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Abstract. A Bayesian approach to intensity-based object localisation is presented that employs a learned proba-
bilistic model of image filter-bank output, applied via Monte Carlo methods, to escape the inefficiency of exhaustive
search.

An adequate probabilistic account of image data requires intensities both in the foreground (i.e. over the object),
and in the background, to be modelled. Some previous approaches to object localisation by Monte Carlo methods have
used models which, we claim, do not fully address the issue of the statistical independence of image intensities. It is
addressed here by applying to each image a bank of filters whose outputs are approximately statistically independent.
Distributions of the responses of individual filters, over foreground and background, are learned from training data.
These distributions are then used to define a joint distribution for the output of the filter bank, conditioned on object
configuration, and this serves as an observation likelihood for use in probabilistic inference about localisation.

The effectiveness of probabilistic object localisation in image clutter, using Bayesian Localisation, is illustrated.
Because it is a Monte Carlo method, it produces not simply a single estimate of object configuration, but an
entire sample from the posterior distribution for the configuration. This makes sequential inference of configuration
possible. Two examples are illustrated here: coarse to fine scale inference, and propagation of configuration estimates
over time, in image sequences.
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1. Introduction

The paper develops a Bayesian approach to localising
objects in images. Approximate probabilistic inference
of object location is done using a learned likelihood for
the output of a bank of image filters. The new approach
is termed Bayesian Localisation.1

Following the framework of “pattern theory”
(Grenander, 1981; Mumford, 1996), an image is an in-
tensity function I (x), x ∈ D ⊂ R2, taken to contain
a template T (x) that has undergone certain distortions.
Much of the distortion is accounted for as a warp of
the template T (x) into an intermediate image Ĩ by an

*Present address: Microsoft Research, 1 Guildhall Street,
Cambridge, UK.

(inverse) warp mapping gX :

T (x) = Ĩ (gX (x)), x ∈ S, (1)

where S is the domain of T , and gX is parameterised by
X ∈ X over some configuration space X (for instance
planar affine warps). The remainder of the distortion
in the process of image formation, is taken to have the
form of a random process applied pointwise to intensity
values in Ĩ , to produce the final image I :

I (x) = f ( Ĩ (x), x, w(x)), (2)

where w is a noise process and f is a function that may
be nonlinear. Note that (2) may include a component of
sensor noise but in practice, this is emphatically not its
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principal role. Camera sensor noise is negligible com-
pared with the principal source of variability that needs
to be modelled probabilistically: illumination changes,
and the residual variability between objects of a given
class that is unmodelled otherwise.

Analysis “by synthesis” then consists of the
Bayesian construction of a posterior distribution for X .
That is, given a prior distribution2 p0(X) for the con-
figuration X , and an observation likelihood L(X) =
p(Z | X) where Z ≡ Z(I ) is some finite-dimensional
representation of the image I , the posterior density for
X is given by

p(X | Z) ∝ p0(X)p(Z | X). (3)

In the straightforward case of normal distributions, (3)
can be computed in closed form, and this can be effec-
tive in the fusion of visual data (Matthies et al., 1989;
Szeliski, 1990). In the non-Gaussian cases commonly
arising, for example in image clutter or with multiple
models, sampling methods are effective (Geman and
Geman, 1984; Gelfand and Smith, 1990; Grenander
et al., 1991), and that is what we use here.

There have been a number of powerful demonstra-
tions in the pattern theory genre, especially in the
field of face analysis (Cootes et al., 1995; Beymer and
Poggio, 1995; Vetter and Poggio, 1996) and in biologi-
cal images (Grenander and Miller, 1994; Storvik, 1994;
Ripley, 1992). A great attraction of pattern theoretic al-
gorithms is that they can potentially generate not just

Table 1. Precursors to Bayesian localisation.

IB FL MS PD BM SI Comments

Burt (1983) × × multi-scale pyramid

Witkin et al. (1987); Scharstein × × scale-space matching
and Szeliski (1998)

Grenander et al. (1991); × × × random diffeomorphisms
Ripley (1992)

Viola and Wells (1993) × × mutual information

Cootes et al. (1995) × × × multi-scale active contours

Black and Yacoob (1995); × × affine flow/warp
Bascle and Deriche (1995);
Hager and Toyama (1996)

Isard and Blake (1996) × × random, time-varying active contours

Olshausen and Field (1996); × × × independent components (ICA)
Bell and Sejnowski (1997)

Geman and Jedynak (1996) × × × response learning

a single estimate of object configuration, but an en-
tire probability distribution. This facilitates sequential
inference, across spatial scales, across time for image
sequence analysis, and even across sensory modalities.

The previous work most closely related to Bayesian
localisation is as follows. First Grenander et al. (1991)
use randomly generated diffeomorphisms as a mech-
anism for Bayesian inference of contour shape. Its
drawback is that it treats the intensities of individ-
ual, neighbouring pixels as independent which leads to
unrealistic observation likelihood models. Second, the
algorithm of Viola and Wells (1995) for registration
by maximisation of mutual information contains the
key elements of probabilistic modelling and learning
of foreground, but does not take account of back-
ground statistics. It computes a single estimate of
object pose, rather than sampling the entire distri-
bution of the posterior. Thirdly, Geman and Jedynak
(1996) use probabilistic foreground/background learn-
ing for road tracking but compute only a single esti-
mate of pose rather than sampling from the posterior;
furthermore, the statistical independence of observa-
tions, which is a necessary assumption of the method,
is not investigated. Attributes of these and other impor-
tant prior work are summarised in Table 1, in terms of
elements of Bayesian Localisation as follows.

IB Intensity Based observations, not just edges.
FL Foreground Learning in terms of probability dis-

tributions estimated from one or more training
examples.
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MS Multiple Scale search is well known to be a sound
basis for efficient image-search.

PD Posterior Distributions are generated, rather than
just single estimates, facilitating sequential rea-
soning for image sequence analysis, and poten-
tially across sensory modalities.

BM Background Modelling: in a valid Bayesian anal-
ysis, image observations Z must be regarded as
fixed, not as a function Z(X) of a hypothesis X .
For example, a sum-squared difference measure
violates this principle by considering only the
portion of an image directly under a given tem-
plate T (x). In contrast, in a Bayesian approach,
evidence about where the object is not must be
taken into account, and that requires a probabilis-
tic model of the image background.

SI Statistical Independence of observations must be
understood if constructed observation likelihoods
are to be valid.

