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Abstract. We present a novel method to obtain high quality skeletons of
binary shapes. The obtained skeletons are connected and one pixel thick.
They do not require any pruning or any other post-processing. The compu-
tation is composed of two major parts. First, a small set of salient contour
points is computed. We use Discrete Curve Evolution, but any other ro-
bust method could be used. Second, particle filters are used to obtain the
skeleton. The main idea is that the particles walk along the skeletal paths
between pairs of the salient points. We provide experimental results that
clearly demonstrate that the proposed method significantly outperforms
other well-known methods for skeleton computation.
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1 Introduction

The skeleton is important for object representation and recognition in different
areas, such as image retrieval and computer graphics, character recognition,
image processing, and the analysis of biomedical images [1]. The skeleton is
an abstraction of objects that at the same time contains both shape features
and topological structures of the original object. Therefore, many researchers
have worked on matching skeleton structures represented by graphs or trees
[2,3,4,5,6]. However, as the skeleton is sensitive to the noise and deformation of
the boundary, which may seriously disturb the topology of the skeleton graph,
these methods cannot work on complex shapes or shapes with obvious noise.

We list now properties of the ideal skeleton mentioned in [7].

(1) it should preserve the topology of the original object
(2) it should be stable under deformations
(3) it should be invariant under Euclidean transformations such as rotations

and translations
(4) the position of the skeleton should be accurate
(5) it should be composed of 1D arcs (i.e., one-pixel wide in digital images)
(6) it should represent significant visual parts of objects
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Fig. 1. (a) skeleton computed by the method in [11], (b) by the proposed method

Properties (4) and (5) mean that the skeleton should contain the centers of
maximal disks, and nothing more than the centers of maximal disks. Property
(6) means that there should be skeleton branches in every significant object part
and that there should be no spurious branches that do not correspond to any
object parts (which are usually due to noise).

Since most of the existing skeleton computation methods are not able to pro-
duce skeletons that satisfy property 6, skeleton pruning is applied. Its goal is to
remove spurious branches. Clearly, a pruned skeleton should still have properties
(1)-(6), which can be will useful for shape matching and recognition [6,8].

Ogniewicz and Kübler [9] presented a few significant measures for pruning com-
plex Voronoi skeletons without disconnecting the skeletons, but it may lead to
topology violation. The method in [10] has difficulty in distinguishing noise from
low frequency shape information on boundaries. The skeleton generated by [11]
cannot guarantee the property of the connectivity, as shown in the experimental
results in Fig. 1(a). The skeleton computed by our method is shown in Fig. 1(b).

The method introduced by Bai et al. [7,12] can obtain excellent skeletons
which contain most of the properties of ideal skeletons, but it cannot guarantee
that the skeleton is one-pixel wide and it need the postprocessing. Compared to
it, our method produces one-pixel thick skeletons without skeleton pruning.

Particle filters estimate the posterior probability density over the state space
of a dynamic system. The key idea of this technique is to represent probability
densities by sets of samples. By sampling in proportion to likelihood, particle
filters focus the computational resources on regions with high likelihood, where
good approximations are most important. Over the last few years, particle filters
have been applied with great success to a variety of state estimation problems
including visual tracking, speech recognition, mobile robot localization, robot
map building, people tracking, and fault detection. Moreover, Adluru et al have
used particle filters in contour grouping [13]. The proposed method is the first
one that utilizes particle filters in computing skeletons.

