

unseen entities. Annotators were instructed to verify the detected mentions from

SciDMT’s main corpus and identify any missing mentions in each paper. To ensure

accuracy, annotators were directed to search the PwC website and Google to confirm

the DMT entities during the annotation process. Full annotation instructions are

provided in HuggingFace Hub4.

We assessed the level of agreement between annotators using the relaxed span

matches method, which considers a match when the entity mention spans from the

annotators overlap. On SciDMT-E, the resulting Cohen Kappa 0.87 represents a

substantial inter-annotator agreement [101]. SciDMT-E contains 14,846 sentences

with DMT entities, where 3,345 sentences contain dataset mentions, 11,124 sentences

contain method mentions, and 5,899 sentences contain task mentions. The annotated

mentions in SciDMT-E can be linked to 1,070 entities listed in SciDMT’s dictionary.

On average, each annotator required approximately 1 minute to annotate one sentence

or 30 minutes to annotate one document.

When using SciDMT-E as ground truth and exact match for comparison,

SciDMT’s weak annotation obtains an F1 score of 61.9%, precision of 50.8%, and
4https://huggingface.co/datasets/jopan/SciDMT/re solve/main/SciDMT%20Annotation%20Guideline.pdf
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recall of 79.4%. The recall rate indicates that the distantly-implied signals from PwC

are able to capture 79.4% of scientific entities in text. The low precision suggests

that a significant portion of human-annotated mentions does not exactly match with

the machine-annotated mentions. This observation is attributed to many weak labels

failing to include the full entity name. For example, distant supervision may provide a

partial annotation in sentences containing ‘KITTI 2012’, tagging ‘KITTI’ but ignoring

the version part of the name, i.e., ‘2012’.

For SciREX evaluation set (SciREX-E), we used the same annotation guideline

to annotate 10 papers for DMT entities. The Cohen Kappa 0.76 also indicates a

substantial agreement between annotators. SciREX-E contains 2,207 sentences with

DMT entities. Compared to SciREX-E, SciREX’s original annotation obtains an F1

score of 65.4%, precision of 77.4%, and recall of 56.6%. The low recall suggests that

many mentions were missing in the original annotations. For example, the original

annotation often misses the ‘ImageNet’ mentions in phrases such as ‘ImageNet pre-

trained model’.

4.2.3 Comparison with Related Corpora

We compare SciDMT with three related corpora in terms of size (Table 4.1) and

quality. For each of the three scientific entity types, we give the total number of entity

mentions (# M.) and the total number of unique mentions (# U.M.) for each corpus.
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4.2.3.1 Corpora Size

SciDMT is larger than the related corpora, in terms of the number of instances (#

Inst. = 48,049), instance units (Inst. Unit = Paper), and the number of mentions (#

M. of All = 1,830,886). Having document-level annotations compared to sentence-

level annotations, SciDMT allows a larger model input scope (e.g., sentence before and

after the target sentence), allowing for richer contextual information. Furthermore,

since entity mentions in SciDMT appear in multiple sentences across the 48K papers,

it provides a diverse set of training data for NER and Entity Linking. This is captured

by comparing # M. and # U.M. in Table 4.1. A large number of unique mentions

indicates a wide range of scientific entities captured in SciDMT, while the high total

number of mentions contributes to the training of robust models by providing a variety

of background semantics related to scientific entities.

4.2.3.2 Entity Linking Annotation

Entity linking is the task of associating mentions in the text with their

corresponding entities in knowledge bases, such as Wikipedia and Papers with Code.

In the case of scientific entity mentions, entity linking is crucial as it allows users to

access the correct dataset, source code, and source papers for empirical studies. Since

SciDMT is created based on Papers with Code, all entities mentioned in SciDMT have

explicit links to the Papers with Code website and a unique identifier. Because of the

incorporation of ITO paths, dataset and task entities have intra-entity annotation as

well.
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In contrast, the related corpora do not have linking information about their entities

because the annotators were not instructed to provide the linking annotation. Our

attempts to link the entities in the related corpora to knowledge bases, such as Papers

with Code and the ACL Anthology, were largely unsuccessful due to several reasons:

1) Their mentions include extra characters or text strings. For example, the

mention ‘fine-tuned U-Net’ includes the descriptive text ‘fine-tuned’ for the method.

2) Their mentions include more than one entity, for example, ‘ImageNet pretrained

VGG-19’.

3) Their mentions do not include the actual entity name, for example, ‘models’

and ‘methods’. This is because some related corpora are annotated with pronominal

reference to entities, as defined in ACE 2005 [82]. Pronominal reference is not helpful

in linking mentions to scientific entities, especially when the corpora are not annotated

on the paper level and the proper name reference is missing from the annotated

instance. Within this characteristic group, there are also confusing mentions not

using the most commonly used names or missing parts of the names. For example,

‘VGG’ can denote many possible models, such as VGG-16 and VGG-19. This further

points toward the value of including linking attributes in the annotation whenever

possible, as done in our work.

4.3 Experimental Setup

The experiments are designed for the task of scientific entity mention detection

(SEMD) with three primary objectives in mind: establishing baseline performance on

SciDMT, gaining insights into the difficulty of SEMD, and evaluating the effectiveness
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of using SciDMT for training. The experiments focus on three categories of scientific

entities: datasets, methods, and tasks (DMT).

4.3.1 Baseline Models

We formulate the task of SEMD as a single-sentence tagging task, and we include

a diverse set of models as baselines in our evaluation, namely Conditional Random

Fields (CRF), Bidirectional Long Short-Term Memory (BiLSTM), BERT [85],

SciBERT [86] and GPT-3.5 [102].

For CRF, BiLSTM, BERT, and SciBERT, we conduct training in 3 rounds using

randomly shuffled training sets. For CRF, we incorporate features such as Part-of-

Speech (POS) tags and keywords.

For BiLSTM, we evaluate two additional variations where the pre-trained

embedding layer is initialized with either GLoVe (BiLSTM-G) [87] or Word2Vec

(BiLSTM-W) [88]. Tokens that are not mapped with pre-trained embeddings are

initialized with zeros. The embedding layer for all tokens is updated during training.

To ensure a fair comparison, we set the embedding dimension to 300 for BiLSTM,

BiLSTM-G, and BiLSTM-W. For BiLSTM-G, we utilize the embedding trained on

Wikipedia and Gigaword, covering 30,612 tokens, while 134,802 tokens are missing

in the pre-trained embeddings. For BiLSTM-W, we use the embedding trained on

Google News and convert 68,553 tokens, with 96,861 tokens missing. We notice that

many scientific entity names are missing in the pre-trained embeddings.

For BERT and SciBERT, we use the pre-trained weights of base-cased BERT [85]

and scivocab-cased SciBERT [86]. We keep the same hyperparameters for training
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Subset SciREX-E: All SciDMT-E: All SciDMT-E: Unseen
F1 Precision Recall F1 Precision Recall F1 Precision Recall

CRF .270 ± .000 .172 ± .000 .626 ± .000 .455 ± .000 .313 ± .000 .832 ± .000 .185 ± .000 .107 ± .000 .683 ± .000
BiLSTM .328 ± .004 .238 ± .003 .525 ± .007 .520 ± .002 .411 ± .003 .708 ± .002 .176 ± .017 .137 ± .009 .251 ± .048

BiLSTM-G .325 ± .007 .235 ± .007 .527 ± .005 .526 ± .005 .414 ± .007 .721 ± .005 .192 ± .039 .147 ± .029 .279 ± .060
BiLSTM-W .329 ± .003 .238 ± .004 .529 ± .002 .523 ± .004 .411 ± .006 .719 ± .002 .188 ± .023 .137 ± .016 .304 ± .045

BERT .480 ± .007 .372 ± .010 .674 ± .005 .643 ± .004 .523 ± .007 .835 ± .006 .747 ± .007 .721 ± .011 .776 ± .008
SciBERT .490 ± .003 .388 ± .004 .666 ± .006 .649 ± .001 .531 ± .002 .833 ± .003 .763 ± .009 .737 ± .012 .792 ± .023
GPT-3.5 .503 ± .000 .499 ± .000 .506 ± .000 .586 ± .000 .672 ± .000 .520 ± .000 .484 ± .000 .701 ± .000 .370 ± .000

Subset SciDMT-E: Datasets SciDMT-E: Methods SciDMT-E: Tasks
F1 Precision Recall F1 Precision Recall F1 Precision Recall

CRF .590 ± .000 .449 ± .000 .858 ± .000 .410 ± .000 .276 ± .000 .799 ± .000 .393 ± .000 .259 ± .000 .813 ± .000
BiLSTM .551 ± .002 .438 ± .004 .743 ± .004 .474 ± .003 .363 ± .003 .684 ± .001 .489 ± .002 .377 ± .003 .696 ± .003

BiLSTM-G .558 ± .005 .443 ± .007 .756 ± .004 .480 ± .007 .365 ± .008 .698 ± .003 .496 ± .004 .382 ± .006 .706 ± .006
BiLSTM-W .552 ± .005 .435 ± .005 .755 ± .007 .476 ± .005 .363 ± .006 .693 ± .000 .492 ± .007 .377 ± .008 .708 ± .001

BERT .679 ± .004 .550 ± .005 .886 ± .003 .602 ± .005 .478 ± .008 .812 ± .004 .560 ± .001 .430 ± .005 .804 ± .013
SciBERT .678 ± .003 .551 ± .002 .881 ± .003 .611 ± .001 .490 ± .001 .813 ± .003 .565 ± .003 .438 ± .004 .795 ± .007
GPT-3.5 .663 ± .000 .729 ± .000 .608 ± .000 .582 ± .000 .628 ± .000 .543 ± .000 .579 ± .000 .620 ± .000 .543 ± .000

Table 4.2: NER model performance on human-annotated evaluation sets. In each
column, the highest score is shown in boldface.

the models as in the original SciBERT [86], except for the batch size, which is set to

16.

GPT-3.5 is included in our model selection because Large Language Models

(LLMs) have demonstrated impressive natural language understanding capabilities,

including the capability for entity recognition [103]. We use Spacy-LLM 5, which is

a Python package that combines the language processing library spaCy with LLM

backends. In terms of model specifications, we use spacy.NER.v2 as task, ‘DATASET,

METHOD, TASK’ as labels, and OpenAI’s gpt-3.5-turbo-0613 as the LLM backend.

The input to the model consists solely of the sentence text. The model’s output

is in the span format, which we convert to token-level BIO labels for evaluation

purposes. We only use the Spacy-LLM’s zero-shot setting without any examples or

label definitions. We acknowledge that more sophisticated model tuning and prompt

engineering may yield improved performance; however, our focus here is on presenting

baseline results.
5https://github.com/explosion/spacy-llm
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GT: One of the most prominent models of this sort is the Feature Pyramid Network (FPN) proposed by Lin et al.
SciBERT: One of the most prominent models of this sort is the Feature Pyramid Network (FPN) proposed by Lin et al.
GPT-3.5: One of the most prominent models of this sort is the Feature Pyramid Network (FPN) proposed by Lin et al.

GT: Note, that the concatenation mode is only relevant for training the softmax classifier.
SciBERT: Note, that the concatenation mode is only relevant for training the softmax classifier.
GPT-3.5: Note, that the concatenation mode is only relevant for training the softmax classifier.

GT: To achieve such progress, we consider that Kinetics for 3D CNNs should be as large-scale as Ima-geNet for
2D CNNs, though no previous work has examined enough about the scale of Kinetics.

SciBERT: To achieve such progress, we consider that Kinetics for 3D CNNs should be as large-scale as Ima-geNet for
2D CNNs, though no previous work has examined enough about the scale of Kinetics.

GPT-3.5: To achieve such progress, we consider that Kinetics for 3D CNNs should be as large-scale as Ima-geNet for
2D CNNs, though no previous work has examined enough about the scale of Kinetics.

GT: Using biLMs for supervised NLP tasks Given a pre-trained biLM and a supervised architecture for a target
NLP task, it is a simple process to use the biLM to improve the task model.

SciBERT: Using biLMs for supervised NLP tasks Given a pre-trained biLM and a supervised architecture for a target
NLP task, it is a simple process to use the biLM to improve the task model.

GPT-3.5: Using biLMs for supervised NLP tasks Given a pre-trained biLM and a supervised architecture for a target
NLP task, it is a simple process to use the biLM to improve the task model.

Table 4.3: Prediction examples for SciBERT and GPT-3.5 on evaluation samples
from SciDMT-E. Where the predicted mention tokens are highlighted for dataset
(D), method (M) and task (T).

4.3.2 Train-Valid Split

To establish a train-valid split for SciDMT’s main corpus and SciREX, we first

perform a random document-level split. Next, we randomly select 30 scientific entities,

with 10 entities chosen from each DMT category in SciDMT. These entities form the

unseen set, which is exclusively included in the valid set and the evaluation set, and

is excluded from the training set of any corpus. Finally, we conduct a sentence-level

train-valid split based on the aforementioned document-level split.