2. Bayesian Framework

2.1. Image Observations

Image observations can be based on edges or on in-
tensities (and a combination of the two can be particu-
larly effective (Bascle and Deriche, 1995)). Edges are
attractive because of their superior invariance to vari-
ations in illumination and other perturbations, but true
Bayesian inference (3) with edges is not feasible. This
is because, given a set Z of all edges in an image, there
is no known construction for the observation density
p(Z | X) that is probabilistically consistent. One fea-
sible approach allows Z to be a function of X , so that
Z(X) consists solely of those edges found close to the
outline of the object, in configuration X . Then a likeli-
hood L(X) = p(Z(X) | X) can be constructed (Isard
and Blake, 1998), but cannot be used for true Bayesian
inference as that demands that the observations Z must
be fixed, not a function of X . The alternative approach
followed here avoids the problem encountered with
edges by using a fixed set of intensities covering the
entire image. turns out that Bayesian localisation sub-
sumes the need for explicit edge features, because its
probabilistic model of intensity naturally captures fore-
ground/background transitions.

2.2. Sum-Squared Difference and Cross-Correlation

One approach to interpreting image intensities proba-
bilistically is to make the very special assumption that

image distortions are due to additive white noise. Then,
a likelihood

L(X) = exp −�(X) (4)

can be defined (Szeliski, 1990) in terms of a sum-
squared difference (SSD) function �(X):

�(X) =
∫

x∈S
w(x)(T (x) − I (gX (x)))2, (5)

where the weighting w(x) depends on the noise vari-
ance. It is worth noting that a likelihood such as (4)
is generally multi-modal, having many maxima. Inge-
nious algorithms (Witkin et al., 1987; Scharstein and
Szeliski, 1998) have been needed to find maximum
likelihood estimates. Multi-modality is a feature of im-
age likelihood functions generally, whether based on
edges or intensities, and is the reason for needing ran-
dom sampling methods later in this paper.

The likelihood (4) has been used successfully in sur-
face reconstruction (Szeliski, 1990) but is not appropri-
ate for image intensity modelling, for two reasons. The
first is that the assumption of additive, white noise is not
plausible. It implies statistical independence of adja-
cent pixels. In practice however, the sources of intensity
variation are illumination changes and intrinsic vari-
ability between objects of one class. Such variations
are spatially correlated (Belhumeur and Kriegman,
1998). If a fine-scale independence assumption is made
nonetheless, the resulting likelihood function L(X)

can have grossly exaggerated variations (Ripley, 1992),
even as great as several hundred orders of magnitude,
for minor perturbations of X .

The second reason is that the SSD-based likelihood
(5) L(X) depends on the image intensities over a do-
main gX (S) that varies with X . This means, effectively,
that the observation likelihood is L(X) = p(Z(X) | X),
depending on observations Z(X) which are not fixed.
This was precisely the problem with edge-based ob-
servations which we set out to put right! The problem
can be rectified by insisting that observations Z are
computed as some fixed function of an image I (x),
x ∈ D, where D is a fixed domain, irrespective of X .
The domain D will then be the union of a foreground re-
gion gX (S) ∩ D, and a background region D\{gX (S)}.
Any consistently constructed likelihood p(Z | X) must
therefore depend both on the foreground and on the
statistics of the background. The intuition behind this
is that the image contains statistical information both
about where the object is and where it is not. A complete
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Figure 1. The world through a filter bank. A bank Z = (z1, . . . , zK ) is illustrated here with circular supports S1, . . . , SK arranged on a regular
grid, so that the world is viewed, in effect, through a sieve. Supports are labelled foreground (inside the black hypothesised outline), background
or mixed, according to the hypothesised X—left: approximately correct (X = X0); right: X out in the clutter.

Bayesian theory must take account of both sources of
information.

2.3. Filter Bank

If assuming independence of adjacent pixels is unrea-
sonable, then some alternative representation of the im-
age I is needed whose elements are either mutually
independent or have known statistical dependence. We
have opted to seek a set Z = (z1, . . . , zK ) of observa-
tions, in the form of a bank

zk =
∫

Sk

Wk(x)I (x) dx (6)

of filters Wk , with supports Sk arranged on a reg-
ular grid, as in Fig. 1 The task now is to find a
filter bank {Wk} whose outputs (conditioned on ob-
ject configuration X ) are mutually independent, at
least approximately, so that a joint conditional den-
sity for the bank of outputs—the image observa-
tion likelihood function—can be constructed as a
product:

p(Z | X) =
K∏

k=1

p(zk | X). (7)

Single filter likelihoods p(zk | X) are learned directly
from training images (Geman and Jedynak, 1996) and
details are given later. For simplicity and computa-
tional efficiency (Mallat, 1989; Burt, 1983; Shirai and

Nishimoto, 1985), we restrict the fixed bank to contain
filter functions

Wk(x) = W (x + uk) (8)

that are simply copies of a standard filter W (x), trans-
lated over some regular grid defined by the displace-
ment vectors {uk}.

2.4. Factored Sampling

For the multi-modal distributions that arise with im-
age observation likelihoods, Bayes’ formula (3) can-
not be computed directly but Monte-Carlo simula-
tion is possible. In factored sampling (Grenander
et al., 1991), random variates are generated from a
distribution that approximates the posterior p(X | Z).
A weighted “particle-set” {(s(1), π1), . . . , (s(N ), πN )},
of size N , is generated from the prior density p0(X)

and each particle s(i) is associated with a likelihood
weight πi = f (si ) where f (X) = p(Z | X). Then, an
index i ∈ {1, . . . , N } is sampled with replacement,
with a probability proportional to πi ; the associated si

is effectively drawn from a distribution that converges
(weakly) to the posterior, as N → ∞. It will prove use-
ful later to express the sampling scheme graphically, as
a “particle diagram”

p0 −→
N

© ×f−→ © ∼−→
N

©. (9)
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Figure 2. The support of a mask. A circular support set S is illustrated here, split into subsets F(X) from the foreground and B(X) from the
background.

It is interpreted as follows: the first arrow denotes
drawing N particles from a known density p0, with
equal weights πi = 1/N . (Particle sets are represented
by open circles.) The ×f operation denotes likelihood
weighting of a particle set:

πi → f
(
s(i)

)
πi , i = 1, . . . , N .

The final step denotes sampling with replacement, as
described above, repeated N times, to form a new set
of size N in which each particle is given a unit weight;
each particle is therefore drawn approximately from
the posterior.

Where the likelihood f is a very narrow function in
configuration space, sampling can become inefficient,
requiring large N in order to give reasonable estimates
of the posterior. In the paper (section 8) it is shown how
this can be mitigated by “layered sampling” in which
broader likelihood functions are used in an advisory
capacity to “focus” the particle set down, in stages. In
the vision context, layered sampling is a vehicle for
implementing multi-scale processing.