The proposed method first utilizes the Discrete Curve Evolution (DCE) [14]
to simplify the contour, and to obtain a small set of salient points as vertices of
the simplified polygon, but other approaches which produce stable salient points
could also be used. The basic idea of the DCE is simple. In every evolutional
step of DCE, a pair of consecutive line segments s1, s2 is replaced by a single
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Fig. 2. Hierarchical skeleton of elephant obtained by pruning the input skeleton (left)
with respect to contour segments obtained by the Discrete Curve Evolution (DCE).
The outer (red) polylines show the corresponding DCE simplified contours.

line segment joining the endpoints of s1

⋃
s2. The order of the substitution is

determined by the relevance measure K given by:

K(S1, S2) =
β(S1, S2)l(S1)l(S2)

l(S1)l(S2)
(1)

where line segments s1, s2 are the polygon sides incident to a vertex v, β(s1, s2) is
the turn angle at the common vertex of segments s1, s2, l is the length function
normalized by the total length of a polygonal curve C. The higher value of
K(s1, s2), the larger is the contribution of the arc s1

⋃
s2 to the shape. During

the evolution, we will first remove the arcs with the smallest contribution. In
Fig. 2, we show some results to illustrate that each convex vertex of the DCE
simplified polygon is guaranteed to be a skeleton endpoint.

We benefit from a geometric relation between the skeletal path and the con-
tour, which is a key observation that motivates our approach: the endpoints of
significant skeleton branches coincide with convex salient contour points. We
illustrate the main ideas of the proposed method in Fig. 3. Let a and b be two
salient contour points. They divide the contour into two parts C = C1 ∪ C2

marked with red and blue colors, respectively. The skeleton path p(a, b) from a
to b is composed of centers of maximal disks that are tangent both to C1 and to
C2. We use a particle filter to compute the path p(a, b). The condition that the
maximal disks are tangent to two contour parts makes our skeleton insensitive
to noise and contour deformations. The computation with particle filters assures
that the skeleton paths are connected, vary smoothly, and are one pixel thick.

The final skeleton consists of the skeleton paths between all pairs of salient
points. For a given set of salient contour points, we obtain an excellent skeleton
without any pruning process. We use DCE to generate salient points, since it is
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Fig. 3. In green a single skeleton path p(a, b) from a to b computed by our algorithm.
The salient points a and b divide the contour into two parts C = C1 ∪C2 marked with
red and blue colors, respectively. p(a, b) is composed of centers of maximal disks that
are tangent both to C1 and to C2.

proved in Bai et al. [7], each DCE computed convex salient point is guaranteed
to be a skeleton endpoint.

As in our case the target function is nonlinear, the Dynamic Programming
(DP), which can only solve the linear function, will carry contour noise to the
skeleton. Compared to DP, the particle filter can get rid of the noise and local
solutions. It can allow branching and carrying multiple solutions. Therefore, We
use a particle filter to find the skeleton path between any pair of the salient points
instead of DP. Particle filters are also known as Sequential Monte-Carlo (SMC)
methods, which have the ability to carry multiple hypotheses, and are widely used
to track multiple targets with cluttered background in image sequences. The first
application of particle filters in Computer Vision is in the tracking of object con-
tours (Isard and Blake [15,16]). Tracking of tracking of motion boundaries is used
for motion estimation in [17]. The first application of particle filters to static im-
ages is presented in Pérez et al. [18], where particle filters are applied to perform
inference over a spatial chain of edge pixels rather than over a temporal chain.
An extension of SMC that performs inferences on arbitrarily structured graphical
models has been proposed in [19,20] and applied to an edge linking task in [19].

The rest of the paper is organized as follows: our approach to computing skele-
ton paths is introduced in Section 2. The construction of the whole skeleton is
presented in Section 3. The experimental results are shown in Section 4. Finally,
the conclusion is presented in Section 5.

2 Computing Skeleton Paths with a Particle Filter

Let a and b be two convex, salient contour points. As stated in the introduction,
we use DCE polygon simplification to compute the salient points, since all convex
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vertices of the DCE simplified polygon are guaranteed to be skeleton endpoints.
Our goal is to obtain a skeleton path from a to b. We use xj

1:t to denote a sequence
of skeleton points of particle j at time step t, i.e., xj

1:t = xj
1, ..., x

j
t . Then xj

t is
the current endpoint of the particle j at the step t. Let N(xj

t ) represent the set
of 8-nearest neighbors of all of skeleton points of particle j.

