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Abstract— This paper describes a probabilistic bail-out con-
dition for multihypothesis testing based on Bennett’s inequality.
We investigate the use of the test for increasing the speed of an
appearance-only SLAM system where locations are recognised
on the basis of their sensory appearance. The bail-out condition
yields speed increases between 25x-50x on real data, with only
slight degradation in accuracy. We demonstrate the system
performing real-time loop closure detection on a mobile robot
over multiple-kilometre paths in initially unknown outdoor
environments.

I. I NTRODUCTION

This paper is concerned with speed improvements to an
appearance-only SLAM system. We show that by employing
a probabilistic bail-out test in the core likelihood calculation,
speed improvements of between 25 and 50 times are possible,
with only slight accuracy penalty. Typical filter update times
are on the order of 150 ms for maps which contain several
thousand locations. This enables real-time loop closure de-
tection on a mobile robot for loops tens of kilometers in
length.

Our core appearance-only SLAM system has been previ-
ously described in [1], [2]. In appearance-only systems, the
robot’s map consists of a set of locations, each of which has
an associated appearance model. When the robot collects a
new observation, its location can be determined by deciding
which location in the map was most likely to have generated
the observation. This approach has recently shown success
in large scale global localization [3] and online loop closure
detection [1], both difficult problems in more typical metric
SLAM frameworks.

The limiting computational cost of appearance-only
SLAM is computing the observation likelihood for each
location in the map. Typically, only a small number of
these places will yield non-negligible probability of having
generated the current observation. The main idea of this
paper is that by evaluating the appearance likelihoods in
parallel, these unlikely hypotheses can be identified and
discarded while the likelihood calculation is only partially
complete, yielding large speed increases. Very similar ideas
have been described elsewhere in computer vision, notably
in the context of efficient RANSAC algorithms [4], [5].
Matas and Chum showed that for RANSAC, the sequential
probability ratio test (SPRT) yields the optimal solution.
The SPRT approach was originally designed for testing
two hypotheses under a sequence of identical and equally
informative observations [6]. Extensions exist for the mul-
tihypothesis case [7]. However, stopping boundaries for the
SPRT are not easy to derive when the observations are not
equally informative. We describe an alternative approach

based on concentration inequalities [8]. Unlike the SPRT,
this approach is straight-forward to apply even when there
are multiple hypotheses and the observations are not equally
informative. We have noted related ideas in other fields [9],
however we believe our approach is novel in this context.

II. A PPEARANCE-ONLY SLAM

Our appearance-only SLAM system is described in detail
in [1], [2]. Briefly, at time t the robot’s map consists ofnt

discrete locations, each locationLi having an associated ap-
pearance model. Our representation of appearance is inspired
by the bag-of-words image retrieval systems developed in the
computer vision community [10]. Sensory data is converted
into a bag-of-words format; a place appearance model is
a distribution over appearance words. We extend the basic
bag-of-words approach by learning a generative model for
the sensory data, in the form of a Chow-Liu tree [11]. This
generative model captures the fact that certain combinations
of appearance words tend to co-occur, because they are
generated by common objects in the environment, and yields
a significant improvement in navigation performance.

When the robot collects a new observationZt, we compute
p(L|Zt), the probability distribution over locations given the
observation. This can be cast as a recursive Bayes filtering
problem:

p(Li|Z
t) =

p(Zt|Li,Z
t−1)p(Li|Z

t−1)

p(Zt|Zt−1)
(1)

where Zt is the set of all observations up to timet,
p(Zt|Li,Z

t−1) is the likelihood of the observation given the
locationLi and the previous observationsZt−1, p(Li|Z

t−1)
is our prior belief about our location, andp(Zt|Z

t−1)
normalizes the distribution. The normalization term can be
written as a summation

p(Zt|Z
t−1) =

∑

m∈M

p(Zt|Lm)p(Lm|Zt−1) (2)

+
∑

u∈M

p(Zt|Lu)p(Lu|Z
t−1)

over the set of mapped placesM and the unmapped places
M . This summation can be approximated by sampling,
where the “unmapped places” are drawn from a set of
training data. This yields a probability that the observation
came from a place not in the map. Using the resulting
PDF over location, we can make a data association decision
and either add a new location to our map, or update the



appearance model of an existing place. Essentially this is a
SLAM algorithm in the space of appearance.