3. Probabilistic Modelling of Observations

The observation (i.e., output value) z from an individual
filter is generated by integration over a support-set S
such as the circular one in Fig. 2, which is generally
composed of both a background component B(X), and
a foreground component F(X):

z | X =
∫

B(X)

W (x)I (x) dx
︸ ︷︷ ︸
MAIN NOISE SOURCE

+
∫

F(X)

W (x)I (x) dx.

(10)

The main source of variation in z | X is expected to
come from the background which is assumed to be a
sample from some general class of scenes. In contrast,
the foreground relates to a given object, relatively pre-
cisely known, though still subject to some variability.
This means that there should be a steady reduction in
the variance of the distribution of z | X as X changes
from values in which the circular support is entirely
over foreground, via intermediate locations overlap-
ping both foreground and background, and finally to
values in which it is entirely over background. This is
supported by experiments in which density functions
for z which have been learned from images, both from
background regions and also from foreground regions
(Fig. 3). The filter used in the experiment is a Gaussian

Gσ (x) = 1

σ 2
exp − |x|2

2σ 2
(11)

in a circular support of radius r (= 3σ).
The role of p(z | X) in Bayesian localisation is as a

likelihood function for X , associated with a particular

Figure 3. Learned observation densities for a Gaussian filter. Den-
sities p(z) are exhibited both for foreground and background, in the
case that W (x) is Gaussian, with support radius r = 20 pixels. Units
of z are intensity, scaled so that intensities in the original image lie
in the range 0, 1.
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Figure 4. Observation likelihood. The density p(z | X) is formally a function of z with X as a parameter, and is illustrated for foreground
and background cases. The whole family of such one-dimensional densities, indexed by the continuous variable X , are assembled to synthesise
p(z | X), as shown. Now p(z | X) is “sliced” in the orthogonal direction, to generate likelihoods (functions of X for fixed z). In the examples,
an observation z = 2 biases X towards a foreground value, whereas z = −1 biases towards background.

observation z, as illustrated in Fig. 4. Note that, al-
though X is generally multidimensional, in the dia-
gram it is depicted as a one-dimensional variable, for
the sake of clarity. The entire family of idealised den-
sities can be represented in (z, X)-space as shown in
the figure. Then, to construct the likelihood functions,
the z-value is considered to be fixed and X allowed
to vary. This is illustrated in Fig. 4 by considering
slices of constant z. For example, z = 2 in the fig-
ure depicts a relative high value which, in the ex-
ample, is more likely to be associated with a filter-
support lying predominantly over the foreground. The
resulting likelihood is peaked around a value of X cor-
responding to predominant foreground support. Con-
versely, for z = −1, the support is more likely to
be predominantly over the background and the mode
of the likelihood shifts towards background values
of X .3

Likelihood functions from several observations zk

should “fuse” when they are combined (7), to form a
joint likelihood that is more acutely tuned (Fig. 5) than
the likelihood for any individual zk . Note the impor-
tance of the zk from “mixed” supports, lying partly on
the background and partly on the foreground. It might

be tempting to regard them as contaminated and dis-
card them whereas, in fact, they should be especially
informative, responding selectively to the boundary of
the object—see Fig. 1.

Figure 5. “Hyperacuity” from pooled observations. Likelihoods
from independent observations combine multiplicatively, to give a
joint likelihood narrower than any of the individual constituents.
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Figure 6. Approximating foreground/background supports. Assuming that the object’s bounding contour is sufficiently smooth (on the scale
r of the radius of the filter support) the boundary between foreground and background can be approximated as a straight line. The support
therefore divides into segments with offsets 2rρ and 2r(1 − ρ) for background and foreground respectively.

4. Filter Response-Learning

If it were not for mixed supports, learning would be
relatively straightforward. Over the background, for
instance, it would be sufficient just to evaluate the out-
puts z (6) of the circular filter repeatedly, at assorted
locations over some training image, and fit a proba-
bility distribution pB(z). However, over a mixed sup-
port, only a part of the circle lies over the background.
If this part is approximated as a segment of a circle
(Fig. 6), and provided each filter functional Wk(x) is
isotropic (or steerable (Perona, 1992)), then the back-
ground distribution can be parameterised by a single
offset parameter ρ (at a given scale r ). This parameter
is defined for 0 ≤ ρ ≤ 1, as in the figure so that: when
ρ = 1 the filter support is entirely over the background;
when ρ = 0 it is entirely over the foreground; and for
0 < ρ < 1 it straddles the object boundary.

Training examples for background learning must
be constructed over circular segments with offsets
throughout the range 0 ≤ ρ ≤ 1, to learn background
distributions pB

k (z | ρ). (Clearly, in practice, only a fi-
nite number of these can be learned, leaving the contin-
uum of ρ to be filled in by interpolation.) To consider
a hypothesised configuration X , the Bayesian locali-
sation algorithm needs to evaluate, for each k, an off-
set function ρk(X) and a likelihood pk(z | ρk(X)). The
likelihood function consists of a sum of background and
foreground components, and is therefore constructed as
a (numerically approximated) convolution

pk(z | ρ) = pB
k (z | ρ) ∗ pF

k (z | ρ) (12)

of learned background and foreground density fun-
ctions.

5. Learning the Background Likelihood

Statistical independence of image features is an issue
that has been studied elsewhere, in the context of neu-
ral coding (Field, 1987): if neural codes are efficient
in the sense of avoiding redundancy, their components
can be expected to be nearly statistically independent.
It is also known that independent components of nat-
ural scenes tend to have “sparse” or “hyper-kurtotic”
distributions—ones with extended tails compared with
those of a normal distribution (Bell and Sejnowski,
1997).

5.1. Experiments with Response Correlation

Experiments on background correlation are done here
using statistics collected from each of the four scenes
in Fig. 7. Our experiments are similar to those done
by Zhu and Mumford (1997) in which they showed
the background distribution is remarkably consistent
across scenes, for a ∇G filter. Here we look at the div
of that filter output, which should therefore similarly
show a consistent distribution, and the small-scale ex-
periments done here support that. A necessary condi-
tion for independence is freedom from correlation, so
autocorrelation was estimated by random sampling of
pairs of supports, separated by a varying displacement.
This was done for two choices of filter function W (x):
Gaussian G(x) and Laplacian of Gaussian ∇2G(x), and
typical results are shown in Fig. 8. At a displacement
such as r (= 3σ ), corresponding to a typical separa-
tion between filters, the G(x) filter shows correlation
and hence there cannot be independence. On the other
hand ∇2G(x) is uncorrelated at a displacement of r .
Further experiments, looking at the entire joint distri-
bution for responses zk, zl of two filters with variable
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Figure 7. Background learning: training scenes used in experiments.