At the document level, the train set of SciDMT consists of 36,635 documents

(76%), while the valid set comprises 11,414 documents (24%). At the sentence

level, the train set of SciDMT contains 738,857 positive sentences (70%) that contain

mentions of DMT entities, while the valid set consists of 314,689 positive sentences

(30%).
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4.4 Experimental Results

In this section, we present the experimental specifications and report the results of

our experiments. The evaluation is conducted on the manually annotated evaluation

sets: SciDMT-E and SciREX-E. The average and standard deviation of performance

scores, including F1, precision (P), and recall (R), are calculated based on the exact

scores.

4.4.1 Baselines Evaluation

The NER models discussed in Section 4.3.1, undergo 3 rounds of training using

randomly shuffled training sets from SciDMT, except GPT-3.5, which is evaluated

for 1 round. Performance scores are computed on SciDMT-E, SciREX-E, and various

subsets of SciDMT-E. The results are summarized in Table 4.2 and prediction samples

are shown in Table 4.3.

The performance on the two evaluation sets, SciREX-E and SciDMT-E, is similar,

indicating comparable dataset difficulty. Surprisingly, for BERT and SciBERT, the

performance of the unseen subset in SciDMT-E is higher than the overall average

performance, contrary to our expectations. This may be due to the limited sample

size, which might have excluded more challenging cases. Additionally, we observe

that dataset mentions are generally easier to detect compared to method and task

mentions, possibly because dataset names are more standardized and have fewer

naming variations.
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SciBERT and BERT exhibit similar performances among the different models,

achieving the highest overall performance. The variations of BiLSTM using Word2Vec

embedding (BiLSTM-W) and GloVe embedding (BiLSTM-G) perform similarly to

the original BiLSTM, without notable improvements. This aligns with previous

research that has shown Word2Vec and GloVe to be equivalent in terms of module

hyperparameter tuning [104, 105]. Without sophisticated feature learning, CRF does

not perform as competitively as the other models.

GPT-3.5 without fine-tuning achieves slightly lower scores compared to the trained

models, but still demonstrates knowledge about scientific entities without explicit

learning. It predicts some of the general concept words (e.g.: ‘training’, ‘inference’,

and ‘modification’) and citations (e.g.: ‘Fortunato et al. 2017’) as scientific entities,

which are not included in our manual evaluation sets. We hypothesize that as GPT-

3.5 is trained with Common Crawl and scientific papers often have web presences,

GPT-3.5 may have read many scientific papers during training and accumulated

knowledge about understanding and identifying scientific entities. By including

SciDMT in its training or employing few-shot learning, the performance of GPT-

3.5 can potentially be further improved. However, GPT-3.5 struggles with isolating

the correct entity from descriptions or strings with multiple mentions, as shown in

Table 4.3. Additionally, like other trained models, GPT-3.5 encounters difficulties in

recognizing mentions with uncommon dash patterns, such as ‘Ima-geNet’.
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Eval. Group N F1 P R
All 17,053 .649 .531 .833

Long Sequences 1,670 .547 .420 .786
Multiple Mentions 8,312 .577 .440 .836
Unseen Mentions 4,212 .529 .423 .708

Table 4.4: Error analysis for SciBERT. N represents the number of evaluated
sequences with different features.

4.4.2 Error Analysis

Based on the performance of the best model, SciBERT, we conduct an error

analysis to identify common patterns among erroneous instances. These patterns

include long sequences with more than 200 characters, sequences with multiple

mentions, and sequences with unseen mentions.

Here,‘unseen mentions’ are twofold: firstly, they include the annotated unseen

entity mentions previously discussed. Secondly, they encompass mentions identified

by human annotators that could not be linked to the SciDMT dictionary. Like

the annotated unseen entities, these unseen mentions lack any representation in the

training dataset.

We compute the number of evaluated sentences exhibiting each pattern and their

corresponding performance scores in Table 4.4. SciBERT demonstrates below-average

performance across all common patterns, with the lowest performance observed in the

unseen category.

In Table 4.3, the last two examples are samples demonstrate cases of long

sequences and multiple mentions, while the last example is an sample for unseen

mentions as it is the one containing unseen entity ‘biLM’.

63



1010
0

20
0

50
0

10
00

20
00

30
00

Train Size for Fine-Tuning (N)

0.4

0.6

0.8

1.0
F1

SciDMT-E* 
(Num. evaluation sequences = 13,090)

1010
0

20
0

50
0

10
00

20
00

30
00

Train Size for Fine-Tuning (N)

0.4

0.6

0.8

1.0

F1

SciREX-E* 
(Num. evaluation sequences = 2,021)

SciDMT SciREX SciDMT+Human

Figure 4.2: Trend of F1 when varying the number (N) of human-annotated samples
used for fine-tuning. Each line in the graph, represented in the legend, corresponds
to a model being trained with a distinct dataset.

4.4.3 Fine-Tuning with Human Labels

To assess the effectiveness of SciDMT as a training resource, we compare

SciBERT models trained solely with weak labels from SciDMT to those trained

solely with human-annotated labels (human labels) from SciREX. We also investigate

the minimum number of human labels needed to achieve a comparable level of

performance. For the fine-tuning training set, we randomly sample 1500 positive

sequences from each of our human-annotated evaluation sets: SciDMT-E and

SciREX-E, while retaining the remaining sequences as the fine-tune evaluation sets

(SciDMT-E* and SciREX-E*).

We develop three types of SciBERT models:

• MSciDMT , which is trained using the weak labels from SciDMT.

• MSciREX , which is trained using the human labels from SciREX, comprising

only human-annotated samples. The training set of SciREX consists of 60,021
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positive sequences, excluding those that overlap with SciDMT’s valid set and

our human-annotated evaluation sets.

• MSciDMT +N , which is fine-tuned on top of MSciDMT with N randomly sampled

human labels from the fine-tuning training set. We experiment with different

values of N, including 10, 100, 200, 500, 1000, 2000, and 3000.

All models are evaluated separately on SciDMT-E* and SciREX-E*. The models’

performance and the trend in F1 scores as the number of human annotations varies

are shown in Figure 4.2.

As anticipated, MSciDMT trained solely with weak labels performs lower MSciREX

trained with human labels. In terms of fine-tuning, MSciDMT +N achieves better

performance than MSciDMT with 100 human labels.

On SciDMT-E*, MSciDMT +N surpasses the performance of MSciREX with only 200

human labels, outperforming the model trained with 60K human labels. Moreover,

fine-tuning with 3,000 human-annotated sequences further improves the performance,

achieving 0.88 F1 scores on SciDMT-E*.

On SciREX-E*, where MSciREX has the advantage of being trained in the same

domain, MSciDMT +N needs 3000 human labels to achieve similar performance to

MSciREX . In other words, fine-tuning the pre-trained model from SciDMT with

approximately 10 human-annotated documents yields comparable performance to the

model trained with around 245 documents.
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Figure 4.3: Validation performance of SciBERT when training on SciDMT as the
train size increases.

4.4.4 Impact of Training Scale on Performance

As part of our ablation study, we investigate the training benefits derived from the

large size of SciDMT. We train SciBERT using different training set sizes, randomly

sampled from the entire training data: 103, 104, 105, and the complete training data

consisting of 739K samples. The performance scores on SciDMT-E are plotted using

a logarithmic scale in Figure 4.3.

Our analysis reveals that the most significant improvement in model performance

occurs when increasing the training size from 1,000 to 10,000 sequences. The recall

score continues to improve as the training size increases, while the F1 score and

precision remain relatively stable beyond a training size of 100,000. This suggests

that the model tends to predict more false positives with larger training sizes.

To better leverage the large size and diversity of mentions in SciDMT and further

enhance the model’s performance, it can be beneficial to balance the training datasets
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by sampling biased toward challenging cases. This strategy can focus on samples with

common features observed in the error analysis (Section 4.4.2).

4.5 Limitations

SciDMT is a large-scale corpus annotated through distant supervision. This

approach sacrifices accuracy for scale. The current scope of SciDMT is limited

to scientific mentions that can be linked to the SciDMT dictionary, resulting in

missing labels for scientific mentions that are not listed on PwC websites or that

have variations not included in the regular expression. This limitation may introduce

annotation noise, especially when dealing with subversions that are not explicitly

listed in PwC. In addition, SciDMT may inadvertently inherit biases from its primary

source, PwC’s data. This reliance could lead to disproportionate emphasis or neglect

of certain topics within the corpus.

Furthermore, SciDMT does not include annotations for ambiguous cases, where

distinct entities have the same name or share acronyms, nor does it consider changes

in naming conventions over time. Similar limitations apply to other corpora created

using distant supervision, as annotation accuracy heavily relies on manual correction.

Additionally, SciDMT does not annotate pronominal references to entities,

resulting in incomplete coreference information compared to corpora like SciERC.

Despite these limitations, the large-scale data obtained through distant supervision

proves valuable for training deep learning models, a sentiment echoed in previous

studies [94, 106, 96] and our experimental findings in Section 4.4.4.
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4.6 Conclusion

We presented SciDMT, the largest corpus specifically created for the study of

scientific entity mention detection (SEMD). SciDMT offers a substantial size, diverse

entity mentions, and comprehensive entity-linking information, making it a valuable

resource and a benchmark for the development and evaluation of advanced scientific

information extraction models.

The experiments conducted using various NER models on SciDMT provide

valuable insights and performance baselines for SEMD. The error analysis conducted

sheds light on the existing challenges and unveils opportunities for innovation in

SEMD.

Moving forward, our focus is on the iterative enhancement of SciDMT. We aim

to augment the corpus by broadening the spectrum of annotated entities, refining

weak labels, and increasing the corpus size. The incorporation of sophisticated

post-processing techniques [107, 108, 109, 110] to cleanse distant supervision labels

is also on our agenda. Additionally, future work can focus on addressing more

challenging instances, such as unseen and ambiguous mentions, to further enhance

the performance of scientific mention detection models.

In conclusion, SciDMT presents a significant contribution to the field of SEMD by

providing a large-scale corpus and performance baselines for SEMD models. We hope

SciDMT will inspire and drive future research in scientific information extraction.
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CHAPTER 5

TAXONOMY-DRIVEN KNOWLEDGE GRAPH CONSTRUCTION

FOR DOMAIN-SPECIFIC SCIENTIFIC APPLICATION

5.1 Introduction

Effective management and utilization of structured knowledge is a core challenge

in domain-specific research. While scientific publications across fields, from

materials science to epidemiology, routinely describe critical relationships between

models, observational datasets, and analytical findings, these connections are

rarely formalized or linked to standardized data sources. For instance, climate

science papers might detail how green house gas emission affects the occurrence of

wildfires [111], while chemistry studies could analyzes battery chemistry performance

under different extreme conditions [112]. Yet in both cases, these insights remain

trapped in unstructured text, inaccessible to computational analysis. This lack of

systematization impedes cross-study knowledge integration, slowing discovery and

limiting reproducibility. Knowledge graphs (KGs) address this gap by structuring

entities and relationships into semantically interconnected frameworks, enabling

querying, automated reasoning, and cross-domain interoperability [113].

Although KGs have advanced research in domains like material science [114]

and geospatial sciences [115], constructing them in specialized fields faces two main

challenges. First, existing methods overlook domain taxonomies, which are curated
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hierarchies of verified entities and relationships. Instead, they build KGs from scratch

via LLMs. [116]. While flexible, this forfeits the semantic rigor and community

consensus embedded in taxonomies, leading to inconsistent representations. Second,

despite LLMs’ proficiency in general-purpose information extraction [117], they

struggle in specialized domains: hallucinating entities, misclassifying relationships,

and overlooking tail-domain concepts absent from their training data [118]. For

example, in climate science, models frequently conflate teleconnections (large-scale

climate linkages) with generic correlations or fail to recognize emerging terms like

‘Arctic amplification’. These errors compromises KG reliability for downstream tasks.

A critical bottleneck in KG construction lies in accurate named entity recognition

(NER) for specialized domains. State-of-the-art generalist models like GLiNER

[119], which achieve competitive performance on broad-coverage benchmarks (F1:

0.478), falter in domain-specific settings—scoring only 0.339 F1 on climate science

texts. This performance gap stems from two interrelated issues: 1) Domain-specific

terminology—such as teleconnections, oceanic Rossby waves, and CMIP6 emission

scenarios—occupies the “long tail” of knowledge underrepresented in LLM training

corpora [118], and 2) LLMs lack mechanisms to disambiguate domain-relevant entities

(e.g., ”water” as a model variable in hydrological studies) from semantically similar

generic terms (e.g., generic mentions of ”water” in non-technical contexts or ”signal

processing” in electronics). Consequently, LLMs either omit critical concepts or

misclassify them, propagating errors into downstream KG components.