The core of the PDF calculation is computing the obser-
vation likelihood p(Zt|Li,Z

t−1) for each location in the
map and each sample in the training set. The following
section describes an approach to increasing the speed of
this likelihood calculation. By identifying locations that will
have insignificant likelihood before the calculation is fully
complete, many locations can be excluded quickly and large
speed increases can be realized.

III. PROBABILISTIC BAIL -OUT USING BENNETT’ S

INEQUALITY

Let H =
{

H1, ...,HK
}

be a set ofK hypotheses and
let Z = {z1, ..., zN} be an observation consisting ofN
features. The likelihood of the observation under the thekth

hypothesis is given by

p(Z|Hk) = p(z1|z2, ..., zN ,Hk)...p(zN−1|zN ,Hk)p(zN |Hk)
(3)

Define the log-likelihood of the firsti features under thekth

hypothesis as

Dk
i =

i
∑

j=1

dk
j (4)

where
dk

i = ln(p(zi|zi+1, ..., zN ,Hk)) (5)

is the log-likelihood of theith feature under thekth hy-
pothesis. We would like to determine, as rapidly as possible,
the hypothesisH∗ for which the total log-likelihoodD∗

N is
maximized. FindingH∗ with certainty requires a complete
evaluation of the likelihood of each hypothesis, which may
be too slow for applications of interest. Consequently, we
consider the problem of finding a hypothesisH#, subject
to the constraint thatp(H# 6= H∗) < ε, whereε is some
user-specified probability.

In overview, our approach is to calculate the likelihoods
of all hypotheses in parallel, and terminate the likelihood
calculation for hypotheses that have fallen too far behind the
current leader. “Too far” can be quantified using concentra-
tion inequalities, which yield a bound on the probability that
a hypothesis will overtake the leader, given their current dif-
ference in likelihoods and some statistics about the properties
of the features which remain to be evaluated.

Consider two hypothesesHx,Hy ∈ H and let

Xi = dx
i − d

y
i (6)

the difference in the log-likelihood of featurei under hypoth-
esisHx andHy. Xi can be considered as a random variable
before its value has been calculated. This is useful because
we can calculate some key statistics aboutXi more cheaply
than we can determine its exact value. Now define

Sn =

N
∑

i=n+1

Xi (7)

Fig. 1. Conceptual illustration of the bail-out test. Afterconsidering the
first i features, the difference in log-likelihoods between two hypotheses
is ∆. Given some statistics about the remaining features, it is possible to
compute a bound on the probability that the evaluation of the remaining
features will cause one hypothesis to overtake the other. Ifthis probability
is sufficiently small, the trailing hypothesis can be discarded.

If after evaluatingn features, the log-likelihood of some
hypothesis is∆ less than the current best hypothesis, then
the probability of failing to locateH∗ if we discard this
hypothesis is given byp(Sn > ∆). Thus, knowing the
distribution of Sn allows the creation of a probabilistic
bail-out test for discarding hypotheses subject to an error
constraint. Calculating an explicit distribution onSn is infea-
sible, however concentration inequalities – which bound the
probability that a function of random variables will deviate
from its mean value – can be applied to yield bounds on
p(Sn > ∆).

A large variety of concentration inequalities exist, many
of which apply under very general conditions, including
cases where the component distributions are not identically
distributed, not independent, and are combined using arbi-
trary functions. For an overview see [8]. Typically, the more
information available about the component distributionsXi,
the tighter the bound. Our bail-out test applies the Bennett
inequality for sums of symmetric random variables [12]. This
inequality is specified in terms of two parameters —M , a
bound on the maximum value of any componentXi, andv,
a bound on the sum of the variances of the componentsXi.