Figure 8. Autocorrelation of filter output. Results are for the first (hand) image from Fig. 7, at two sizes of spatial scale r . The Gaussian filter
G(x) shows substantial long-range correlation whereas, for ∇2G(x) correlation falls to zero for non-overlapping supports.
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Figure 9. Independence of filter output. Two filters displaced δ apart have outputs z1, z2, and the distribution of the difference �z = z1 − z2

is plotted here. The dashed curve shows a reference distribution for large δ. In the case δ = 5 pixels that correlation is high (see Fig. 8) z1, z2

are clearly not independent—the distribution for �z does not match the reference distribution. However with δ = 20 pixels, for which z1, z2

are uncorrelated, they are shown here also to be approximately independent.

spatial separation, support statistical independence, as
Fig. 9 shows.

The independence is obtained at the cost of throwing
away information about mean response and the 1st mo-
ment, though this is likely to be beneficial in conferring
some invariance to illumination variations. These ex-
periments were for complete, circular supports. With
part-segments of a circle (ρ < 1), statistical indepen-
dence of ∇2G(x) responses deteriorates. Experiments
like the ones in Fig. 8 show correlation lengths increas-
ing for ρ < 1, with ρ = 1

4 the worst case. This will mean
greater statistical dependence between mixed supports,
and it is not clear how this could be improved; but note
at least that typically it is a minority of filter supports
that are mixed.

Fitting the Background Distribution. A further ben-
efit of the ∇2G(x) filter is that the learned background
distributions turn out to be far more constant across

Figure 10. Learned background distributions. Learned densities pB(z) are shown here for each of the four scenes in Fig. 7 at scale r = 20:
they are highly variable for the G(x) filter, but rather consistent for ∇2G(x).

scenes (and this is known to be true also for ∇G fil-
ters (Zhu and Mumford, 1997)) than for a plain G(x)

filter. Background distributions were learned by re-
peated sampling of zk (6) for randomly positioned
supports, then histogramming and smoothing to esti-
mate pB(z). The results for complete circular supports
(ρ = 1), shown in Fig. 10, show sufficient consistency
to indicate that some fixed parametric form should be
sufficient to represent the densities. The learned re-
sponses turn out not to be normally distributed, but have
a hyper-kurtotic distribution, that is one with greater
kurtosis than a normal distribution, and this is clearly
visible in the extended tails in Fig. 10. Hyper-kurtotic
distributions are known to emerge in independent com-
ponents of images (Bell and Sejnowski, 1997), and are
often found to be well modelled by a single-exponential
distribution.4

pB(z) ∝ exp − | z | /λ. (13)



120 Sullivan et al.

Figure 11. Exponential model for background distributions. Learned densities pB(z) for the first and last of the 4 scenes in Fig. 7, at scale
r = 20 with ρ = 1, are fitted here (by MLE) to an exponential distribution, which captures the elongation of the tails.

The distribution fits the experimental data quite well
(Fig. 11). In that case, a global background likelihood
of the form (7), is a product of exponentials of filter
responses, just the scene model derived by Zhu et al.
via maximum entropy (Zhu et al., 1998, Eq. (21)).

For ρ < 1 (circle segments), the single-exponential
distribution does not fit so well, with ρ = 1

4 again being
the worst case. [This is to be expected, given that ∇2G
does not sum to 0 over an arbitrary segment of a circle,
except for the semi-circle ρ = 1

2 . This implies that the
distribution mean will not be zero, and hence cannot
have single-exponential form.]

Since W = ∇2G sums to 0, the means of densities
pF and pB for foreground and background will also
coincide at 0, as in Fig. 12. Given this loss of the in-
formation associated with the means of pB and pF ,
discriminability between foreground and background
is reduced, the price paid for improved illumination-
invariance. However, the foreground model can be
extended in certain ways to improve discriminabil-
ity again. One way is “foreground subdivision” as in
Section 6; another uses intensity templates (Sullivan
and Blake, 2000).

Figure 12. Foreground and background distributions when∫
W (x)dx = 0, for support radius r = 20 pixels. The means

of the foreground and background distributions now coincide, cf.
Fig. 3.

5.2. Optimal Filter Bank Grid

At a given spatial scale, the maximum information
about an image can be collected by packing filter sup-
ports Sk as densely as possible, within the constraint
that filter outputs zk must be uncorrelated. For filters
Wk that are isotropic, correlation depends simply on the
displacement between pairs of filters. A useful measure
is that the correlation function (Fig. 8) crosses 0 at a
displacement of around r (= 3σ ). The most effective
packing of filters, for the given level of correlation,
will be the one that maximises the packing density for
a given minimum displacement between filter centres.
This is well-known to be a hexagonal tesselation, whose
packing density is approximately 50% greater than
square packing. For the ∇2G filter, the filter support
is circular5 with radius approximately r (= 3σ ) which
is also the displacement for (approximately) zero cor-
relation. Hence supports in the hexagonally tesselated
optimal filter bank overlap substantially as in Fig. 13.

6. Learning the Foreground Likelihood

Learning distributions for foreground responses is sim-
ilar to the background case. As before, pF (z | ρ) is
learned for some finite set of ρ-values, and interpolated
for ρ ∈ [0, 1]. There are some important differences
however.

6.1. Deformations and Pooling

Three-dimensional transformations and deformations
of the foreground object must be taken into ac-
count. Tabulating pF not only against ρ but also
against transformation parameters is computationally
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Figure 13. Optimal tesselation of filter supports. Maximum den-
sity of ∇2G filters, while avoiding correlation between filter pairs,
is achieved by a hexagonal tesselation, as shown, with substantial
overlap (support radius r = 40 pixels illustrated).

infeasible. Variations that cannot be modelled para-
metrically can nonetheless be pooled into the general
variability represented by pF (z | ρ). This implies that
pF (z | ρ) should be learned not simply from one image,
but from a training set of images containing a succes-
sion of typical transformations of the object.

6.2. Outline Constraint

The distribution pB(z | ρ) was learned from segments
dropped down at random, anywhere on the back-
ground. Over the foreground, in the case that ρ = 0,
pF (z | ρ) is similarly learned from a circular support,
dropped now at any location wholly inside the training
object. However, whenever ρ > 0, the support F(X)

must touch the object outline; therefore, for 0 < ρ < 1,
pF (z | ρ) has to be learned entirely from segments
touching the outline.