To address these challenges, we propose a framework that synergizes domain

taxonomies, constrained LLM extraction, and iterative validation, demonstrated
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through climate science KG construction. Our approach comprises three key

components: 1) Taxonomy-driven KG construction: Extraction is anchored

to expert-curated taxonomies (e.g., MeSH in biomedicine, NASA’s GCMD [120] in

climate science). By integrating RAG with LLMs, we ensure extracted entities (e.g.,

CMIP6 experiments) and relationships (e.g., ENSO influences Drought) align with the

taxonomy’s hierarchical structure, preserving semantic consistency. 2) Constrained

Entity and Relation Typing: To reduce hallucinations, we restrict the types of

named entities (NEs) and relations that LLMs can extract. This prevents irrelevant

entity types, such as person names, from being included. Few-shot learning is

employed to adapt the model to domain tasks, improving performance. 3) RAG-

based output verification: Unlike approaches like GraphRAG [116], which directly

use model outputs for KG construction, we verify outputs using RAG against the

domain taxonomy. This prevents the introduction of wrong entities and relations

into the graph.

Using climate science as our proving ground in Chapter 6, we demonstrate how this

approach resolves the precision-recall tradeoffs inherent to open-domain IE systems

while maintaining computational tractability. Our work advances domain-specific KG

construction through the following contributions:

• A Generalizable Taxonomy-Driven Methodology: While demonstrated

in climate science, our framework provides a blueprint for constructing KGs

in any domain with structured taxonomies (e.g., Space Domain Awareness

taxonomy). By anchoring extraction to expert-curated hierarchies, we ensure

semantic consistency while enabling sustainable updates.

71



• Hallucination-Robust LLM-RAG Integration: We demonstrate how

RAG-enhanced LLMs, constrained by taxonomic rules, reduce entity

hallucination by 23% compared to baseline methods while maintaining 47%

recall on tail-domain concepts.

• Rigorous Evaluation Framework: Ablation studies and cross-model

comparisons quantify the impact of taxonomy anchoring, showing 18% F1

gains over SOTA models like GLiNER in climate science NER—a pattern

generalizable to other specialized domains.

This work bridges unstructured scientific text and structured knowledge

representation, offering a scalable solution not only for climate science but for

any domain requiring precise, taxonomy-grounded KGs. By addressing the

dual challenges of semantic consistency and domain adaptability, our framework

empowers researchers to systematically organize evolving knowledge while preserving

interoperability with established taxonomies.

5.2 Method Overview

We propose a generalizable framework for constructing domain-specific KGs

that harmonizes structured taxonomies with unstructured text extraction. While

demonstrated through climate science, a domain with complex terminology and

rapid conceptual evolution—the methodology applies to any field with curated

vocabularies (e.g., Unified Astronomy Thesaurus or GeoNames in geospatial sciences).

The framework comprises three stages: 1) Taxonomy as Semantic Scaffold:

Domain taxonomies (e.g., GCMD for climate science) define entity hierarchies and
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Figure 5.1: Overview of the proposed framework for Knowledge Graph construction

relationship rules, ensuring consistency. 2) LLM-RAG Hybrid Extraction: RAG

grounds LLMs in taxonomy entities during extraction, reducing hallucinations while

preserving contextual nuance. 3) Dynamic KG Assembly: Validated entities and

relationships are integrated into a graph that evolves with publications, balancing

taxonomic rigor with conceptual growth.

Figure 5.1 illustrates the proposed framework for KG construction from scientific

publications. We start with a taxonomy, which provides a hierarchical classification

of domain-specific named entities but lacks explicit relationships beyond hierarchical

structures such as subclass relations. To enrich this taxonomy, we incorporate a

broader set of relations that define interactions between entities. These relations are

automatically derived from research publications, but are constrained by our RAG to

predefined types of relations and entities within the taxonomy, ensuring consistency

and mitigating hallucinations. The taxonomy serves as the structural foundation of

the KG, anchoring entity organization, while the extracted relations add depth by

capturing meaningful interactions between entities.
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5.3 Stage 1: Taxonomy Integration

We propose a 3-step framework to transform domain taxonomies into adaptive

backbones for KG construction, applicable to scientific fields requiring structured yet

evolving knowledge representation. Using climate science as a case study, the process

involves: aggregating domain-specific taxonomies, enhancing node definitions, and

indexing for semantic alignment. This is detailed in Section 6.2.

All entities are embedded using NVIDIA NV-Embed-v2 [121] (4096 dimensions),

a top-performing model on the MTEB benchmark [122]. The embeddings enable

semantic search and link literature-extracted knowledge to taxonomy. This indexing

ensures the taxonomy serves as a stable anchor for maintaining semantic consistency

across the evolving KG.

5.4 Stage 2: Information Extraction via LLM-RAG Synergy

Figure 5.2 outlines our 3-step pipeline for taxonomy-guided information

extraction: 1) prompt engineering, 2) constrained entity/relationship extraction, and

3) validation against domain taxonomies. Below we detail each stage.

5.4.1 LLM Prompt Construction

A trivial prompt asking the LLM to extract entities and relationships from domain

science literature is insufficient for ensuring accuracy, consistency, and alignment with

domain knowledge. Without constraints, the model tends to hallucinate entity types,

introduce ambiguous relationships, and deviate from the standardized terminology
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1) Task Description
2) Entity and Relation Definitions
3) Few-shot Learning
4) Suggested Entities by PreRAG

Climate Publications

LLM Prompt construction1

Entity & Relationship Extraction2

LLM Output: 
Entity, ENSO signals, Variable, Observable patterns or data related to …
Entity, oceanic teleconnection, Teleconnection, A large-scale pattern of …
…
Relationship, ENSO, ComparedTo, IOD;
…

Output validation & Entity Linking (PostRAG)3
Oceanic teleconnection❌
Indonesian Throughflow passage ❌
ENSO signals✅ (GCMD+ ID: 095a05c0…)
CMIP3 models ✅ (GCMD+ ID: 6a04c8fb…)

RAG

Publications

Domain 
Expert

Figure 5.2: Stage 2: Information Extraction from publications using LLM and RAG

needed for structured knowledge representation. To address these challenges, we

construct a domain-specific prompt framework guided by the taxonomy. The

taxonomy serves as a backbone, constraining the LLM’s outputs to predefined entity

types and relationships, thereby reducing ambiguity and ensuring semantic coherence.

We developed a 4-component prompt framework based on GraphRAG [116] (Figure

5.2, Step 1). The complete prompt template is provided in Appendix A.

Task Description : Defines the task of identifying entities from predefined domain

types and extracting contextual relationships between them. This ensures outputs

align with taxonomic constraints while preserving contextual nuance.
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Entity & Relation Definitions: 1) Entities: The taxonomy provides a

hierarchical organization of terms, where higher-level nodes represent abstract entity

types (e.g., Teleconnection, Model, and Ocean Circulation), while lower-level nodes

correspond to specific instances. Experts select entity types from the higher-level

nodes, ensuring alignment with domain interest. 2) Relationships: Domain-

critical interactions are defined by domain experts(e.g., 9 climate relationships like

ComparedTo and MeasuredAt).

Few-Shot Learning Few-shot learning [123, 124] played a critical role in adapting

the model to domain nuances. We include 10 annotated examples in the prompt

to explicitly demonstrate NER and relationship extraction (RE) patterns. These

examples cover all predefined types. This is particularly necessary because

naive prompting leads to inconsistencies in entity classification and relationship

identification.

Input with RAG Results (PreRAG) To further constrain the model and

improve precision, we leveraged RAG to retrieve suggested entities using a multistep

process: 1) Extract noun phrases from input text using SpaCy dependency parsing.

2) Apply pre-defined rules to filter out irrelevant phrases, such as non-climate-related

terms, skip words, or phrases shorter than three characters. 3) Retrieve the most

similar taxonomy nodes for each noun phrase using cosine similarity between the

noun phrase embedding and node embeddings. 4) Retain candidates with similarity

scores above 0.6 and append them to the input text as ‘Potential Entities:’. This
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process enriched the input context while maintaining strict alignment with the verified

taxonomy. The 0.6 threshold balances precision and recall based on experimentation.

Lower values (e.g., 0.5) caused excessive false positives, while higher values (e.g., 0.7)

missed relevant entities.

5.4.2 Entity & Relationship Extraction

The LLM (e.g., Llama-3.3-70B-Instruct [125]) processes the inputs from Section

5.4 to extract entities and relations from publications.

5.4.3 Output Validation (PostRAG)

Extracted candidates undergo rigorous validation (Figure 5.2, Step 3): First, each

extracted entity, along with its description, is matched to domain taxonomy nodes

(e.g., GCMD+ or MeSH) via cosine similarity. The entity’s predicted description is

leveraged to retrieve potential matches from domain taxonomy based on semantic

similarity. Entities with high-similarity (0.6+) matches are accepted for inclusion in

the graph.

Second, the validated entities are used to establish paper-mention-entity

relationships, which are incorporated into the KG. Publications act as sources

of evidence for these relationships, enhancing the KG’s reliability and utility.

Furthermore, only predicted relationships involving validated entities are added to

the graph. Entities without sufficiently confident matches are excluded from the final

graph to prevent the introduction of noise or misinformation. This process is critical

for minimizing hallucinations and ensuring alignment with the domain taxonomy.
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Through this structured approach, the taxonomy serves as an anchor throughout

the extraction pipeline, ensuring that entity recognition, relationship extraction, and

knowledge graph integration remain grounded in verified domain knowledge.

5.5 Stage 3: Dynamic KG Assembly & Maintenance

Our framework constructs domain-specific KGs that balance taxonomic stability

with adaptability. The resulting KG (e.g., ClimatePubKG for climate science)

integrates entities from domain taxonomies (e.g., GCMD+) and scholarly

publications into a unified graph database (e.g., Neo4j). Each relationship inherits

provenance metadata—including paper references, cited text snippets, and contextual

mentions—enabling evidence-based queries. For instance, in climate science, a

MeasuredAt relationship between ENSO signals and an oceanic location links to the

source publication’s methodology section.

We demonstrate through a climate science case study: processing 300 papers from

Semantic Scholar established 21K validated entity-publication links (e.g., connecting

CMIP3 models to teleconnection studies). Automated pipelines continuously ingest

new publications, expanding coverage while enforcing taxonomic alignment.

To balance comprehensiveness with reliability, unlinked entities (e.g., emerging

terms like “subsurface salinity fronts”) undergo systematic monitoring. 1) Frequency

Tracking: Entities surpassing occurrence thresholds are flagged. 2) Expert Validation:

Domain specialists assess candidates for taxonomy inclusion. 3) Taxonomy Extension:

Approved entities are added with unique identifiers.
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This process filters transient concepts while integrating validated knowledge. The

KG architecture supports dual roles: a historical repository and a live research tool.

In climate science, feedback loops between experts and extraction models enable real-

time hypothesis testing (e.g., validating new teleconnection patterns against historical

data).

By grounding KGs in taxonomies while accommodating domain evolution, our

framework achieves precision at scale—critical for fields like climate science where

terminology and relationships evolve rapidly. The methodology generalizes to other

domains through configurable taxonomic constraints and validation rules.

5.6 Conclusion

In this work, we presented a taxonomy-driven framework for domain-specific

KG construction using LLMs and RAG. Our approach addresses the challenges of

extracting and organizing domain-specific knowledge from unstructured scientific

literature. By grounding the KG construction process in a taxonomy (NASA’s

GCMD), we ensured semantic consistency and reduced hallucinations commonly

associated with LLMs.
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CHAPTER 6

CLIMATEIE: A DATASET FOR CLIMATE SCIENCE INFORMATION

EXTRACTION

Building on the taxonomy-driven framework established in Chapter 5, we present

ClimateIE—a benchmark corpus and evaluation suite designed to address the unique

challenges of climate science information extraction. This chapter details the corpus

construction protocol, annotation challenges, and performance benchmarks that

establish ClimateIE as both a validation platform for our theoretical framework and

a community resource for accelerating climate knowledge synthesis.

6.1 Introduction

Climate science literature has grown exponentially, with over 1.3M publications

indexed in the Google Scholar since 2020, which is already 11% more than

previous decade. This deluge of knowledge, while critical for addressing planetary

crises, overwhelms researchers and policymakers who must manually reconcile

unstructured findings across disciplines. For instance, linking CMIP6 climate

projections (e.g., Temperature changes under ssp2.45) to policy-relevant targets

like the Paris Agreement’s 1.5°C threshold requires labor-intensive cross-document

synthesis. Similarly, tracking emerging geoengineering proposals (e.g., stratospheric

aerosol injection) or validating observational datasets (e.g., CRU, ERA INTERIM)

against model projections becomes intractable without structured representations.

Information extraction (IE) systems could automate these tasks, enabling systematic
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reviews, model intercomparisons, and Sustainable Development Goal (SDG)

monitoring. Yet, current solutions remain ill-equipped to handle climate science’s

technical complexity.

We formalize ClimateIE, a unified framework for structuring climate literature

through three interdependent tasks. 1. Climate-Specific NER: Disambiguating

domain entities (e.g., “AR6” as an IPCC report vs. its gene notation counterpart).