Formally, let {Xi}
N
i=n+1 be a collection of independent

mean-zero random variables with symmetric distributions
(corresponding to the log-likelihood changes due to those
features not yet considered), and satisfying the conditions

p (|Xi| < M) = 1, ∀i (8)

N
∑

i=n+1

E
[

X2
i

]

< v (9)

and let

S =

N
∑

i=n+1

Xi (10)

then the Bennett inequality states that



p(S > ∆) < exp

(

v

M2
cosh(f(∆)) − 1 −

∆M

v
f(∆)

)

(11)
where

f(∆) = sinh−1

(

∆M

v

)

(12)

Note that as the calculation of the hypothesis likelihoods
progresses, the number of unconsidered features (and hence
the number ofXi variables) decreases, soM and v will
change. As a result the bail-out threshold changes throughout
the calculation.

IV. A PPLICATION TO APPEARANCE-ONLY SLAM

Ranking Features

We now turn our attention to applying this bail-out condi-
tion to our appearance-only SLAM system. Firstly, we must
define an order in which to consider the features. While the
bail-out test applies to any ordering, it is natural to rank
the features by information gain. That way, the hypotheses
will converge most rapidly toward their final log-likelihood
values and poor hypotheses can most quickly be identified
(see Figure 2).

Each of our featureszi is a binary variable indicating
whether or not theith word of the vocabulary was present in
the current observation. The occurrence of these visual words
is not independent – certain combinations of words tend to
occur together because they are generated by some underly-
ing object in the environment. To capture this structure we
learn a Chow Liu tree model [11] which approximates the
true distribution over the observations. Under this model,
each featurezi is conditionally dependent on one other
feature zpi. If we observezi = si and zpi = spi (with
s ∈ {0, 1}), then the information gain associated with this
observation under our model is

I = − ln p(zi = si|zpi = spi) (13)

Typically observations of rare words are the highest ranked
features, though, perhaps surprisingly, failure to observe a
word can sometimes also have high information gain – for
example, if two words are almost always observed together,
then failure to observe one while observing the other is an
informative observation.

Note that because the probabilities in Equation 13 come
from the training data on which we learnt the model of our
visual words, we are calculating the information gain with
respect to the places in the training data. Strictly we should
consider the the information gain with respect to the set
of places in our current map – for example, some feature
might be very rare in the training set but very common in
the map. In practice we observe that the difference between
the two values is usually small, so maintaining a separate set
of probabilities is unnecessary.

Application of Bennett’s Inequality

To apply Bennett’s inequality, we must calculatev and
M , the parameters in Equation 11 which depend on the
component random variablesXi. In our appearance-only
SLAM system

Xi = dx
i − d

y
i (14)

= ln(p(zi|zpi, Lx)) − ln(p(zi|zpi, Ly))

where, recalling our notation from Section II,L denotes
a location (hypothesis), andx and y are random variables
which specify which locations in the map are being consid-
ered. Now, given that the values ofzi and zpi are known,
p(zi|zpi, Lx) depends only on the number of times feature
zi has previously been observed at locationLx (details in
[1], [2]). Thus Xi attains its maximum value whenx andy

correspond to the locations where featurei has been observed
most and fewest times respectively. Keeping track of these
statistics allows us to easily calculateM .

Calculatingv, which bounds the sum of the variances of
theXi variables, requires some information about the distri-
bution of the index random variablesx andy. We assume that
these have uniform distribution, which effectively amounts
to assuming that all of our hypotheses have equal a-priori
probability1. Given this assumption, the distribution ofXi is
fully specified and can be calculated directly by considering
dx

i − d
y
i for all index pairsx, y. We observe thatXi has

a multinomial distribution which must be mean-zero and
symmetric2.

To evaluatev we must calculate the variance of this
distribution. In practice, this calculation can be fast. For
example, in our appearance-only SLAM system, when the
robot is first exploring the environment almost all place
models have only one observation associated with them,
so dx

i can take on only a small number of distinct values.
Keeping track of the possible discrete values ofdx

i and
their relative proportion allows for rapid calculation of the
variance ofXi. As exploration continues, the possible values
of dx

i become larger, and the calculation becomes more
expensive. At some point it may be beneficial to switch from
using Bennett’s inequality to Hoeffding’s inequality [13], a
similar concentration inequality that requires knowledgeonly
of the maximum value of eachXi. Hoeffding’s inequality
gives a weaker bound, but this is compensated for by the fact
that by the time the variance becomes expensive to compute,
the place models themselves are more differentiated, and so
their likelihoods will diverge faster.