6.3. Foreground Subdivision

For ρ = 0, it has so far been proposed that pF (z | ρ)

be learned by pooling responses throughout the object
interior. Pooling in this way discards information con-
tained in the gross spatial arrangement of the grey-level
pattern. Sometimes this provides adequate selectivity
for the observation likelihood, particularly when the
object outline is distinctive, such as the outline of a
hand as in Fig. 1. The outline of a face, though, is less
distinctive. In the extreme case of a circular face, and

using isotropic filters, rotating the face would not pro-
duce any change in the pooled response statistics. In
that case, the observation likelihood would carry no in-
formation about (2D) orientation. One approach to this
problem is to include some anisotropic filters in the fil-
ter bank, which would certainly address the rotational
indeterminacy.

An alternative approach which also enhances selec-
tivity generally, is to subdivide the interior F of the
object as F = F0 ∪ . . . ∪ FNF , as in Fig. 14, and con-
struct individual distributions pFi (z | ρ = 0) for each
subregionFi . A foreground distribution pFi (z | ρ = 0)

applies to any filter support Sk that lies entirely within
F and whose centre is in Fi . The case i = 0 is a “catch-
all” region, pooling the responses of any filter whose
centre is not in Fi for any i > 0 (the hexagons in
Fig. 14). The choice of the number NF of sub-regions
is of course a trade-off between increasing, with NF ,
the specificity of the information that is learned while,
at the same time, requiring more data to learn adequate
estimates of the pFi as the sub-regions Fi get smaller.

Sub-regions are defined with respect to a stan-
dard configuration, say X = 0, as in Fig. 14a. In a
novel configuration X �= 0, encountered either in train-
ing or evaluation of the likelihood p(Z | X), suitably
warped forms of Fi must be defined (Fig. 14b). This
could be achieved by defining the configuration space
X as a space of two-dimensional warps gX , using
thin plate splines for example (Bookstein, 1989). A
more economical but more approximate approach is
adopted here, representing the outline contour as a
parametric spline curve (Bartels et al., 1987), and the
configuration-spaceX is modelled as a sub-space of the
spline space. Then the warp of the interior of the object
is approximated as an affine transform by projecting the
configuration X onto a space of planar-affine transfor-
mations (Blake and Isard, 1998, Ch. 6). The fact that
this affine transformation warps the interior only ap-
proximately does not imply that errors are introduced
into the Bayesian localisation procedure. Rather, the
variability due to approximating the warp is simply
pooled during learning into the distributions pFi . The
resulting model then loses some specificity but is still
“correct” in that the variability is fairly represented by
probabilistic pooling.

6.4. Statistical Independence

Known behaviour for independence of natural
scenes, which applied well to background modelling,
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Figure 14. Foreground subregions. The object interior F is subdivided (a) as F = F0 ∪F1 ∪ . . .∪FNF where sub-regions F1, . . . ,FNF here are
hexagons and F0 is the remaining part of F. In a novel view (b), sub-regions must be mapped onto the new images, done here by approximating
the warp of the interior as a planar-affine map.

cannot necessarily be expected to apply for foreground
models, given that the foreground is far less variable.
Nonetheless, repeating the autocorrelation experiments
now for the foreground has produced evidence of good
independence for ∇2G filters, as in Fig. 15.

6.5. Representing the Distribution

Whereas filter response z over (highly variable) back-
ground texture assumed the characteristic kurtotic
form, the foreground is far less variable and does not
have extended tails (Fig. 12). Hence the exponential

Figure 15. Foreground autocorrelation for the ∇2G filter, over two different foreground objects: a hand (left) and a face (right). In both cases,
correlation falls to zero at a displacement of around r or 3σ , similarly to correlation of background texture.

distribution is unsuitable. A normal distribution might
be more appropriate but the safest approach is to con-
tinue to represent pF in a more general fashion, as an
interpolated histogram.

6.6. Intensity Offset Model

Recently, we have developed a more effective form
of foreground model which incorporates an intensity
offset. Briefly it works as follows, but see (Sullivan
and Blake, 2000) for details of the approach. Over the
foreground F(X), the intensity I (x) is modelled as
having a mean Ī X (x) generated as a warp
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Ī X (x) = Ī (TX (x))

of a learned intensity template Ī (x). This then leaves
only the difference

�IX (x) = I (x) − Ī (TX (x)), x ∈ F(X),

as observed by the filter bank {Wk}, to be modelled
statistically. More of the variation in the intensity pat-
tern I (x), x ∈ F(X) is accounted for deterministically,
leaving a tighter distribution for the random component
of the foreground model.

Inclusion of the intensity offset, in this way, fulfils
a similar objective to the foreground subdivision of
Section 6, in using more of the information in the spa-
tial intensity pattern of the object. It turns out (Sullivan
and Blake, 2000) to have an additional advantage: that
the template model can be extended to take some ac-
count of lighting variations deterministically, rather
than leaving lighting changes to be modelled entirely
statistically.

7. Exercising the Learned Observation
Likelihood

Having established, in previous sections, that reason-
able densities pk(z | r) for individual supports can be
learned from background and foreground densities, it is
now possible to exercise the full joint likelihood func-
tion p(Z | X). This is constructed (7) as a product, in
which the offset ρ for each support segment is obtained
from its offset function ρk(X):

p(Z | X) =
K∏

k=1

pk(zk | ρk(X)). (14)

Evaluation of the offset function requires a geometri-
cal calculation of the size of the circle-segment that

Figure 16. Exercising the joint likelihood. The joint observation likelihood p(Z | X) is exercised here as X ranges over coordinate axes in the
space of Euclidean similarities. Note that the peak in each case is approximately at the origin (X = X0). (Support radius is r = 20 pixels.)

approximates the intersection of the object (at config-
uration X ) with the kth support. It is interesting to note
that, although Bayesian analysis requires that Z should
consist of the entire set of filters zk in Fig. 1, some
economies can legitimately be made. Given a sample
X1, . . . , X N of object hypotheses, if some filter sup-
port Sk lies always in the background for all the Xn ,
the corresponding term can be factored out of (14). For
a truly parallel, pyramid architecture this may be no real
advantage. If image processing is serial a “sampling re-
hearsal” can tag just those zk whose likelihoods do not
factor out; other zk need not be computed. The “factor-
ing out” phenomenon also makes another interesting
point. The filters that actually contribute to global like-
lihood variations are those near the boundary of at least
some hypothesised configuration X ; so despite being
intensity-based, it transpires that Bayesian localisation
does in fact emphasise edge information.