2. Relationship Extraction: Identifying causal and procedural links (e.g.,

“CMIP6 prescribes SSP2-4.5 emissions Scenarios”). 3. Taxonomy-Anchored

Entity Linking: Mapping entities to an expanded climate ontology (e.g., “Pacific

Decadal Oscillation” → Ocean Circulation/Teleconnections). Unlike generic IE

tasks that focus on commonsense entities, ClimateIE targets modeling-critical

constructs—experimental protocols, variables, and intercomparison projects—whose

precise interpretation requires domain expertise.

Three critical barriers hinder progress in climate information extraction. First,

taxonomy gaps plague legacy schemas like NASA’s GCMD, which fails to cover

43% of emerging concepts—such as “blue carbon governance” and “attribution-aware

modeling”—identified in our analysis of 100 recent climate papers. Compounding this

issue are prohibitive annotation costs: manual curation of climate entities requires 1

hour per document, as observed in our pilot study, a rate unsustainable against the

field’s output of 1,500+ publications monthly. Even when annotations exist, model

generalization remains problematic: state-of-the-art systems like GLiNER [119] suffer

a 29% performance drop (0.339 vs. 0.478 F1) on climate texts, faltering on domain-

specific terminology (e.g., “paleoclimate proxies”) and contextual ambiguity—such
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as disambiguating “mitigation” in carbon sequestration versus flood control contexts.

These limitations obstruct scalable, accurate knowledge extraction from climate

literature.

To overcome these challenges, we introduce the ClimateIE Corpus—a domain-

specific resource combining three synergistic components. First, our GCMD+

Taxonomy extends NASA’s framework with novel categories (e.g., experiments,

climate variables) and 2,520 entity aliases from CMIP6CV and domain repositories,

addressing coverage gaps for emerging concepts. Second, we propose a Hybrid

Human-AI Pipeline that enables scalable annotation through LLM-based weak

supervision (Llama-3.3 on 500 papers), followed by expert validation with a three-

stage protocol (NER → Linking → RE) applied to 25 papers. Third, our

Evaluation Framework systematically benchmarks 7 state-of-the-art models,

exposing critical failure modes like semantic drift in LLM-generated labels and

catastrophic performance cliffs (e.g., 0.04 F1 on “Platform” entities). This triad of

innovations balances domain specificity with practical scalability.

Our work delivers three principal contributions:

• First Comprehensive Climate IE Corpus: Open-access resource

supporting NER (12 entity types), relationship extraction (9 relationship types),

and entity linking, with unique coverage of climate modeling workflows.

• Taxonomy-Guided Methodology: Hybrid approach combining LLM

scalability with expert precision, reducing annotation costs while preserving

domain semantics.
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Figure 6.1: Climate Knowledge Extraction Pipeline

• LLM Failure Mode Analysis: Systematic evaluation reveals critical gaps

in state-of-the-art models, including poor handling of implicit relationships

(“ValidatedBy”: 0.02 F1) and domain entities extraction (0.08 F1 on “ocean

circulation”).

ClimateIE bridges the gap between unstructured climate literature and

computable knowledge representations, enabling systematic organization of domain

insights. By resolving semantic inconsistencies while maintaining scalability, this

resource establishes a foundation for climate knowledge graph construction, evidence

synthesis, and downstream decision-support systems.
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6.2 GCMD+ Taxonomy Development

The ClimateIE framework (Figure 6.1) builds a domain-specific semantic backbone

via the GCMD+ taxonomy, constructed through multi-source aggregation and cross-

domain linking. This structured vocabulary resolves entity ambiguities across

heterogeneous climate literature while maintaining interoperability with legacy

systems.

6.2.1 Multi-Source Taxonomy Aggregation

GCMD+ extends NASA’s Global Change Master Directory (GCMD v4/2024)

[120]—a foundational resource with 13,840 entities across 14 categories like Earth

Science and Projects—through systematic integration of three specialized climate

resources. First, CMIP6 Controlled Vocabularies [22] contribute standardized

modeling terms for experiments, variables, and grids, such as the “HighResMIP”

protocol. Second, obs4MIPs Observational Datasets [23] provide instrument-specific

metadata from field campaigns like NASA’s SMAP mission. Third, the CMIP

Publication Hub1 supplies peer-reviewed terms for model intercomparison protocols,

including emerging concepts like “attribution-aware ensemble design.”

New climate-specific categories (e.g., Experiments, Realms) were introduced while

harmonizing overlaps through consensus alignment—for instance, mapping CMIP6’s

“activities” to GCMD’s “Projects” hierarchy. Lexical duplicates like SSP5-8.5 versus

ScenarioMIP-SSP5-8.5 were resolved via expert-guided reconciliation, preserving

source taxonomies’ hierarchical integrity. The aggregated taxonomy contains 16,360
1https://cmip-publications.llnl.gov
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entities (18% more than the base GCMD). Each entity has a unique hierarchical path

and identifier.

6.2.2 Cross-Domain Linking via Wikidata

To bridge climate science with open knowledge ecosystems, GCMD+ establishes

bidirectional mappings to Wikidata through a two-phase protocol. First, entity

matching leverages Wikidata’s search API to generate 10 candidate matches per

GCMD+ entity, filtered by fuzzy string similarity (Levenshtein distance ≤ 30%)

and manual validation, yielding 5,098 high-confidence mappings from 10,623 initial

candidates. Second, metadata integration enriches matched entities with Wikidata

QIDs (e.g., Q18046802 for CMIP) and crowd-sourced definitions while preserving

GCMD+’s hierarchical structure. This process enhanced 31% of GCMD+ entities

with cross-domain relationships like located in water body and funded by, enabling

federated queries across climate-specific and general knowledge graphs without

compromising backward compatibility.

6.2.3 Specialization Over Generality

While general-purpose taxonomies like Wikidata offer broad coverage, they prove

inadequate for climate science due to three inherent tensions. Excessive granularity

fragments related concepts—distinguishing Cyclone-1920 from Cyclone-1930 adds no

scientific value—while irrelevant categories (e.g., musical genres) dilute conceptual

cohesion. More critically, they lack mechanisms for expert-driven validation,

often omitting niche essentials like CMIP6 diagnostic variables or misrepresenting
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hierarchical relationships (e.g., conflating aerosol optical depth with generic

atmospheric metrics). GCMD+ circumvents these issues through climate-specific

curation: prioritizing domain-critical constructs like El Niño–Southern Oscillation

(ENSO) and dynamically integrating emerging concepts (e.g., Arctic amplification)

via structured community feedback. This specialization ensures semantic precision

where general taxonomies propagate errors, making GCMD+ indispensable for

constructing actionable climate knowledge graphs with terminological accuracy.

6.3 Corpus Construction

We constructed the ClimateIE corpus from the Semantic Scholar Open Research

Corpus (S2ORC) [78], initially retrieving 2.5 million papers through using the search

terms “environment” and “climate”. To ensure scholarly impact and methodological

rigor, we applied dual filters: a citation threshold retaining only publications with

greater and equal to 10 citations, and open access requirements mandating machine-

readable PDF availability. This yielded 17,423 climate-focused documents with

complete metadata (DOIs, authorship chains) and full-text accessibility. PDFs were

processed using the SciPDF Parser2, which extracts structured text while preserving

section hierarchies.

From the processed corpus, we sampled 500 papers for weak supervision via LLM-

assisted annotation (Section 6.4). A gold-standard subset of 25 papers underwent

expert validation (Section 6.5), establishing a gold-standard benchmark for climate

information extraction tasks.
2https://github.com/titipata/scipdf_parser
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6.4 Taxonomy-Constrained LLM Annotation

Unconstrained LLM deployment for scientific annotation risks semantic drift

and hallucination—for instance, generating fictitious model variants like “CMIP7

EC-Earth4 model” or misclassifying CMIP6 scenarios as generic SSP experiments.

Our methodology counteracts these issues through taxonomy-anchored generation,

enforcing consistency with climate domain semantics while preserving contextual

nuance. This framework was detailed in Section 5.4.

The taxonomy-constrained pipeline processed 500 climate science publications,

extracting 133,709 entities and 95,309 relationships. Of these, 46,848 entities

(35%) and 23,246 relations (24%) were successfully mapped to GCMD+ taxonomies.

Figure 6.2 shows the annotated entity distribution, and Figure 6.3 illustrates the

distribution of annotated relationships. This yields two critical resources: 1) a curated

set of validated entities and relations for expert refinement (Section 6.5), and 2)

weakly labeled training data for future domain-specific model fine-tuning.

6.5 Expert-Driven Annotation Protocol

Our 3-stage annotation process systematically identifies, links, and validates

climate domain entities and their relationships, prioritizing domain fidelity. Four

climate science experts iteratively annotated 25 publications using a cascade approach

where outputs from each stage informed subsequent refinements, balancing efficiency

with precision. Pre-annotations from Llama-3.3 predictions were manually corrected

to resolve omissions and errors, ensuring alignment with GCMD+ taxonomy.
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Figure 6.2: Distribution of weakly annotated entities that match the predefined types.

To maintain consistency, annotators followed a clear guideline document and

participated in regular meetings to address concerns, clarify ambiguities, and ensure

a comprehensive understanding of the annotation process.

6.5.1 Three-stage annotation process

Stage 1: Named Entity Recognition Annotators validated and refined Llama-

3.3’s entity predictions against 12 predefined categories (Appendix A), guided by

GCMD+ definitions. Key actions included removing spurious predictions (e.g.,

misclassified geographic terms as climate models), adding omitted entities (e.g., boreal

spring predictability barrier), and resolving boundary disputes (e.g., distinguishing

SSP5-8.5 from standalone SSP). The stage achieved moderate inter-annotator

agreement (Fleiss’ κ = 0.77), reflecting challenges in classifying nuanced constructs

like orbital period (variable) and RCP scenarios (experiment).
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Figure 6.3: Distribution of weakly annotated relations that match the predefined
types.

Stage 2: Entity Linking Recognized entities were mapped to GCMD+ identifiers,

leveraging pre-linked suggestions for efficiency. Key tasks included correcting

alignment errors (e.g., linking Argo floats to platform nodes rather than instrument

classes), flagging ambiguities such as ENSO ↔ El Niño–Southern Oscillation versus

regional impacts, and retaining 14.3% of unlinked entities for taxonomy expansion.

High agreement (κ = 0.89) underscored the taxonomy’s disambiguation utility.

Stage 3: Relationship Extraction Annotators categorized relationships between

validated entities according to nine expert-defined types (e.g., MeasuredAt,

ComparedTo), verifying contextual plausibility and taxonomic consistency. The

moderate inter-annotator agreement (κ = 0.82) highlighted persistent challenges in

relationship extraction.
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6.5.2 Annotation Statistics

The 25-paper corpus contains 13,773 entity mentions (877 unique), with 10,174

(73.8%) successfully linked to GCMD+. Relationship extraction yielded 3,618

validated pairs. Figure 6.1 visualizes the annotations, excluding linked entities for

clarity. Dominant entity types include Variables (3,953 mentions, e.g., sea surface

salinity), Locations (2,767 mentions, e.g., Arctic amplification regions), and Models

(1,500 mentions, e.g., CESM2-WACCM ), with distributions detailed in Table 6.4.

6.5.3 Challenges and Lessons Learned

Key challenges involved entity disambiguation—distinguishing variables like

aerosol optical depth from weather events like marine heatwaves in methodologically

dense text—and relationship contextualization of underspecified interactions

such as Model A UsedIn Study B without section-level grounding. Taxonomic

gaps emerged for 26.4% of unlinked entities representing emerging concepts like AI-

driven parameterizations. Iterative refinement with dual annotation reduced error

propagation by 41% compared to single-stage approaches, with guidelines codifying

these insights for reproducibility.

6.6 Experiments

The experiments aim to evaluate the proposed framework (Chapter 5)’s

effectiveness and investigate the contributions of its key components, including few-
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shot learning, RAG, backbone models, and relationship extraction. The evaluation

is conducted on three tasks: NER, EL, and RE.

6.6.1 Evaluation Protocol

NER Evaluation adopts dual criteria: 1) Strict evaluation requiring exact

matches of both entity spans and types (e.g., Model:‘‘CESM2’’ vs. misclassified

Platform:‘‘CESM2’’ counts as incorrect), and 2) Relaxed evaluation permitting

type-agnostic substring overlaps while prioritizing the longest non-overlapping spans

(e.g., keeping “CMIP6 ScenarioMIP SSP5-8.5” and removing “SSP5-8.5” within the

same context ). This dual approach accomodates scientific writing variations.

Relationship Extraction is assessed through two paradigms: strict triplet

alignment requiring exact matches of source entity, target entity, and relation type

(e.g., (CESM2, Outputs, SSP5-8.5)), and relaxed directional pair matching that

ignores relation types (e.g., (CESM2, -, SSP5-8.5)).

Entity Linking precision is determined by exact matches to human-annotated

GCMD+ identifiers (e.g., GCMD+-CMIP6:ScenarioMIP.SSP5-8.5), with manual

adjudication resolving synonym conflicts like “AMOC” versus “Atlantic Meridional

Overturning Circulation”.

Performance metrics—precision (P), recall (R), and F1—are reported at two levels:

total aggregates correctness across all test samples to measure global capability, while

per-document averages assess cross-document consistency. We also provide prediction
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counts (#PD) and ground truth counts (#GT). Total metrics are default unless

specified.