One remaining issue is that our appearance-only SLAM
system requires a PDF over hypotheses, whereas our discus-
sion so far has concerned locating only the best hypothesis.
Computing a PDF requires a simple modification to the bail-
out scheme. Consider that instead of locating only the best
hypothesisH∗, we would like to locate all hypotheses whose

1If the assumption is far from the truth, then Hoeffding’s inequality can
be applied in place of Bennett’s. See below.

2If Xi = c for some choice of indicesx, y, thenXi = −c for y, x.



log-likelihood is at mostC less than that ofH∗. C is a user-
specified constant chosen so that hypotheses less likely than
this can be considered to have zero probability with minimal
error. Simply increasing our bail-out distance byC will retain
all those hypotheses whose final likelihood may be within
this likelihood range, thus giving us a close approximation
to the PDF over hypotheses.

A final note – Bennett’s inequality requires that the vari-
ablesXi are independent. Our Chow Liu model captures
much but not all of the conditional dependence between
features. Thus the variablesXi may have weak dependence.
Our experiments would appear to indicate that this is not a
problem in practice.

V. RESULTS

We tested the system on data collected by a mobile robot.
The robot collected images to the left and right of its
trajectory approximately every 1.5m. Each collected image
is processed by our algorithm and is used either to initialize
a new place, or, if loop closure is detected, to update an
existing place model. Results are presented for three datasets.
The first dataset – labeled City Centre – is 2km in length and
was chosen to test matching ability in the presence of scene
change. It was collected along public roads near the city
centre, and features many dynamic objects such as traffic and
pedestrians. The second dataset – New College – is 1.9km
in length and was chosen to test the system’s robustness to
perceptual aliasing. It features several large areas of strong
visual repetition, including a medieval cloister with identical
repeating archways and a garden area with a long stretch
of uniform stone wall and bushes. The third dataset – Parks
Road – features a typical suburban environment. The robot’s
appearance model was built from a fourth dataset collected
in a different region of the city, the area of which did not
overlap with the test sets.

Navigation results for these datasets were generated using
both the original SLAM system and the accelerated SLAM
system incorporating the bail-out test. All datasets were
processed using the same visual vocabulary and algorithm
parameters. The bail-out boundary was set so that the prob-
ability of incorrectly discarding the best hypothesis at any
step was< 10−6. This value can be varied to trade off speed
against accuracy.

Results are summarized in the figures below. Figure 2 il-
lustrates the bail-out calculation on some real data. Precision-
recall curves for the full and accelerated algorithms on the
City Centre dataset are shown in Figure 4. The curves were
generated by varying the probability at which a loop closure
was accepted. Recall rates are quoted in terms of image-to-
image matches. As a typical loop closure is composed of
multiple images, even a recall rate of 35% is sufficient to
detect almost all loop closures. The relative performance of
the two algorithms on the other datasets is summarized in Ta-
ble I. Figure 3 visualizes the performance of the accelerated
algorithm on the City Centre dataset. The system correctly
identifies a large proportion of possible loop closures with
high confidence. There are no false positives that meet the

Fig. 3. Appearance-only matching results (using the accelerated algorithm)
for the City Centre dataset overlaid on an aerial photograph. The robot
travels twice around a loop with total path length 2km, collecting 2,474
images. Each of these images is determined to be either a new place or
a loop closure. Positions (from hand-corrected GPS) at which the robot
collected an image are marked with a yellow dot. Two images that were
assigned a probabilityp ≥ 0.99 of having come from the same location are
marked in red and joined with a green line. There are no incorrect matches
that meet this probability threshold.

Fig. 4. Precision-Recall curves for the City Centre dataset, showing the
full likelihood calculation (red) and the accelerated calculation using the
bail-out test (green). Notice the scale.

probability threshold. Figures 6 and 7 show some examples
of place recognition performance, highlighting matching
ability in the presence of scene change and robustness to
perceptual aliasing. The robustness to perceptual aliasing is
particularly noteworthy. Of course, had the examples shown
in Figure 7 been genuine loop closures they might also have
received low probability of having come from the same place.
We would argue that this is correct behaviour, modulo the
fact that the probabilities in (a) and (b) are too low. The very
low probabilities in (a) and (b) are due to the fact that the best
matches for the query images are found in the sampling set,
capturing almost all the probability mass. This is less likely
in the case of a true but ambiguous loop closure, particularly
because in the case of a true loop closure the ambiguity can
be resolved by temporal information via the prior term in
Equation 1.