The learned observation likelihood is exercised here
in two ways. First, the likelihood function is explored
systematically, with respect to translation, rotation etc.,
and at various spatial scales. Secondly, the likelihood
function is applied to randomly generate samples, to
sweep out posterior distributions for pose, again at sev-
eral scales.

7.1. Systematic Variations in Observation
Likelihood

First, for the hand scene of Fig. 1, p(Z | X)—the
joint likelihood composed of a product of likelihoods
p(zk | X) for individual filters, is exercised systemati-
cally. This is done as a check that the likelihood does
register a peak at the true object position, and has rea-
sonable variations around the peak. In these demon-
strations, X is varied over a configuration space of Eu-
clidean similarities; results are displayed in Fig. 16.
The joint likelihood fuses information from individual
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Figure 17. Joint likelihood at various scales. The observation likelihood p(Z | X) shown for translation, at various scales. Again, modes are
approximately unbiased, and the width of the likelihood peak increases with r .

supports effectively, with a maximal value, as expected,
near the true solution X0. Figure 17 demonstrates the
effect of changing the filter scale r . As expected, the
likelihood function is more broadly tuned at coarser
scales, appearing to have a width of about 2r , or less
due to hyperacuity effects as in Fig. 5. As a final check,
it is interesting to consider the likelihood ratio for two
configurations, one correctly positioned over the tar-
get, and one way out over background as in Fig. 1.
In such cases, treating pixels as independent typically
produces ridiculously large likelihood ratios. Even us-
ing Gaussian masks (r = 20), which we know are not
independent, gives a likelihood ratio in this case of
1 : 1055—still very large. However, this falls consider-
ably with ∇2G masks, as expected given the indepen-
dence of their output over foreground and background,
to a more plausible 1 : 104.

To summarise, the learned observation likelihood for
∇2G masks has been exercised here, systematically,
and found to have reasonable properties. The next task
is to use it to compute approximations to the posterior
p(X | Z), by means of the factored sampling scheme
of Section 2.4.

7.2. Sampling from the Posterior

To locate a hand against a cluttered background, by
Bayesian localisation let us assume first that its orien-
tation is known but that the prior p(X) for translation is
broad (has high variance). Samples from the posterior,
at several scales, are shown in Fig. 18. For a given scale,
the broad prior is focused down to a narrow posterior
distribution which, as earlier in Fig. 17, is narrower at
finer scales. It is not clear from Fig. 18 that coarse
scales actually have a useful role—the finest scale,
after all, gives the most precise information. How-
ever, if the sampling process is “pressed” harder, by

expanding the prior without increasing the size N of
the particle-set, the fine scale breaks down, as Fig. 19
shows, while at the two coarser scales, sampling from
the posterior continues to operate correctly. That sug-
gests a role for coarser scales in guiding or constrain-
ing finer ones, if only a Bayesian sampling mecha-
nism can be found to do it, and that is the subject of
Section 8.

8. Layered Sampling

In Section 7.2, the problem of “overloading” was
demonstrated, that occurs when image observations are
made at a fine spatial scale. It results from the obser-
vation likelihood f (X) having a support that is narrow
compared with the support of the prior p0(X). A con-
tinuation algorithm is used to reduce computational
complexity by introducing a sequence of likelihoods
fn whose supports are intermediate between those of
p0(X) and f (X), and which reduce progressively in
size. One form of this idea is “annealed importance
sampling” (Neal, 2000), in which f (X) is replaced
by f (X)β , 0 < β < 1 in order to broaden likelihood
function. It is known to reduce the number of particles
needed for estimation (to a given accuracy) by impor-
tance sampling, from N to log N .

Layered sampling is an alternative form of contin-
uation principle in which the intermediate likelihoods
are obtained by making image measurements at a vari-
ety of spatial scales. Filter responses at several scales
r = r1, r2, . . . are used in coarse-to-fine sequence. So
background distributions

pB(z | ρ, r), 0 ≤ ρ ≤ 1, r = r1, r2, . . .

need to be learned at each scale, and similarly for fore-
ground distributions.
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Figure 18. Random samples from the posterior. Factored sampling from the posterior density p(X | Z), in which the prior p(X) is a broad
distribution of Euclidean similarities (planar rigid motion plus size-scaling). At each scale r , the posterior mean E[X | Zr ] (white contour) is
close to the true configuration X0 and the variance of the distribution p(X | Zr ) decreases with r , as expected. Particle set size is N = 80 per
layer. (For clarity, only particles from the posterior accounting for at least 1% of likelihood over sample-set are shown.)

8.1. Importance Reweighting

Layered sampling uses what we term “importance
reweighting, in which the particles representing some
prior distribution p0(X) are replicated and re-weighted.
Particles are replicated to a degree that is propor-
tional to the value of some weighting function g(X),
as in Fig. 20. Following the re-distribution, likelihood
weights are adjusted to compensate, so that the particle-
set continues to represent the same underlying prior p0.
The re-weighting operation is denoted by a ∼ operator
with a weighting function. An example of its use

follows:

p0 −→
N

© ∼ g−→
N

© × f−→ © ∼−→
N

©.

This is factored sampling (9) with an extra, interme-
diate, reweighting stage. In terms of particle-sets, the
reweighting operation ∼ g is defined as follows{(

s(i), πi
)
, i = 1, . . . , N

}
→ {(

s(i( j)), 1/g
(
s(i( j))

))
, j = 1, . . . , N

}
where each i( j) is sampled with replacement from i =
1, . . . , N with probability proportional to πi g(s(i)).
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Figure 19. A broader prior “overloads” factored sampling. Now the demonstration of Fig. 18 is repeated, but with a prior 1.5 times as broad,
causing sampling at the finest scale to break down (observe the large bias in the mean configurations at scale r = 10, 20 pixels. (Again, N = 80.)

Figure 20. Importance reweighting. A uniform prior p0(X), repre-
sented as a particle-set (top), is resampled via an importance function
g to give a new, re-weighted particle-set representation of p0. (The
illustration here is for a one-dimensional distribution, though prac-
tically X is multidimensional.)