We initialize with n particles, each equal to a, and the initial weights of the
particles are 1/n. At each iteration, we consider eight possible continuations of
particle xj

1:t−1 as the 8-nearest neighbors of xj
t−1. (Here we benefit from the fact

that a digital image is a discrete structure.) We obtain an eight extensions of
particle xk

1:t = {xj
1:t−1, x

k
t } for each of the eight neighbors xk

t ∈ N(xj
t−1). The

index k of particle xk
1:t may be different from j, since particle j has 8 extensions

corresponding to the 8 neighbors N(xj
t−1) of xj

t−1.
Now we derive a particle filter algorithm that is particularly suitable for com-

putation in digital images. Our goal is to estimate the posterior p(x1:t|z1:t)
over all potential skeleton paths in a given shape. Our observations z1:t =
{z1, z2, ..., zt} represent distances to the shape contour (a detailed definition fol-
lows below). Each particle represents a particular skeleton path. We will follow
the framework of a particle filter algorithm called sampling importance resam-
pling (SIR) filter [21], which can be summarized as follows:

1) Prediction by Sampling: The next generation of particles {xk
1:t}k is ob-

tained from the generation {xj
1:t}j−1 by sampling from a proposal distribution

π (defined below).
We use prior boosting in prediction by sampling (Gordon et al., [22]). It allows

us to capture multi-modal likelihood regions in the posterior. In prior boosting
we sample more than one follower for each particle so that different followers
can capture different modes of the proposal. As described above, the fact that
we work in digital images naturally suggests the eight followers be the eight
neighbors of the latest pixel in each particle sequence. Thus, we increase the
number of particles from N to 8N , which is then reduced back to N in the
resampling step (3).

2) Importance Weighting: An importance weight is assigned to each particle
according to the importance sampling principle wk

t = p(xk
1:t|z1:t)

π(xk
1:t|z1:t)

. The weights
account for the fact that the proposal distribution is usually not equal to the
target distribution p(x1:t|z1:t).

3) Resampling: Particles are drawn with replacement proportional to their
importance weights. The weight of each of the eight new particles is defined as:

wk
t =

p(xk
1:t|z1:t)

π(xk
1:t|z1:t)

=
ηp(zt|xk

1:t, z1:t−1)p(xk
t |xj

t−1)

π(xt|xj
1:t−1, z1:t)

p(xj
1:t−1|z1:t−1)

π(xj
1:t−1|z1:t−1)

(2)

∝ p(zt|xk
t )p(xk

t |xj
t−1)

π(xt|xj
1:t−1, z1:t)

wj
t−1, (3)

where wj
t−1 is the weight of particle xj

t−1 and η = 1/p(zt|z1:t−1) is a normaliza-
tion factor resulting from Bayes rule that is equal for all particles. Now we make
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an important assumption that the proposal distribution π(xt|xj
1:t−1, z1:t) is uni-

form. This is justified in our context by the fact that each point is a pixel that
has eight neighbors, and continuation to each of the eight neighbors is equally
probable. Therefore, we obtain

wk
t ∝ p(zt|xk

t )p(xk
t |xj

t−1)w
j
t−1 (4)

The conditional probabilities in equation (3) are defined below based on digital
topology of paths in digital images p(xk

t |xj
t−1) and on geometric properties of

skeletons p(zt|xk
t ).

The conditional probability of the new particle xk
1:t generated by extending

the jth particle is given by:

p(xk
t |xj

1:t−1) =

{
1, if xk

t ∈ N(xj
t−1) − N(xj

1:t−1)
0.01, else

(5)

The main contribution of this probability is to avoid visiting the same pixels
again, since we do not want the particle path to go backward, which would create
a loop in the skeleton path or perturb it. Hence we assign very low probability
to the neighbors of xj

t−1 that already belong to the sequence of particle xj
1:t−1.