Full Calculation Fast Bail-Out
Dataset Recall Mean Time Recall Mean Time Speed-Up

City Centre 37% 5015 ms 35% 141 ms 35.5
New College 46% 4818 ms 42% 178 ms 27.0
Parks Road 44% 4267 ms 40% 79 ms 53.6

TABLE I

COMPARISON OF THE PERFORMANCE OF THESLAM SYSTEM USING FULL AND ACCELERATED LIKELIHOOD CALCULATIONS. THE RECALL RATES

QUOTED ARE AT 100%PRECISION. TIMING RESULTS ARE FOR THE FILTER UPDATE, ON A 3GHZ PENTIUM IV. FEATURE GENERATION ADDS AN

EXTRA 330MS ON AVERAGE. UPDATE TIME FOR THE ACCELERATED CALCULATION IS DATA DEPENDENT AND VARIES FROM OBSERVATION TO

OBSERVATION. TIME QUOTED IS THE AVERAGE OVER THE DATASET.

(a) Features Ordered by Information Gain (b) Random Feature Order

Fig. 2. Bail-out test on real data. Here the blue lines show the log-likelihoods of each place versus number of features considered. Typically there
are thousands of places - here only a few are shown for clarity. The black line is the bail-out threshold. Once the likelihood of a place hypothesis falls
below the bail-out threshold, its likelihood calculation can be terminated (the remainder of the likelihood calculationis shown above for illustration). In
(a), observations are ordered of information gain; in (b) they are ordered randomly. Note that ordering the features by information gain results in much
faster convergence toward final likelihood values, and hence a much more effective bail-out test. The bail-out threshold does not converge to the leading
hypothesis because of the offset constant C.

(a) p=0.996 (b) 0.999998 (c) 0.999992

Fig. 6. Some examples of images that were assigned high probability of having come from the same place, despite scene change. Results were generated
using the accelerated likelihood calculation. Words common to both images are shown in green, others in red. The probability that the two images come
from the same place is indicated between the pairs.



(a) p=4.6x10−10 (b) p=3x10−9 (c) p=0.71

Fig. 7. Some examples of remarkably similar-looking images from different parts of the workspace that were correctly assigned low probability of having
come from the same place. Results were generated using the accelerated likelihood calculation. We emphasize that these examples are not outliers, but
represent typical system performance. This result is possible because most of the probability mass is captured by locations in the sampling set – effectively
the system has learned that images like these are common in the environment. Words present in both images are shown in green, others in red. (Common
words are shown in blue in (b) for better contrast). The probability that the two images come from the same place is indicated between the pairs.

Fig. 5. Filter update time versus the number of locations in themap, for
the Parks Road dataset. Update time with zero locations is non-zero due to
the fixed cost of evaluating the partition function. Calculation time with the
bail-out test grows linearly, however the slope is too small to be seen on
this graph.

VI. CONCLUSIONS

This paper has presented a new approach to rapid mul-
tihypothesis testing using a probabilistic bail-out condition
based on concentration inequalities. Concentration inequal-
ities exist that apply under very general conditions, even
for arbitrary functions of non-iid random variables, hence
our basic idea should be applicable to a wide variety of
problems. We have applied the bail-out test to accelerate an
appearance-only SLAM system. The speed increase is data-
dependent, but acceleration factors in the range 25x-50x are
typical in our tests. The location recognition performanceof
the accelerated system is only marginally worse than the full
solution, and more than sufficient for reliable online loop
closure detection in mobile robotics applications. We have
presented results demonstrating online loop-closure detection
over 2km loops, however the system is fast enough to scale to
loops of tens of kilometres in length while maintaining sub-

second filter update times. Investigating system performance
on this scale will be a focus of future work.
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