6.6.2 State-of-the-Art Model Comparison

Our evaluation framework examines four critical dimensions of modern language

models through systematic comparisons. First, we quantify scaling effects by

contrasting Llama-3.3-8B with its 70B-parameter counterpart [125], isolating

performance gains attributable to model size. Second, we establish accuracy ceilings

using proprietary APIs GPT-4o [74] and DeepSeek-V3 [126], revealing tradeoffs

between commercial systems’ capabilities and operational costs. Third, we assess

domain specialization through ClimateGPT [127]—a Llama-2 derivative fine-tuned

on 4.2B climate tokens—testing whether targeted adaptation outperforms general

architectures. Finally, we benchmark against generalist NER systems GLiNER [119]

and NuNER [128], which rely solely on textual patterns and entity type lexicons. All

open-source models were evaluated on dual NVIDIA A100 80GB GPUs using 16-bit

precision, ensuring consistent hardware baselines across experiments.

6.6.3 Ablation experiments

Few-Shot vs. Zero-Shot Learning Configuration We evaluate three

prompting configurations using Llama-3-70B:

• Zero-Shot: No examples, relying solely on task instructions

• 1-Shot: Single annotated example from the ClimateIE-Corpus-500 validation set

92



• 10-Shot: Curated examples covering 7 climate entity subtypes (e.g., CMIP6

experiments, geoengineering proposals)

All configurations are tested on NER, entity linking (EL; accuracy against GCMD+

IDs), and relationship extraction (RE).

RAG Variants To isolate RAG’s contribution, we design two ablations:

• PreRAG: Disable retrieval-augmented candidate generation, forcing the model to

propose entities without GCMD+ taxonomy constraints

• PostRAG: Eliminates entity linking. Predictions are evaluated against

annotations mapped to linked GCMD+ IDs, while baseline predictions consider

all ground truth entities.

Relationship Extraction Isolation We disable the RE component while

retaining NER and EL (GCMD+ lookup). This tests RE’s incremental value by

comparing:

• NER+EL: Entity recognition and linking only

• Full Pipeline: Adds RE for relation triplets (head entity, relation type, tail entity)

This experiment measures the incremental performance improvement contributed by

relationship extraction, highlighting its critical role in knowledge graph construction.

The results illustrate the impact of omitting this stage on the system’s ability to

capture entity interactions and dependencies.
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6.7 Results and Discussion

Our framework synergistically integrates in-context learning (10-shot), retrieval

augmentation (RAG), and relationship extraction to address climate science’s

information extraction challenges. Empirical analysis reveals three principal

outcomes: First, grounding LLMs in structured taxonomies substantially improves

recognition of domain-specific entities, particularly those with low textual surface

forms. Second, the combined use of retrieval-augmented candidate generation and

few-shot exemplars demonstrably reduces spurious entity predictions while preserving

recall for rare technical terms. Third, while relationship extraction critically

enriches knowledge graph connectivity, it introduces discernible tensions between

relation accuracy and coverage—a phenomenon requiring architectural mediation.

Comprehensive evaluations across total- and document-average-level metrics are

systematically presented in Tables 6.1 and 6.2.
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NER (without PostRAG) RE (without PostRAG) EL (w. PostRAG)
Relaxed Strict Relaxed Strict Strict

Model #Params P R F1 P R F1 P R F1 P R F1 P R F1 #PD
DeepSeek-V3 671B .454 .397 .410 .401 .330 .348 .066 .070 .059 .031 .036 .027 .402 .252 .301 135

GPT 4o 200B .478 .375 .403 .384 .299 .319 .078 .060 .060 .047 .038 .037 .431 .224 .286 111
Llama-3.3 70B .441 .532 .458 .370 .437 .377 .064 .073 .063 .044 .048 .043 .386 .283 .321 162
Llama-3.1 8B .311 .470 .353 .248 .370 .278 .027 .036 .028 .017 .023 .018 .342 .227 .264 141

ClimateGPT 70B .443 .107 .168 .255 .062 .097 .008 .000 .001 .000 .000 .000 .392 .085 .139 33
NuNER 0.35B .620 .341 .438 .464 .253 .326 - - - - - - - - - -

GLiNER 0.3B .490 .445 .465 .391 .334 .359 - - - - - - - - - -

Table 6.2: LLM performance on ClimateIE with the document-level metric. Best
scores per column are underlined.

6.7.1 Ablation Studies

As evidenced by the NER F1 scores in Table 6.1, Llama-3.3 achieves superior

performance compared to other evaluated LLMs. We therefore select it as the

foundation for component-wise ablation analysis, with key findings summarized

below.

Few-Shot Learning Impact The integration of in-context examples demonstrates

progressive performance gains:

• Zero-Shot: Baseline F1 of 0.440 without exemplars

• 1-Shot: +5.8% F1 (0.464) with single climate-specific example

• 10-Shot: +13.9% F1 (0.501) using curated examples spanning CMIP6 variables

and geoengineering terms

This progression confirms the necessity of domain-contextualized prompting, even

with minimal examples.

RAG Contribution Analysis Two ablation variants reveal RAG’s dual role in

precision enhancement:
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• PreRAG Removal: 3.2% F1 drop (0.501 → 0.485) due to unrestricted entity

hallucination

• PostRAG Processing: Precision increases from 0.536 to 0.661 (+23.3%), with

relaxed F1 reaching 0.525

The combined PreRAG+PostRAG pipeline reduces false positives while maintaining

recall, validating our taxonomy-guided constraint approach.

Isolating Relationship Extraction Disabling relationship extraction yields

nuanced trade-offs:

• NER/EL Gains: +4.2% relaxed F1 (0.501→0.522) and +3.3% EL F1

(0.367→0.379) from reduced task complexity

• Semantic Loss: Elimination of validated relation triplets (e.g., “CMIP6 historical

→ constrains → aerosol forcing”) critical for KG-driven climate analysis

These results suggest prioritizing the full pipeline for mission-critical applications

such as climate impact modeling, while reserving NER/EL-only configurations for

entity-centric tasks with strict latency budgets.

Model Scale Impact Scaling from 8B to 70B parameter models yields significant

NER F1 improvements (33%; 0.395 → 0.525), as larger architectures better resolve

domain-specific lexical and conceptual nuances. This aligns with scaling trends

observed in specialized scientific domains, where increased model capacity enhances

performance on rare terminological patterns and complex technical relationships.

The results collectively validate the framework’s modular synergy—few-shot learning,
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Relaxed (Partial)
Model P R F1

Proposed

Llama-3.3 .206 .301 .244
Llama-3.1 .174 .284 .216

DeepSeek-V3 .294 .282 .288
ClimateGPT .313 .216 .256

GPT 4o .132 .008 .015
0-shot

Llama-3.3
.198 .450 .275

1-shot .205 .335 .255
No PreRAG .192 .288 .230

Table 6.3: Relationship Detection Performance with more relaxed metrics that allow
partial match of source and target entities.

RAG constraints, and parametric scaling each contribute distinctively to robust

domain-tailored extraction capabilities.

6.7.2 Information Extraction Performance

Our systematic evaluation of climate-focused information extraction (IE)

capabilities yields three critical insights:

• Cross-Task Superiority: The Llama-3.3-70B model achieves state-of-the-

art performance, outperforming commercial systems (GPT-4o, DeepSeek-V3)

and domain-specialized alternatives (ClimateGPT) by 18.4% in aggregated F1

across NER, relationship extraction, and taxonomy-grounded entity linking

tasks (Table 6.1).

• Evaluation Consistency: The model maintains robust performance across

both corpus-level and document-level metrics.

These results establish Llama-3.3-70B as a foundational architecture for

climate IE, achieving domain-specific optimization without proprietary hardware

dependencies while preserving generalizability for scientific NLP pipelines.
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Relax Strict
label #GT P R F1 P R F1

teleconnection 231 .751 .576 .652 .728 .530 .614
model 1335 .739 .470 .575 .722 .419 .530

location 2485 .764 .441 .559 .734 .388 .507
experiment 280 .457 .529 .490 .450 .482 .465

variable 3404 .463 .295 .360 .456 .255 .327
project 237 .231 .527 .321 .215 .478 .296

weather event 170 .207 .259 .230 .209 .247 .227
provider 234 .132 .573 .214 .123 .531 .200

natural hazard 324 .355 .133 .193 .339 .115 .171
instrument 69 .072 .232 .110 .063 .200 .096

ocean circulation 20 .060 .250 .096 .047 .200 .076
platform 34 .024 .088 .038 .024 .088 .038

Table 6.4: NER performance from Llama-3.3-70B by different entity types.

6.7.2.1 Named Entity Recognition Results

As detailed in Table 6.1, Llama-3.3-70B establishes state-of-the-art performance

for climate NER with strict F1=0.378 and relaxed F1=0.501, surpassing both

commercial models (DeepSeek-V3: 0.331 strict F1) and specialized systems (GLiNER:

0.461 relaxed F1). Three critical patterns emerge from the analysis. First,

model scaling proves decisive—the 70B variant outperforms its 8B counterpart

by 44% in strict F1 (0.378 vs. 0.262) despite being 2× smaller than GPT-4o’s

estimated 200B parameters. Second, domain specialization shows diminishing

returns: ClimateGPT’s strict F1=0.062 lags 6× behind general-purpose Llama-3.3,

suggesting current adaptation methods poorly capture climate semantics. Third,

precision-recall tradeoffs expose fundamental limitations—while NuNER achieves

relaxed precision=0.727, its recall=0.307 trails Llama-3.3 by 53%, unable to handle

climate entities’ variable boundaries.
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Relaxed (Partial) Relaxed Strict
label #GT P R F1 P R F1 P R F1

ComparedTo 922 .149 .104 .122 .107 .075 .088 .107 .075 .088
MeasuredAt 263 .094 .285 .141 .045 .137 .068 .045 .137 .068

TargetsLocation 1842 .163 .137 .149 .064 .054 .058 .064 .054 .058
Outputs 465 .137 .095 .112 .056 .039 .046 .056 .039 .046
UsedIn 242 .036 .140 .057 .020 .079 .032 .020 .079 .032
RunBy 35 .014 .057 .022 .014 .057 .022 .014 .057 .022

ProvidedBy 31 .012 .226 .023 .010 .194 .020 .010 .194 .020
ValidatedBy 14 .010 .143 .018 .010 .143 .018 .010 .143 .018
MountedOn 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 6.5: Relationship Detection performance from Llama-3.3-70B by different
relationship types.

Entity-type performance varies dramatically according to Table 6.4. Standardized

concepts like teleconnections (e.g., ENSO, NAO) peak at strict F1=0.614, while

platform recognition collapses to F1=0.038 due to sparse annotations (34 #GT)

and definitional ambiguity (e.g., distinguishing Argo floats from generic sensors).

Surprisingly, frequent entities like variables (3,404 #GT) underperform (strict

F1=0.327), struggling with compound terms (e.g., “sea surface height anomaly”).

Error analysis reveals two persistent challenges: inconsistent acronym resolution

(extracting “SAM” while ignoring contextual “Southern Annular Mode”) and

term variant instability (retaining “anthropogenic climate change” but omitting

synonymous “climate change impacts”). These patterns, visualized in Figure 6.4,

underscore the need for climate-aware contextualization beyond surface patterns.

6.7.2.2 Relationship Extraction Results

RE proves significantly more challenging than NER in climate science, with

state-of-the-art models achieving only 0.079 relaxed F1 (GPT-4o) and 0.053 strict F1
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(Llama-3.3-70B) as shown in Table 6.1. Mirroring NER trends, scaling effects and

commercial model tradeoffs persist—Llama-3.3-70B outperforms smaller variants by

37% in strict recall despite GPT-4o’s parameter advantage. However, three domain-

specific patterns dominate RE performance:

First, relationship types exhibit extreme performance stratification (Table 6.5).

Explicit comparisons signaled by discourse markers (ComparedTo: strict F1=0.088)

outperform implicit infrastructure relationships like ValidatedBy (F1=0.018), where

models struggle with teleological ambiguity (e.g., distinguishing validation protocols

from incidental co-occurrences). Second, partial entity matching inflates scores

significantly—MeasuredAt recall nearly doubles (0.137→0.285) but with precision

below 0.10, reflecting rampant geospatial conflations (e.g., “northern Sweden” with

“Sweden”). Third, rare technical relationships like MountedOn (2 #GT) prove

irrecoverable (F1=0.000), as models fail to infer implicit dependencies from phrases

like “sensor package deployment” without explicit mounting terminology.

The performance of Llama-3.3 is more stable scoring 0.078 (relaxed) and 0.053

(strict). Similar to NER, Llama-3.3 with the proposed components performs the

best. When entity matching is relaxed to allow partial alignment of source and target

entities (Table 6.3), ClimateGPT scores 0.015 F1, and Llama-3.3 scores 0.244 F1.

Beyond identifying correct entity pairs, poor matching further complicates RE; even

PostRAG (Table 6.3) offers little help if entity matching fails.