In order to calculate p(zt|xk
t ) , we recall that the contour is divided into two

parts C1 and C2. Let d1, d2 represent the minimum distance from the point xk
t

to each of the parts., which for a correct skeleton paths both should be equal
to the radius of the maximal disk centered at xk

t . In particular, we should have
d1 = d2. Thus, our observation zt is composed of two distances d1, d2 from
the contour parts C1 and C2. Fig. 4 illustrates our computation of p(zt|xk

t ) .
Consider two different points P1 and P2 as candidates for the skeleton point xk

t .
It is obvious that P1 is more likely to be the center of a maximal disk with respect
to the contour parts C1 and C2 than P2, since D′ = |d′1 − d′2| is smaller than
D = |d1 − d2|.Therefore, we assume that the observation density is a Gaussian
function of the difference d1 − d2:

p(zt|xk
t ) =

1√
2πσ

e
−(d1−d2)2

2σ2 (6)

Fig. 4. Point P1 is more likely to be a skeleton point than point P2
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The outline of the derived particle filter algorithm is as follows:
From the ”old” sample set {(xj

t−1, w
j
t−1) : j = 1, ..., N} at the time step t− 1,

construct a new sample set {(xj
t , w

j
t ) : j = 1, ..., N} for step t.

For j = 1 to N iterate steps (1)-(3):

(1)Prediction by Sampling
For each particle j, we extend it to eight particles by xk

1:t = {xj
1:t−1, x

k
t } ,

where xk
t ∈ N(xj

t−1).

2) Importance Weighting
Compute the weights wk

t = p(zt|xk
t )p(xk

t |xj
t−1)w

j
t−1 and normalize the weights

so that
∑

k wk
t = 1.

3) Subsampling
Draw N particles from the current set of 8N particles with probabilities pro-

portional to their weights.
Finally, the particle with the highest weights is selected, which represents a

skeleton path. There are two important differences in comparison to the standard
sampling importance resampling (SIR) filter. First, our prediction by sampling
considers all possible extensions to the eight neighbors , this is why our proposal
distribution is uniform. Second, since our prediction by sampling increases the
number of particles to 8N , we replaced resampling with subsampling in order
to reduce the number of particles to N . We modified the residual resampling to
obtain the residual subsampling.

Fig. 3 shows an example of one skeleton path generated by the above algo-
rithm. The blue and red parts represent the two different parts C1, C2 of the
contour separately, which are divided by the two vertices. The green line is the
skeleton path generated by our algorithm. The skeleton path is in the middle
of the two contour parts, which is the main property of an excellent skeleton.
The skeleton path does not have any redundant branches and it is insensitive
to boundary noise. These properties follow from the fact that the observation
density p(zt|xk

t ) is computed with respect to the contour partitions C1 and C2 in-
duced by two salient points. The conditional probability p(xk

t |xj
t−1) is responsible

for computing smooth paths that are one pixel thick. The statistical framework
of particle filter assures that the local noise on pixel level does not distort the
skeleton paths.

3 Combining Skeleton Paths to Form a Complete
Skeleton

The skeleton is the combination of skeleton paths between the end nodes. If we
have generated one path of the skeleton, the other paths of the skeleton will
be generated in the similar way. The only difference is that when the generat-
ing skeleton path meets the generated skeleton path, it should stop. This can
preserve the property of the one-pixel wide and keep the connectivity of the
skeleton. For example, the skeleton of the heart in Fig. 5 (a) is the skeleton of
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Fig. 5. The skeleton in (a) is constructed by combining the paths in (b), (c) together

the heart. The skeleton path of Fig. 5 (b) is first generated. Then, instead of
combining the whole skeleton path in Fig. 5 (c), the propose approach will only
take part of the skeleton path of it, which is surrounded by the red rectangle.