A useful property of the resampling operation ∼ g
is that it is an asymptotic identity: as N → ∞, the dif-
ference between the distributions of the two random
variables generated by

p0 −→
N

© ∼−→
1

© and by p0 −→
N

© ∼g−→
N

© ∼−→
1

©

converges weakly to 0.
Resampling with the ∼ g operation does not, on its

own, deal with the problem of a narrow likelihood func-
tion. Although it does concentrate sampling to a nar-
rower region of configuration space, the gaps between
particles are as great as ever (Fig. 21). Gaps can be
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Figure 21. Resampling followed by convolution. This simplified
example illustrates that importance reweighting on its own cannot
repopulate the sparsely sampled support of the likelihood f . Re-
population can however be achieved by adding a random increment,
corresponding to convolving the prior p0 with p1, the density of the
random step.

filled, however, by adding a further random variable
with density p1, to each particle. This has the effect of
diffusing apart identical copies of particles generated
in the resampling step. Of course, the combined oper-
ation is no longer an asymptotic identity—particles at
the output of

p0 −→
N

© ∼g−→
N

© ∗p1−→ © ∼−→
1

©

are distributed asymptotically according to the density
p0 ∗ p1.

8.2. The Layered Sampling Algorithm

Layered sampling is applicable when importance re-
sampling functions f1, . . . , fM are available, in which
fM = f is the true likelihood, and each fm−1 is a coarse
approximation to fm . In addition, the prior p0 must be
decomposable as a series of convolutions

p0 = p′
0 ∗ p′

1 . . . ∗ p′
M−1 (15)

and this corresponds to expressing X a priori as a sum
of random variables. Functional forms for the densi-
ties p′

m need not necessarily be known, provided only
that a random sample generator can be constructed for
each. For example, in processing motion sequences us-
ing the Condensation algorithm (Isard and Blake,
1996), p′

0 could be represented as a set of particles
from the previous time t −1, and pd = p′

1 . . .∗ p′
M−1 is

some decomposition of a normal distribution pd(X (t) |
X (t − 1)) for the likely displacement over one time-

step, into normally distributed components. With this
decomposition of the prior, the sampling process (9)
on page 6 can be replaced by a sequence of layers:

p′
0 −→

N
©

∼ f1−→
N

© ∗p′
1−→ ©

· · · (16)

∼ fM−1−→
N

© ∗p′
M−1−→ ©

× fM−→ © ∼−→
N

©.

Each layer includes an importance resampling step,
with the observation likelihood fi at the i th scale as
the resampling function, until the M th and final layer,
at which the fine-scale fM acts multiplicatively on like-
lihood weights, in the usual way.

The asymptotic correctness of layered sampling can
be demonstrated by manipulating the sampling dia-
gram. Using the asymptotic identity property of ∼, (16)
can be rewritten, deleting resampling links, to give

p′
0 −→

N
©

∗p′
1−→ ©

· · ·
∗p′

M−1−→ ©
× fM−→ © ∼−→

N
©.

and now the p′
m convolutions can be composed to give

p′
0 ∗ p′

1 ∗ . . . ∗ p′
M−1 −→

N
© × fM−→ © ∼−→

N
©.

which, from (15), and since fM = f , reduces to the
original factored sampling process (9).

8.3. Variance Reduction

A remaining problem is how to choose the likelihood
functions and the decomposition of pd in such a way
as to minimise the variance of the particle set gener-
ated in the final layer. These are complex problems in
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general, but some progress can be made by setting out
the following special case.

1. The prior p′
0 is a rectangular distribution, with a

support of volume a0 in configuration space.
2. Each likelihood function fm is idealised as a rect-

angular (uniform) distribution with a support of
volume am .

3. The support of each fm is a subset of the support of
fm−1.

4. Each p′
m is chosen in such a way that N particles are

effectively uniformly distributed over the support
of fm , as depicted in Fig. 21. This can be done by
matching the support of p′

m−1 to the support of fm .
5. Variance minimisation is not well-posed for rect-

angular distribution fm , since their support is
bounded. Instead, we minimise the “failure rate”
—the probability that the particle set in some layer
is empty.

Under these assumptions it can be shown (see ap-
pendix) that the failure rate is minimised by choosing

am−1 = λam (17)

so that successive support volumes are in some fixed
ratio λ.

Three further useful results (derivations omitted) can
be obtained using analysis of estimator variance for
importance sampling (Neal, 2000; Liu and Chen, 1995;
Geweke, 1989).

• Using just a single layer (i.e. without layered sam-
pling), the number N of particles required to achieve
a given failure rate is

N ∝ a0/aM (18)

• With layered sampling, the failure rate is minimised
by having approximately

M = log2(a0/aM) (19)

layers. This means that λ = 1/2 is the optimal ratio
of support volumes.

• With the optimal number M of layers, the total num-
ber of particles required falls to

N M ∝ log2(a0/aM), (20)

a logarithmic speed-up compared with (18).

9. Results

Layered sampling is applied here to the problem of
multi-scale localisation. In all cases, a hexagonal tes-
selation of filters was used with separations of 6σ (Sec-
tions 9.1, 9.2), or 3σ (Sections 9.3, 9.4). [Recall that
the support of the filters are truncated at r = 3σ ; filter
sizes are specified as r -values in experiments below.] A
constant number N of particles was used in each layer;
demonstrations with motion in Section 9.4 were done
with just a single layer, though clearly these also would
be expected to benefit from multiple layers.

9.1. Sampling Across Scales

In the Bayesian localisation application, the fm from
the layered sampling algorithm correspond to obser-
vation likelihoods from the coarsest scale m = 1 to
the finest m = M . Operation of the algorithm is illus-
trated here, in Fig. 22, for the hand-finding problem
that caused the overloading of single-scale sampling
earlier, in Section 7.2. The normally distributed prior
p0 is split, as a sum of normal variables, into 3 factors

p0 = p′
0 ∗ p′

1 ∗ p′
2,

each factor to be used before scales r1, r2, r3 in the
coarse-to-fine hierarchy of observations. Scales are
chosen to decrease geometrically, as implied by the
fixed ratio rule (17) above. (This implication holds on
the assumption that observation likelihood functions
scale linearly with filter radius r , and demonstrations
tend to support this, as in Fig. 17). The i th scale gen-
erates an observation likelihood function fi , where
fi (X) = p(Zi | X). Note that the formal likelihood
derives from observations only at the finest scale. Ob-
servations at other scales are cast by layered sampling
in an “advisory” role, their scope limited to importance
sampling for the next finer scale. This avoids any need
for any formal assumption of statistical independence
across scales which may be hard to justify.