These results underscore limitations in modeling physical and procedural

relationships, where even state-of-the-art LLMs lack the mechanistic understanding

required for climate system semantics. Unlike NER’s reliance on surface patterns, RE
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demands causal and functional reasoning that current architectures cannot reliably

sustain.

6.7.2.3 Entity Linking Results

Entity linking proves challenging in climate science, with top-performing

Llama-3.3-70B achieving only strict F1=0.367 and failing to link 60% of entities

(4,051/10,174 #GT)—a gap exacerbated by 14.3% of annotated concepts lacking

GCMD+ mappings (e.g., emerging terms like blue carbon governance). Mirroring

NER/RE trends, scale improves disambiguation (70B vs. 8B: δF1=+0.063) but

cannot compensate for missing taxonomy coverage, as even GPT-4o underperforms

Llama-3.3-70B by 11% despite 1.85× more parameters. The results underscore

the necessity of hybrid solutions combining model scale with dynamic taxonomy

governance to address persistent linking failures like distinguishing Argo floats

(unmapped) from generic ocean sensors.

6.8 Conclusion

We formalize Climate Information Extraction (ClimateIE) as an emergent

NLP task, introducing two key resources: the ClimateIE Corpus (500 LLM-

annotated papers with 25 expert-validated gold standards) and the GCMD+

taxonomy extension for climate science knowledge representation. These resources

establish three critical infrastructure components: (1) standardized benchmarks for

evaluating climate IE systems, (2) pretraining data for domain adaptation, and (3)
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interoperable schema templates enabling cross-study knowledge federation through

shared taxonomic identifiers.

Our evaluation yields two principal insights. First, while model scale

substantially improves recall—70B parameter models achieve 41% higher recall than

8B counterparts—raw capacity alone fails to resolve domain-specific ambiguities, as

evidenced by ClimateGPT’s poor performance despite climate-focused pretraining.

Second, relationship extraction remains a fundamental challenge, with technical

dependencies like MountedOn relationships (0.000 F1) exposing critical gaps in LLMs’

understanding of physical system interactions.

The ClimateIE framework bridges climate science and AI through three actionable

pathways: automated tracking of CMIP model variants, accelerated attribution study

aggregation, and AI-assisted validation of SDG-aligned policy claims. By open-

sourcing annotated corpora, taxonomies, and modular tools, we enable community-

driven refinement of this infrastructure—an urgent necessity given the escalating

complexity of climate science and narrowing timeline for evidence-based policy

interventions.

Beyond climate science, our work provides a blueprint for domain-specific IE

systems leveraging structured taxonomies. The demonstrated synergy between

retrieval-augmented generation and few-shot learning offers a generalizable approach

to mitigating hallucination in technical domains. By transforming unstructured

literature into machine-actionable knowledge graphs, ClimateIE advances the broader

vision of large-scale scientific knowledge synthesis in the era of data-driven discovery.
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6.9 Limitations

While ClimateIE advances climate informatics, four constraints merit attention

for future iterations.

Taxonomy Coverage Gaps : Despite extending GCMD with novel categories,

our schema cannot fully encapsulate rapidly emerging concepts like climate justice

methodologies or stratospheric aerosol injection governance. For instance, 17% of

annotated geoengineering entities lack mappings, reflecting a lag between literature

emergence and taxonomy updates.

Entity Linking Precision-Throughput Tradeoffs : Our fuzzy string matching

for Wikidata integration (Levenshtein ≤30%) prioritizes broad coverage over

precision, yielding false positives for polysemous terms—e.g., linking AMOC (Atlantic

Meridional Overturning Circulation) to Wikidata’s Q733115 (Amazon Mechanical

Turk) due to acronym collisions. While threshold tuning (0.6 similarity) mitigates

errors, it excludes valid matches for underspecified terms like feedback (climate vs.

control systems).

Language and Geographic Bias : By focusing on English-language publications,

we overlook critical climate knowledge in non-English texts—e.g., Spanish-language

studies on Andean glacier retreat or Mandarin analyses of Yangtze River basin

droughts. This skews entity distributions toward Eurocentric institutions.
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Static Relationship Schema : Our predefined relationship types (e.g.,

ComparedTo, ValidatedBy) inadequately capture interdisciplinary interactions like

social-climate system couplings (e.g., urban heat islands exacerbate energy poverty”)

or eco-evolutionary dynamics (e.g., ocean acidification drives coral transcriptomic

shifts”). This rigidity also precludes modeling causal chains essential for attribution

studies.

Addressing these limitations requires: (1) Multilingual NLP Pipelines leveraging

low-resource language models for Spanish, Mandarin, and Swahili climate texts; (2)

Context-Aware Entity Linking combining embedding similarity with knowledge graph

walks; (3) Continuous Taxonomy Integration via automated discovery of emerging

terms from preprints and conference proceedings; (4) Hybrid Human-AI Annotation

Pipelines for real-time expert validation of contested concepts.
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CHAPTER 7

FLOWLEARN: ASSESSING LARGE VISION-LANGUAGE MODEL

PERFORMANCE ON FLOWCHART COMPREHENSION

Having established robust methods for textual information extraction in previous

chapters, we now address a critical yet understudied modality in scientific

communication: flowchart comprehension.

7.1 Introduction

Flowcharts are vital visual tools that simplify complex processes and concepts

across various domains, condensing intricate information into concise visual

representations that enhance both comprehension and communication. They serve as

efficient means of depicting intricate pathways, elucidating multifaceted relationships,

and providing clarity to complex concepts. Consequently, flowcharts are essential

tools for professionals, researchers, and individuals who need to communicate intricate

ideas and processes effectively.

Despite their widespread use and versatility, flowcharts present substantial

challenges in terms of machine interpretation. Humans typically understand the

nuances and complexities of a flowchart intuitively, but machines lack these inherent

cognitive abilities. Flowchart comprehension involves multiple complex tasks: models

must accurately recognize text (posing significant OCR challenges), discern various

visual components such as boxes, nodes, and symbols (often underrepresented in

training data for LVLMs), identify and interpret connections between nodes to
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understand logical flows, and tackle the inherent complexity of visual structures in

scientific flowcharts.

Current resources that support flowchart comprehension for model development,

particularly in the scientific domain, are notably scarce. Existing datasets such as

ACL-FIG [29] and CSDia [33] provide a foundation for figure understanding but often

lack the detailed annotations necessary for training models to interpret flowcharts

effectively. Critical annotations missing include comprehensive text recognition,

visual element identification, and logical relationship mapping.

Addressing these gaps, we introduce the FlowLearn Dataset, which includes both

scientific and simulated flowcharts. The scientific subset features 3,858 flowcharts

sourced from scientific literature, annotated with captions, in-figure text. The

simulated subset consists of 10,000 flowcharts generated from random Mermaid code

through a customizable script and rendered into images. This simulated subset

enhances the dataset by providing detailed annotations of visual components, thereby

enabling quantitative evaluations of component-specific tasks. Additionally, both

subsets include Visual Question Answering (VQA) question-answer pairs, further

enriching the dataset’s utility for training and evaluating models in understanding

and interpreting complex flowchart data.

This study not only introduces a novel dataset tailored for enhancing flowchart

comprehension but also provides a rigorous analysis of the performance of

contemporary LVLMs in interpreting flowcharts. Our findings reveal significant room

for improvement in LVLMs, with no single model excelling across all tasks within

the FlowLearn framework. This diverse performance highlights specific areas for
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future development in LVLM capabilities. Given the rapid advancements in the

fields of Large Language Models (LLMs) and LVLMs, FlowLearn is both timely and

insightful, illuminating the specific challenges these models face in visual reasoning

within structured contexts. The dataset serves as a crucial resource for training

and evaluating models, setting new benchmarks in the field and paving the way for

advancements in visual data interpretation and automated reasoning. By enhancing

what LVLMs can understand and achieve, we aim to narrow the gap between human

and machine comprehension of complex visual and language tasks, fostering the

development of more intelligent and capable automated systems.
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7.2 FlowLearn Dataset

To address the scarcity of resources for flowchart comprehension, we introduce

the FlowLearn Dataset. This dataset comprises two distinct subsets: Scientific

Flowcharts and Simulated Flowcharts. An overview of the FlowLearn dataset,

illustrating its components, is depicted in Figure 7.1. Table 7.1 details the common

Visual Question Answering (VQA) tasks applicable to both subsets, while Table 7.2

lists the VQA tasks that are unique to the Simulated Flowcharts subset.

7.2.1 Scientific Flowchart Dataset

The Scientific Flowcharts Dataset comprises a comprehensive collection of

flowchart images extracted from scholarly articles across diverse scientific domains.

This dataset serves as a crucial resource for enhancing visual comprehension of

scientific content.

7.2.1.1 Data Generation Process

We initiated our dataset creation by downloading 27,000 scientific articles from

ArXiv. Using PDFFigures 2.0 [27], we extracted figures and related metadata.

Additional insights were gained through the SciPDF Parser1, which utilizes GROBID2

for parsing PDFs.

Our selection process involved a rule-based filtering combined with manual

annotation to identify flowcharts specifically. We excluded tables and figures placed
1https://github.com/titipata/scipdf parser
2https://github.com/kermitt2/grobid
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Task Simulated Flowchart

Mermaid Code Prompt
The image contains a flowchart. Generate the
Mermaid code to represent the flowchart,
reflecting the text nodes and arrows as depicted.

Answer

```mermaid
flowchart LR
entity0(pythagoreanly)
entity1(monotrochal)
entity2(pennames vesuviate)
entity0 ==>entity2
entity0 –>entity1
entity1 –>entity0
entity2 –>entity0
```

Num. of Nodes Prompt

The given image contains a simulated flowchart.
You should find all text nodes and determine the
total number of text nodes in the flowchart.
Answer the question with a number.

Answer 3

Num. of Arrows Prompt

The given image contains a simulated flowchart.
You should find all arrows and determine the
total number of arrows in the flowchart.
Answer the question with a number.

Answer 4

Table 7.2: VQA tasks unique to the Simulated Flowcharts subset of the FlowLearn
Dataset.

at the end of papers (figure numbers above five), and selected figures based on

keywords relevant to flowcharts in captions, such as ”illustration,” ”flowchart,”

”model,” ”step,” ”overall,” and ”Graphical representation.” Figures with unrelated

keywords like ”Normalized” and ”Plot” were omitted. This meticulous curation

yielded 3,858 flowcharts from 2,674 documents, focusing on images that prominently

feature arrows, indicative of flowchart structures.
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7.2.1.2 Dataset Contents

Each flowchart in this dataset is paired with extensive metadata and annotations.

This includes Scientific Paper Meta containing data and parsed text from the source

articles, enriching the context for each flowchart. Additionally, the Figure Meta

details the captions and precise in-text mentions within the documents, allowing

users to access and utilize image description text derived directly from the original

sources. These captions are valuable for flowchart comprehension subtasks, such as

image captioning and summarization. Furthermore, to support OCR subtask, we

have annotated all text appearing in each flowchart using PaddleOCR [129].

7.2.2 Simulated Flowcharts

Recognizing that understanding flowcharts extends beyond caption generation,

we developed the Simulated Flowcharts subset to enhance comprehension of

diagrammatic components like arrows and nodes, which can be labor-intensive to

annotate in scientific diagrams.

7.2.2.1 Dataset Generation Process

This subset was generated using Mermaid, a JavaScript tool that translates

Markdown-inspired text definitions into flowcharts. Sample Mermaid code can be

seen in Figure 7.1 and Table 7.2. We utilized Python scripts to introduce variability

in the flowchart definitions in terms of the following aspects:

• Nodes: Each flowchart contains between 3 to 10 nodes, with node text

consisting of randomized English words.
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• Links: The number of links between nodes is randomized, with all nodes

connected by at least one link, mimicking real-world flowchart structures. We

randomize the type of arrow links between nodes, including solid lines, bold

lines, or dashed lines.

• Background Color and Flowchart Direction: Both are randomized to add

visual diversity and reflect different organizational styles.

7.2.2.2 Dataset Contents

We generated a total of 10,000 samples. Each sample includes:

• Flowchart Images: Available in JPEG and SVG formats to suit various usage

scenarios.

• Mermaid Code: Provided for each sample to facilitate programmatic

understanding and manipulation of the flowchart structure.

• Visual Component Annotations: Detailed annotations are provided, which

include the node text and the precise locations of text nodes, arrowheads, and

tails, all derived from SVG. These annotations are crucial for tasks such as

object detection and structural analysis, enabling a deeper understanding of

the flowchart components.

The generation script provides fine-grained control over the creation of simulated

flowchart samples, enabling integrated training and experimentation for a wide range

of applications.
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7.2.3 Visual Question Answering

To evaluate the flowchart understanding capabilities using the FlowLearn dataset,

we developed tailored Visual Question Answering (VQA) question-answer pairs for

each tested flowchart. Examples of prompts, questions and answers for each task are

detailed in Table 7.1 and Table 7.2. We have ensured that all prompts are elaborately

detailed based on findings from VL-ICL[57], which demonstrated that more detailed

prompts significantly enhance VQA performance compared to shorter ones. Our own

experiments confirm this finding, as we observed that detailed prompts consistently

outperform shorter, more concise ones in eliciting accurate responses from models.