4 Experiments

In this section, we evaluate the proposed method in two parts: 1) we show that
the skeleton is stable to noise and deformation and 2) we compare it to other
methods. From all of the results listed below, we can state that the proposed
approach can generate excellent skeletons which satisfy the six properties listed
in Introduction. Besides, according to the comparison experiments, the proposed
method can obtain much better skeletons than many other approaches.

4.1 Test on Noisy Images

The results in Fig. 6 show that the proposed method is insensitive to even sub-
stantial noise in contours. For each shape, there is one image without noise and
one image with substantial noise. The similarity of the obtained skeletons illus-
trates the stability of the proposed method. In particular, there are no branches
generated by the boundary noise, and the skeletons still preserve the topologi-
cal and geometric structure of the objects. Other methods cannot obtain stable
skeletons on noisy images. Most of them will have extra branches or distorted
skeletons. The extraordinary stability of our skeletons in the presence of large
inner-class shape variations is demonstrated in Fig. 7.

Fig. 6. For each shape, there is one image without noise and one image with substantial
noise. The obtained skeletons are very similar.
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Fig. 7. The results on some shapes from the MPEG-7 database [14] illustrate extraor-
dinary stability of our skeletons in the presence of large shape variances. The red lines
illustrate the DCE polygons.

Although the objects differ significantly from each other, the obtained skele-
tons have the same global structure. Moreover, the thin tails of the camels re-
mained in the skeleton, which cannot be achieved by most of the other pruning
methods, since they may shorten or disconnect the skeleton. The final DCE
simplified polygons are also shown overlaid on the shapes with red segments.

4.2 Comparing to to Other Methods

We compare our method to the fixed topology method in [23], which also starts
with a small set of salient points. However, the fixed topology skeleton requires
also that the skeleton junction points are estimated. We do not need to estimate
the junction points. Two example results of [23] are shown in Fig. 8(a),(c). As
can be clearly seen, the obtained skeleton is not positioned accurately in that
many skeleton points are not centers of maximal disks. In contrast, as shown
in Fig. 8(b),(d) all of our skeleton points are the centers of maximal disks,
and therefore they are exactly symmetrical to the shape boundary. In addition,
observe the presence of phantom horizontal skeleton branches in Fig. 8(c). They
do not reflect any real structural information. Due to the stability of DCE, the
proposed method does not introduce any phantom branches.

Fig. 9 shows a comparison of our approach (b) with the method in [9] (a),
which has inaccurate, half-shortened branches that are not related to any obvious
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Fig. 8. Comparison between the fixed topology skeleton in [23] in (a), (c) and our
skeleton in (b), (d). The red lines illustrate the DCE polygons.

Fig. 9. Comparison between pruning result in [7] in (a) and our results in (b)

boundary features. Other experimental results of the proposed method prove
that it is able to completely eliminate all the unimportant branches and still
preserve the main structure. Our method does not suffer from the shortening of

Fig. 10. Comparison between pruning result in [7] in (a) and our results in (b)
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main skeleton branches and it preserves the topology of the skeleton. Moreover,
the obtained skeletons seem to be in accordance with human perception, as it
satisfies the six properties of the skeleton.

The method introduced by Bai et al. [7] can obtain excellent skeletons which
contain most of the properties of ideal skeletons, but it cannot guarantee that
the skeleton is one-pixel wide, which is illustrated in Fig. 10(a). As shown in
Fig. 10(b), our method produces one-pixel wide skeletons.

5 Conclusion

In this paper, we establish a novel framework for skeleton computation that
combines the geometric method of Discrete Curve Evolution with the statistical
method of particle filters. The obtained skeletons do not have redundant skeleton
branches and retain all the necessary visual branches. The experimental results
demonstrate high stability of the obtained skeletons even for objects with ex-
tremely noisy contours, which is the key property required to measure the shape
similarity of objects using their skeletons. Moreover, this method can guarantee
the skeleton is one-pixel wide. In future, we will extend the proposed approach
to generate the skeleton for the shape with holes and 3D shapes, as the particle
filter can deal with the condition that the path between two endpoints are not
unique.
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