9.2. Occlusion

One of the attractions of intensity-based matching is
its robustness to disturbances in the image data, and a
severe form of disturbance is presented by occlusion.
Where occlusion is anticipated, this is addressed in
the Bayesian localisation framework simply by treating
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Figure 22. Layered sampling across spatial scales: the demonstration of Fig. 19 is repeated, but now with layered sampling, from coarse to fine
scale. Note that the overload evident at finest scale in Fig. 19, is rectified here, with a similar computational load (N = 80 particles per layer).
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Figure 23. Layered sampling with occlusion: a demonstration like the one in Fig. 22 but now with the object suffering unpredicted occlusion.
Note that, at the coarsest scale, shape information is sufficiently distorted by occlusion, that object orientation is quite ambiguous in the posterior.
Finer scales resolve the ambiguity.
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Figure 24. Pose variation: the prior is approximately uniformly distributed (on the white rectangle) over translations, with normal distributions
over pose and zoom. The first and last layers of the posterior from layered sampling with r = 40, 20, 10 pixels are shown, for each of three
poses of a face. (Means displayed in white; N = 250 particles per layer, of which the 15 with highest likelihood are displayed.)
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the occluder as part of the background, and evaluating
the appropriate observation-likelihood functions there.
More challenging is occlusion that is not anticipated,
as in Fig. 23. The figure illustrates the power of the
Bayesian sampling approach to deal with ambiguity.
At coarse scale, the part-occluded and blurred repre-
sentation of shape leaves object-orientation quite am-
biguous, though translation is somewhat constrained.
Finer scales contain fragments of curve at sufficient
resolution to register quite precisely with part of the
object outline. Hence the rotational ambiguity is re-
solved. Even though the posterior at the finest scale has
very small variance, nonetheless, the facility to repre-
sent ambiguity in the intermediate processes is what
has allowed multi-scale information to be propagated
effectively.

9.3. Pose Variation

Bayesian localisation is capable of handling a configu-
ration spaceX that incorporates varying 3D pose, as the
demonstration of Fig. 24 shows. The foreground distri-
butions in this demonstration were learned using fore-
ground subdivision as discussed in Section 6, with sub-
regions of a diameter equal to that of the filter support.
In fact, in the coarsest layer, there is space within the
face contour for only one subregion, but 7 subregions at
r = 20 and 33 at r = 10. Note the “rogue” face hypoth-
esis appearing on the curtain at the left, which receives
a significant weight in layer 1, at the coarsest scale (a
blurry hallucination), but does not survive at fine scale.

Figure 25. Deformable motion. A deformable contour model with 8 free parameters is used to track a walking person. The image sequence
contains over 150 image frames. (We used a single layer with r = 15 pixels and N = 1500 samples.)

A further demonstration of face-tracking, free-
running at about 1 frame/sec, is given at

http://www.robots.ox.ac.uk/∼vdg/movies/

bayes-face.mpg.

In this case there are two layers with r = 40, 20 and
N = 600 particles per layer, and a foreground intensity
model is used, as in (Sullivan and Blake, 2000).

9.4. Motion Tracking

Motion tracking demonstrations in this section serve
two purposes. First they test the Bayesian localisation
algorithm over many separate video frames. Second
they underline the importance of Bayesian techniques
for sequential inference. The prior for object config-
uration in each frame is predicted from the posterior
for the previous frame, via a learned dynamical model
(Blake et al., 1995; Baumberg and Hogg, 1995). The
iterated process of prediction and Bayesian localisation
forms a particle filter (Gordon et al., 1993; Kitagawa,
1996; Isard adn Blake, 1996). A person walking across
a room is tracked (Fig. 25) in the manner of Baumberg
and Hogg’s tracking demonstration (1995), but without
background subtraction. See also the movie version at

http://www.robots.ox.ac.uk/∼vdg/movies/

bayes-walker.mpg.
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Instead, distracting background clutter is dealt with
by the learned foreground/background models embod-
ied in the observation likelihood. Consequently, the
method not limited to backgrounds that are stationary,
or moving in some easily predictable fashion.

A note should be added here on computation time.
The task (on-line, excluding learning) here consists
principally of image processing to obtain the zk , and
of computation of likelihood (14), of which the offset
function pn(zk | ρk(X)) is main burden. The image pro-
cessing can be done using pyramid filter banks (Burt,
1983) that are available in hardware. The offset func-
tion (at scale r = 40) can be computed for approxi-
mately N = 500 particles per time-step, at frame-rate.
Bayesian localisation at video frame-rate is therefore
quite feasible, in principle.

10. Conclusions

The original elements of Bayesian localisation are:
the development of filter-based likelihood functions
for matching with particular attention to statistical in-
dependence; learning of foreground and background
distributions, and distributions for “mixed” receptive
fields; probabilistic multi-scale analysis by means of
“layered sampling.”

The approach has been tested on a variety of fore-
grounds and backgrounds. It is capable of planar object
localisation, even with unpredicted occlusion, and ver-
satile enough to work with 3D pose changes, and with
image sequences of moving objects, including non-
rigid ones. A number of issues are raised: the choice
of partition for the prior in layered sampling; the use
of spatio-temporal filters and associated independence
arguments; temporal updating of the foreground distri-
bution. These remain for future investigation.

Appendix

A. Layered Sampling and Bounded Variance

The result from section 8 about arranging the scales of
successive likelihood functions in fixed ratio is derived
here. Making the assumptions 1–5 from Section 8.3,
the density of particles on entering the mth layer in
(16) is N/am−1, assumed uniformly distributed in con-
figuration space. Then the proportion of these particles

which lies within the support of fm has mean

λm = am

am−1

and is binomially distributed. The probability P(Fm)

of “failure” at the mth layer is therefore

P(Fm) = (1 − λm)N

and the event F = F1 ∪ . . .∪ FM of failure at any layer
has probability

P(F) = 1 −
M∏

i=1

(1 − (1 − λm)N ).

Now minimising P(F) under the constraints that µi ≥
0 and the constraint (imposed using a Lagrange multi-
plier) that the product

M∏
i=1

λi = aM

a0

is a constant, gives a unique solution

λ1 = λ2 = · · · = λM ,

so that the ratios am/am−1 are all equal, as required.
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Notes

1. Previously (Sullivan et al., 1999) we have referred to the new ap-
proach as “Bayesian Correlation,” but have since been persuaded
that this is a somewhat misleading term.

2. The problem of how to obtain the prior p0 is a much debated
issue for Bayesian inference in general which is entirely outside
the scope of this paper. We simply adopt the common line of
developing a methodology in which the role of the prior is at any
rate explicit.

3. Note that “slicing” is purely an analytical tool to illustrate the
way observation likelihoods exist implicitly within a probabilistic
model for filter response. Slicing does not actually form part of
any algorithm proposed here.
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4. We refrain from the commonly used term “Laplace” distribution
here, to avoid the potential confusion with the Laplacian operator
in ∇2G.

5. Of course, the filter has theoretically unbounded support, but we
take the point at which filter amplitude falls to around 10% of its
maximum value.
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