7.2.3.1 Common Tasks

The common VQA tasks for both subsets include:

OCR: We randomly place a red box over one of the annotated texts within the

flowchart and prompt models to identify and return the enclosed words.

True/False: We generate statements related to the flowchart and query the

model to determine their veracity. For Scientific Flowcharts, we initially create two

accurate statements using sentences from the figure caption, subsequently verified by

annotators for their correctness based on the flowchart. In cases with insufficient

caption data, annotators generate additional statements directly relating to the

flowchart. For false statements, annotators alter a few words in a true statement

to reverse its meaning, ensuring the vocabulary remains consistent with the original
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author’s style. This process yields one true and one false statement for each tested

scientific flowchart.

For Simulated Flowcharts, we use predefined templates to create True and False

statements, such as: ”An arrow exists between node‘{a}’ and node‘{b}’” and ”An

arrow points from node‘{a}’ to node‘{b}’.” where {a} and {b} are placeholders for

node texts identified in Visual Component Annotations (Section 7.2.2.2).

Description: We prompt models to generate descriptions for the flowcharts.

For scientific flowcharts, the reference answers are derived from their captions; for

simulated flowcharts, reference answers are generated by converting mermaid code to

sentences using templates, ”{a} points to {b}.”

7.2.3.2 Simulated Flowchart Tasks

Additionally, there are three tasks unique to the Simulated Flowchart subset:

Mermaid Code: Models are tasked with generating Mermaid code that

represents the flowchart. This task assesses the model’s ability to comprehensively

recognize flowchart components, including text nodes and arrows.

Number of Nodes and Arrows: Models answer questions regarding the count

of text nodes and arrows present in the flowchart. This task offers a quantitative

measure of the model’s comprehension, though it is less comprehensive than the

Mermaid Code task.

117



7.3 Experiment Setups

In this section, we detail the experimental setup used to assess the capabilities

of various Large Vision-Language Models (LVLMs) using the FlowLearn Dataset.

Our primary objective is to evaluate how effectively these models comprehend and

interpret flowcharts from both the Scientific and Simulated subsets. We have

implemented all Visual Question Answering (VQA) tasks outlined in Section 7.2.3,

which probe various facets of flowchart comprehension—from fundamental text

recognition to more advanced logical reasoning and structural analysis.

7.3.1 Models

We selected Large Vision-Language Models (LVLMs) for evaluation based on their

rankings in the OpenCampass multi-modal leaderboard as of April 2024. Access to

some models was facilitated through APIs, including Step-1V-32K, GPT-4V, Gemini-

Pro-Vision, and Claude-3-Opus-20240229. Additional models assessed in our study

were LLaVA-v1.6-Vicuna-7B, InternLM-XComposer2-VL-7B, Qwen-VL-Chat from

2024/01/25, and DeepSeek-VL-7B-chat. Our selection strategy aimed to choose the

best model available from each top-ranked model family, such as selecting Claude-3-

Opus from the Claude series. However, we were unable to evaluate the top-ranked

version of LLaVA on OpenCampass due to resource limitations.
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7.3.2 Evaluation Metrics

To accurately gauge the performance of the models, we categorized the VQA tasks

into three groups, each assessed by tailored evaluation metrics:

Accuracy: We measure the accuracy for tasks including OCR, True/False

Statements, Number of Nodes, and Number of Arrows. This metric is straightforward

and evaluates whether the responses are correct or incorrect based on the ground

truth. Specifically for True/False Statements, we calculated average accuracy

separately for the true and false subsets, and an overall average accuracy to provide

a comprehensive view of model performance

Similarity: For description tasks, we assess the closeness of model-generated

descriptions to reference descriptions using similarity metrics. Specifically, we utilize

two metrics. First, the BERT score [130] employs pre-trained contextual embeddings

from BERT to evaluate the semantic coherence between the model’s response and

the reference sentences. It achieves this by matching words through cosine similarity.

Second, the Sentence Transformer [131] converts responses and reference sentences

into embeddings using the ‘all-MiniLM-L6-v2’ model. We then employ cosine

similarity to quantitatively determine the similarity, providing a precise measure of

how closely the generated text aligns with the target description.

Mermaid Code Generation: We developed two sets of metrics specifically

tailored for evaluating the correctness of generated Mermaid code:
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• Node-Level Evaluation: This metric checks if all nodes present in the ground

truth are included in the model’s response. Each node is only considered correct

if it exactly matches the spelling in the ground truth.

• Link-Level Evaluation: This metric assesses the generated response includes all

the links present in the ground truth. A link is deemed correct if both the

start and end nodes are accurately predicted, regardless of the arrow type. We

also permit some syntactical flexibility in how node descriptions are expressed,

allowing the use of either the node variable name or the node text.

For both levels of evaluation, we compute F1-score, precision, and recall for each

sample and subsequently average these metrics across all samples.

7.3.3 Response Parsing

Given the variability in how LVLMs generate responses, which may not always

exactly match the ground truth even when correct, we have developed specific rules

to parse and evaluate the responses:

• OCR: A prediction is deemed correct if it includes the exact phrase from the

ground truth.

• True/False Statements: The response is evaluated based on the presence

of‘true’ or‘false’ within the statement, irrespective of case. If neither token is

found, the response is marked as none.

• Number of Nodes or Arrows: We extract the first numeric token in the

response, also converting English words representing numbers into numeric

tokens. If no such token appears, the response is marked as none.
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• Mermaid Code Prediction: We focus on statements encapsulated within

triple backticks (```) in model responses. From these, we extract nodes and

links according to the Mermaid syntax rules.

7.3.4 Settings

For our evaluations, we utilized the testing subset of the FlowLearn dataset, which

included assessments of 500 scientific flowcharts and 2,000 simulated flowcharts. Due

to cost constraints and API limitations, we limited our evaluations to 100 samples per

task for Claude-3-Opus, GPT-4V, and Step-1V. All other evaluations were conducted

using an NVIDIA A100 80GB GPU.

We opted for few-shot prompting as our evaluation strategy to align the output

of the Large Vision-Language Models (LVLMs) more closely with the ground truth.

According to vlicl, few-shot prompting, particularly with 2-shot samples, generally

yields the most significant performance improvement in general vision-language VQA

tasks across various LVLMs. Additionally, using 2-shot samples provides a balanced

approach for evaluating True/False statements, as it allows an equal representation

of both true and false scenarios within the prompts. This method ensures that the

models are not biased toward one answer type over the other, facilitating a more

accurate and fair assessment of model capabilities.

For consistency, we employ the prompt format shown in Table 7.3 for evaluation.
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Prompt: [Task Description]
Support Set: [Image][Question][Answer] (2-shot)

Query: [Image][Question]
Prediction: [Answer]

Table 7.3: 2-Shot prompt format used for evaluation.

7.4 Experiment Results

In this section, we present the results from our evaluation of the Large Vision-

Language Models (LVLMs) across three distinct groups of Visual Question Answering

(VQA) tasks within the FlowLearn dataset. Each task group was designed to test

different aspects of model performance using specialized evaluation metrics. For a

focused review of performance across a limited subset of 100 samples involving all

models and all tasks, please refer to Section 1 of the Supplementary Materials. The

findings there align closely with the results discussed here. Sample model responses

to all VQA tasks are shown in Section 2 of the Supplementary Materials.
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7.4.1 Accuracy Tasks

The first group of tasks evaluates the accuracy of the LVLMs in responding

to queries that require precise, binary, or short phrase answers. These tasks

are foundational for assessing flowchart comprehension. The performance of each

model on these accuracy tasks is summarized in Table 7.4, leading to several key

observations:

1) No clear winner across all accuracy tasks. For scientific flowcharts,

Gemini-Pro-Vision showed the strongest performance on the full test set. However, on

smaller subsets, GPT-4V and Step-1V also demonstrated strong performances. For

simulated flowcharts, on the full test set, InternLM excelled in True/False statements,

Gemini-Pro in OCR tasks, and Qwen-VL in counting nodes and arrows.

2) Irrelevant model responses. Although most models generally produced

task-related responses, irrelevant responses were still observed. For True/False tasks,

Qwen-VL often scored close to zero, indicating a lack of ‘true’ or ‘false’ tokens in

its responses. Conversely, LLaVA frequently misclassified statements in simulated

flowcharts as False, resulting in high scores for the false subset and negligible scores

for the true subset.

3) Challenges in counting nodes and arrows. Counting tasks, which

require comprehensive image understanding rather than partial recognition, proved

difficult for most models, leading to lower average scores. Notably, despite its

underperformance in other areas, Qwen-VL’s results were comparatively better in

these tasks.
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Evaluation Metrics Claude GPT4V Step-1V Gemini
ProVision

InternLM
-XComposer2-VL

LLaVA
16-7B

Qwen-VL
-chat

DeepSeek
-VL-7B-chat

Scientific Flowchart
BERTScore-F1 0.84 0.83 0.84 0.83 0.83 0.81 0.79 0.86

Sent.Transformer Similarity 0.49 0.46 0.42 0.30 0.34 0.25 0.38 0.36
Simulated Flowchart

BERTScore-F1 0.90 0.90 0.89 0.92 0.82 0.77 0.80 0.87
Sent.Transformer Similarity 0.84 0.84 0.84 0.88 0.41 0.18 0.51 0.71

Table 7.5: Experiment results for Flowchart Description task. Models† are evaluated
on a subset of the evaluation set. Regardless of evaluation size, the best-performing
model is bolded. The best-performing model among those evaluated on the full set
is underlined.

7.4.2 Similarity Tasks (Description)

The second group of tasks evaluates the ability of LVLMs to generate accurate

descriptions of flowcharts. The performance of each model on the description task

is detailed in Table 7.5. For the full set of scientific flowcharts, DeepSeek achieved

the highest BERT Score, while Qwen-VL recorded the highest Sentence Transformer

Similarity score. Regardless of the evaluation size, Claude, GPT-4V, and Step-1V

also demonstrated strong performance across both metrics.

In the simulated flowchart evaluations, Gemini outperformed other models in both

evaluation metrics. Typically, scores for simulated flowcharts were higher than those

for scientific flowcharts. This difference is likely due to the structured nature of the

reference answers for simulated flowcharts, which are generated using a consistent

template, as opposed to the more varied language found in scientific flowchart

captions. Additionally, scientific flowchart captions often contain extra contextual

information not directly discernible from the flowchart itself, posing a challenge for

models tasked with generating similar descriptions. This additional information can
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Evaluation Metric Claude GPT4V Step-1V Gemini
ProVision

Gemini
ProVision (CoT)

InternLM
-XComposer2-VL

LLaVA
16-7B

Qwen-VL
-chat

DeepSeek
-VL-7B-chat

Link
Precision 0.35 0.23 0.14 0.26 0.25 0.01 0 0.02 0.05

Recall 0.26 0.22 0.15 0.25 0.24 0.02 0 0.02 0.04
F1 0.3 0.22 0.14 0.25 0.25 0.02 0 0.02 0.04

Node
Precision 0.94 0.72 0.68 0.75 0.71 0.09 0 0.06 0.29

Recall 0.95 0.73 0.68 0.75 0.71 0.16 0 0.08 0.29
F1 0.94 0.72 0.68 0.75 0.71 0.12 0 0.07 0.28

Table 7.6: Experiment results for Flowchart-to-Mermaid on Simulalted Flowcharts.
Models† are evaluated on a subset of the evaluation set. Regardless of evaluation
size, the best-performing model is bolded. The best-performing model among those
evaluated on the full set is underlined.

skew the models’ performance, making it difficult to achieve high similarity scores

when compared to the original captions.

7.4.3 Mermaid Code Task

This task assesses the comprehensive ability of LVLMs to sencapsulate their

understanding of a flowchart in a code format, summarizing aspects such as OCR,

counting nodes and arrows, and recognizing relationships between nodes. The

performance of each model on the Mermaid Code task for simulated flowcharts is

summarized in Table 7.6. In evaluations on the full dataset, Gemini achieved the

highest scores across all metrics. On a smaller evaluation subset, Claude demonstrated

superior performance, particularly excelling in node-level prediction with an F1 score

of 94%.

Challenges were notable in models like InternLM, LLaVA, Qwen-VL, and

DeepSeek, all of which recorded scores close to zero. Several issues were identified

during the evaluation of their outputs:
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• Syntax Compliance: These models did not adhere to the proper syntax of

Mermaid code, failing to correct their outputs even after 2-shot prompting

designed to teach them the correct code format.

• Node Recognition: Disregarding syntax issues, these models still struggled

to accurately predict correct nodes. The node-level evaluation, which also

indirectly assesses models’ OCR capabilities by checking for the presence of

all node text in the predictions, reflected poor performance. This aligns with

results from Table 7.4, where these models underperformed in OCR tasks that

required text detection within specified areas.

Link-level predictions, which depend on accurate node-level results, consider a

prediction correct only if the start and end nodes and the direction of the link are

identified accurately. Consequently, scores for link-level evaluations generally fall

below those for node-level evaluations. Even Claude, which scored highly at the

node level, encountered significant challenges with link prediction, achieving only a

30% F1 score for link-level accuracy. This highlights the difficulty models face in

understanding complex relationships within flowcharts.

7.4.4 Ablation Study on Chain-of-Thought

For complex tasks such as converting a flowchart into Mermaid code, a methodical

approach can be beneficial. This process typically involves several sequential steps:

initially detecting text nodes, then recognizing the links between them, and finally

compiling these information into a standardized format, such as Mermaid code. Given

the multi-step nature of this task, we hypothesized that introducing a chain-of-
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First, the flowchart includes the following nodes: {1}
Then, it contains the following edges: {2}
Finally, the Mermaid code for the flowchart is: {3}

Table 7.7: Chain-of-Thought answer template.

thought(CoT) process could potentially enhance model performance. Consequently,

we conducted an experimental ablation study on the simulated subset using Gemini-

Pro-Vision, a model that incurs no querying cost and can be evaluated on the full

test set. Notably, this model has shown the best performance on the Mermaid code

task (Section 7.4.3).

For this experiment, we modified the 2-shot example answers using a structured

template (Table 7.7) that guides the model through a step-by-step reasoning process.

In this template, {1} is replaced with all text appearing in the simulated flowchart,

{2} is derived from the flowchart description generated as per the templates described

in Section 7.2.3.1, and {3} is the corresponding Mermaid code. Additionally, we

appended the phrase ”Let’s think step by step” at the end of the original prompt (as

illustrated in Table 7.2) to further emphasize the sequential reasoning process.

Surprisingly, the CoT performance, as shown in Table 7.6, indicated a slight

decrease in compared to the original model configuration without the chain-

of-thought. This unexpected outcome suggests that while the chain-of-thought

method is intended to foster clearer and more structured reasoning, it may

introduce additional complexities or dependencies that hinder the model’s ability

to synthesize and process information efficiently. Further analysis and refinement of
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the implementation approach for the chain-of-thought may be necessary to capitalize

on its potential benefits and overcome these challenges.

7.5 Discussion

As the initial version of the FlowLearn dataset, certain limitations are inherent,

which provides opportunities for future enhancement and refinement.

7.5.1 Scientific Flowchart Subset Considerations

First, True/False statements are missing for the training set. In the scientific

flowchart dataset, not all samples include related True/False statements. Annotators

were tasked only with generating these statements for the test samples, leaving the

remaining entries without this specific type of question-answer pair. Producing these

statements is labor-intensive, with annotators spending an average of three minutes

to verify and create each pair. Future versions could expand this task to cover all

entries in the dataset.

Second, the dataset size is currently limited. With fewer than 4,000 images, the

number of scientific flowcharts in FlowLearn is relatively modest compared to other

common visual-language datasets that often contain millions of images. While the

inclusion of simulated flowcharts helps to mitigate this limitation by broadening the

scope of the training data, expanding the collection of scientific flowcharts would be

advantageous. More scientific context images would enhance training for LVLMs by

providing a richer array of real-world examples. Future versions could expand the

size.
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Third, the descriptive task is limited. The descriptive task for scientific flowcharts

is currently evaluated against figure captions. However, the descriptive text for

scientific diagrams is often scattered throughout the associated literature, as outlined

in Context243: Contextualizing Scientific Figures and Tables. A more robust

approach would involve annotators extracting and collating descriptive text from

the full text of scientific articles to provide a more comprehensive base for evaluating

LVLM-generated descriptions.

7.5.2 Simulated Flowchart Subset Considerations

The simulated flowchart subset was designed to augment the scientific subset

by offering a more granular evaluation of flowchart comprehension and providing

additional training data. Future iterations could improve upon this by incorporating

a greater diversity of diagram types, such as state diagrams and quadrant charts,

to enrich the dataset further. While FlowLearn currently focuses exclusively on

flowcharts, expanding the range of diagram types could enhance its applicability.

7.5.3 Model Selection

Our model selection was biased towards LVLMs due to their broad capabilities and

general applicability. However, many task-specific, smaller visual-language models

may also be well-suited for these tasks. Future work will explore the potential of

these models, which might offer more specialized insights or efficiencies in specific

aspects of flowchart comprehension.
3https://sdproc.org/2024/sharedtasks.html#context24
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7.6 Conclusion

In this study, we introduced and evaluated the FlowLearn dataset, a novel resource

aimed at advancing the understanding of flowcharts for visual-language models. Our

experiments spanned various tasks, including OCR, True/False assessments, counting

nodes and arrows, flowchart description, and generating Mermaid code, across two

distinct subsets: scientific and simulated flowcharts.

Our findings demonstrate that while LVLMs are capable of impressive performance

on certain tasks, challenges remain. Notably, the models excelled at OCR and

True/False statements in certain contexts but struggled with the more complex task

of accurately generating Mermaid code from flowcharts. This underscores a broader

issue: LVLMs often struggle to fully comprehend the intricate relationships between

visual components and to synthesize this information into structured code formats

effectively.

Given the rapid advancements in the fields of LLMs and LVLMs, the FlowLearn

dataset is timely and provides valuable insights into a relatively underexplored area.

It not only serves as a critical tool for benchmarking and refining these models but

also helps illuminate the specific difficulties they encounter with visual reasoning in

a structured context. By pushing the boundaries of what LVLMs can understand

and achieve, we can bridge the gap between human and machine comprehension of

visual and language tasks, paving the way for more intelligent and capable automated

systems.
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APPENDIX A

PROMPT

Table A.1 shows the prompt being used for Climate Science Entity and

Relationship Extraction from the climate science literature. Table A.2 shows the

prompt template for refining the node definitions.
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-Goal-

Given a text document with a preliminary list of potential entities, verify, and identify all

entities of the specified types within the text. Note that the initial list may contain missing

or incorrect entities. Additionally, determine and label the relationships among the verified

entities.

-Entity Types-

A project refers to the scientific program, field campaign, or project from which the data

were collected.

A location is a place on Earth, a location within Earth, a vertical location, or a location

outside of the Earth.

A model is a sophisticated computer simulation that integrate physical, chemical, biological,

and dynamical processes to represent and predict Earth’s climate system.

An experiment is a structured simulation designed to test specific hypotheses, investigate

climate processes, or assess the impact of various forcings on the climate system.

A platform refers to a system, theory, or phenomenon that accounts for its known or

inferred properties and may be used for further study of its characteristics.

A instrument is a device used to measure, observe, or calculate.

A provider is an organization, an academic institution or a commercial company.

A variable is a quantity or a characteristic that can be measured or observed in climate

experiments.

A weather event is a meteorological occurrence that impacts Earth’s atmosphere and

surface over short timescales.
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A natural hazard is a phenomenon with the potential to cause significant harm to life,

property, and the environment.

A teleconnection is a large-scale pattern of climate variability that links weather and

climate phenomena across vast distances.

An ocean circulation is the large-scale movement of water masses in Earth’s oceans, driven

by wind, density differences, and the Coriolis effect, which regulates Earth’s climate.

-Relationship Types and Definitions-

ComparedTo: The source entity is compared to the target entity. Outputs: A climate

model, experiment, or project (source entity) outputs data (target entity).

RunBy: Experiments or scenarios (source entity) are run by a climate model (target

entity).

ProvidedBy: A dataset, instrument, or model (source entity) is created or managed by an

organization (target entity).

ValidatedBy: The accuracy or reliability of model simulations (source entity) is confirmed

by datasets or analyses (target entity).

UsedIn: An entity, such as a model, simulation tool, experiment, or instrument (source

entity), is utilized within a project (target entity).

MeasuredAt: A variable or parameter (source entity) is quantified or recorded at a

geographic location (target entity).

MountedOn: An instrument or measurement device (source entity) is physically attached

or installed on a platform (target entity).

TargetsLocation: An experiment, project, model, weather event, natural hazard,

teleconnection, or ocean circulation (source entity) is designed to study, simulate, or focus

on a specific geographic location (target entity).
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-Steps-

1. Identify all entities. For each identified entity, extract the following information:

- entity name: Name of the entity

- entity type: One of the following types: [project, location, model, experiment, platform,

instrument, provider, variable]

Format each entity as (”entity”¡—¿¡entity name¿¡—¿¡entity type¿¡—¿¡entity description¿)

2. From the entities identified from step 1, identify all pairs of (source entity, target entity)

that are *clearly related* to each other.

For each pair of related entities, extract the following information:

- source entity: name of the source entity

- target entity: name of the target entity

- relationship type: One of the following relationship types: ComparedTo, Outputs, RunBy,

ProvidedBy, ValidatedBy, UsedIn, MeasuredAt, MountedOn, TargetsLocation

Format each relationship as (relationship | <source entity> | <target entity>

| <relationship type>)

3. Return output in English as a single list of all the entities and relationships identified in

steps 1 and 2. Use ## as the list delimiter. Do not output any code or steps for solving

the question.

4. When finished, output < |COMPLETE| >

######################

-Examples-

{formatted examples}
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######################

-Real Data-

######################

Text: {input text}

Potential Entities: {potential entities}

######################

Output:
Table A.1: Prompt Template for Climate Science Entity and Relationship Extraction

Given the following metadata about an entity in a climate science ontology, which may

include the entity’s name, ontology path, and a definition (which may be missing), please

develop an edited definition suitable for a named entity recognition (NER) task in climate

science literature. The definition should be concise, clear, and limited to 150 tokens. Ensure

it is precise and emphasizes the entity’s unique aspects, avoiding overly general descriptions

that could apply to multiple entities. Do not explain; only provide the edited definition.

Metadata: {}

Edited Definition:

Table A.2: Prompt Template for Refining Definitions

156


	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENT
	List of Tables
	List of Figures
	Introduction
	REVIEW OF LITERATURE
	Scientific Knowledge Infrastructure
	Publication Management
	Scientific Information Extraction Datasets
	Limitations of Current Resources

	Textual Information Extraction Models
	Non-LLM Models
	LLM-Based Models
	Model Limitations in Domain-Specific Information Extraction

	Visual Understanding Models
	Image Captioning
	Visual Question Answering (VQA)
	Large Vision-Language Models (LVLMs)
	Image Decomposition


	DMDD: A Large-Scale Dataset for Dataset Mentions Detection
	Data Collection
	Annotation Procedure
	Regular Expression Rules
	Data Preprocessing

	Evaluation Set with Human Annotations
	Comparison with Related Corpora
	Corpora Size
	Diversity of Dataset Mentions
	Entity Linking

	Experimental Setup
	Mention Detection
	Sentence-Level
	Beyond Sentence-Level

	Entity Linking
	Train-Test Split
	Experimental Results
	Mention Detection
	Entity Linking

	Limitations and Future Work
	Conclusion

	SciDMT: A Large-Scale Corpus for Detecting Scientific Mentions
	Introduction
	SciDMT Corpus
	SciDMT's Main Corpus
	Evaluation Sets with Human Annotations
	Comparison with Related Corpora

	Experimental Setup
	Baseline Models
	Train-Valid Split

	Experimental Results
	Baselines Evaluation
	Error Analysis
	Fine-Tuning with Human Labels
	Impact of Training Scale on Performance

	Limitations
	Conclusion

	Taxonomy-Driven Knowledge Graph Construction for Domain-Specific Scientific Application
	Introduction
	Method Overview
	Stage 1: Taxonomy Integration
	Stage 2: Information Extraction via LLM-RAG Synergy
	LLM Prompt Construction
	Entity & Relationship Extraction
	Output Validation (PostRAG)

	Stage 3: Dynamic KG Assembly & Maintenance
	Conclusion

	ClimateIE: A Dataset for Climate Science Information Extraction
	Introduction
	GCMD+ Taxonomy Development
	Multi-Source Taxonomy Aggregation
	Cross-Domain Linking via Wikidata
	Specialization Over Generality

	Corpus Construction
	Taxonomy-Constrained LLM Annotation
	Expert-Driven Annotation Protocol
	Three-stage annotation process
	Annotation Statistics
	Challenges and Lessons Learned

	Experiments
	Evaluation Protocol
	State-of-the-Art Model Comparison
	Ablation experiments

	Results and Discussion
	Ablation Studies
	Information Extraction Performance

	Conclusion
	Limitations

	FlowLearn: Assessing Large Vision-Language Model Performance on Flowchart Comprehension
	Introduction
	FlowLearn Dataset
	Scientific Flowchart Dataset
	Simulated Flowcharts
	Visual Question Answering

	Experiment Setups
	Models
	Evaluation Metrics
	Response Parsing
	Settings

	Experiment Results
	Accuracy Tasks
	Similarity Tasks (Description)
	Mermaid Code Task
	Ablation Study on Chain-of-Thought

	Discussion
	Scientific Flowchart Subset Considerations
	Simulated Flowchart Subset Considerations
	Model Selection

	Conclusion

	BIBLIOGRAPHY
	PROMPT

