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Abstract

The recognition of human movements such as walk-
g, running or climbing has been approached previ-
ously by tracking a number of feature points and either
classifying the trajectories directly or matching them
with a high-level model of the movement. A major
difficulty with these methods is acquiring and tracking
the requisite feature points, which are generally specific
joints such as knees or ankles. This requires previous
recognition and/or part segmentation of the actor. In
this paper, we show that the recognition of walking or
any repetitive motion activity can be accomplished on
the basis of bottom up processing, which does not re-
quire the prior identification of specific parts, or clas-
sification of the actor. In particular, we demonstrate
that repetitive motion is such a strong cue, that the
moving actor can be segmented, normalized spatially
and temporally, and recognized by matching against a
spatiotemporal template of motion features. We have
implemented a real-time system that can recognize and
classify repetitive motion activities wn normal gray-
scale image sequences.

1 Introduction

The emphasis on visual motion as a means of quan-
titative reconstruction of world geometry has tended
to obscure the fact that motion can also be used for
recognition. In fact, in biological systems, the use of
motion information for recognition is often more ev-
ident than its use in reconstruction. Humans have
a remarkable ability to recognize different kinds of
motion, both of discrete objects, such as animals or
people, and in distributed patterns as in windblown
leaves, or waves on a pond. The classic demonstration
of pure motion recognition by humans is provided by
Moving Light Display experiments [Johansson, 1973],
where human subjects were able to distinguish activ-
ities such as walking, running or stair climbing, from
lights attached to the joints of an actor. More sub-
tle movement characteristics can be distinguished as
well. For example, human observers can identify the
actor’s gender, and even identify the actor if known to
them, by his or her gait. Such abilities suggest that,
in the case of machine vision, it might be possible to

use motion as a means of recognition directly, rather
than indirectly through a geometric reconstruction.

Human motion, specifically walking, has been stud-
ied extensively using model-based approaches (for ex-

ample [Hoffman and Flinchbuagh, 1982]). Rashid

[1980] addresses the problem of correspondence of the
points in an MLD sequence between successive frames
and obtaining trajectories of those points. Goddard
recognizes MLDs involving single actors moving par-
allel to the image plane using a connectionist approach
utilizing the lower-level features of trajectories. Gould
et al. [1992] build a trajectory primal sketch that rep-
resents significant changes in motion with the purpose
of identifying objects using trajectories of a few repre-
sentative points. The curvature features of trajectories
have been used to detect cyclic motion by Allman and

Dyer [1990] and by Tsai et al. [1993].

Very few researchers attempted motion recognition
directly using purely low-level features of image mo-
tion information. Anderson et al. [1985] use spa-
tiotemporal energy measures to characterize different
sources of motion. Overall, there is little literature
concerning the question of whether motion recogni-
tion can be achieved using purely low-level features of
motion and if so how it can be achieved and what fea-
tures to use. Our research answers this question affir-
matively and yields specific demonstrations of motion
recognition using low-level statistical features of mo-
tion. Further, the focus of earlier research was mainly
on human gait recognition, whereas our techniques ap-
ply equally well to any source of motion.

In this paper, we describe a robust method for
recognizing activities, including ones, such as walk-
ing, that involve simultaneous translation of the ac-
tor. The recognition scheme is based on low-level fea-
tures of motion, and does not require the recognition
or tracking of specific parts of the actor. We make
use of the motion field computed between successive
frames to segment and track the actor, detect scale
changes and compensate for translation and scaling.
The resulting gray-level image sequence consists of the
activity at a constant distance from camera while the
actor remains stationary in the image frame. We com-



bine this with earlier reported methods [Polana and
Nelson, 1994a), [Polana and Nelson, 1994b] for detect-
ing stationary activities and classifying them to obtain
a real-time implementable system of activity recogni-
tion. Such techniques for the recognition of activities
have potential applications in areas such as automated
surveillance.

2 Activities

Activities involve a regularly repeating sequence of
motion events. If we consider an image sequence as a
spatiotemporal solid with two spatial dimensions x, y
and one time dimension ¢, then repeated activity tends
to give rise to periodic or semi-periodic gray-level as
well as motion signals along smooth curves in the im-
age solid. We refer to these curves as reference curves.
If these curves could be identified and samples ex-
tracted along them over several cycles, then frequency
domain techniques could be used in order to judge the
degree of periodicity and thus detect periodic activi-
ties.

Consider the case of human walking. This is an
example of a non-stationary activity; that is, if we
attach a reference point to the person walking, that
point does not remain at one location in the image.
If the person is walking with constant velocity, how-
ever, the reference point moves across the image in
a path composed of a constant velocity component
modulated by whatever periodic motion the reference
point undergoes. Thus, if we know the average veloc-
ity of the person over several cycles, we can compute
the spatiotemporal curves of motion along which the
periodicity can be observed.

For the current research we assume that the object
producing the periodic activity is undergoing locally
linear translatory motion (in 3D), so that we can es-
timate the local velocity of the object and compen-
sate for the translation and looming so as to make the
object stationary. We recompute the motion field be-
tween successive frames of the resulting gray-level im-
age sequence and use the recomputed motion to detect
and classify the activity.

3 Activity Recognition

We use a spatiotemporal motion magnitude tem-
plate as a basis for the recognition of activities. In or-
der for this to work, the motion to be identified must
be normalized with respect to spatial scale, spatial
translation and temporal scale and translation. Tem-
plate matching is a well studied and frequently effec-
tive method of recognition. It fails when sufficiently
rigid normalization cannot be carried out. It turns out
that periodicity inherent in motion such as walking or
running is a sufficiently strong cue to allow strong nor-
malization to be performed.

If there are multiple actors in the scene, it is impor-
tant to initially detect each actor and spatially isolate
them. Fortunately, independent motion provides an
exceptionally strong segmentation cue. Nelson [Nel-
son, 1991] has demonstrated a real-time method of
detectmg independently moving objects even in the
case that the observer is itself moving. Using such

a method, we can detect the pixels in an image se-
quence that exhibit motion independent of that of
the background and segment the image frames into
distinct regions corresponding to different moving ob-
jects. Other common methods of segmenting multiple
moving objects are: using color cues, distance from
camera obtained from a range sensor, or selecting ob-
jects moving in a certain velocity range.

Given a gray valued image sequence, we first de-
tect pixels corresponding to independently moving ob-
jects. These pixels are grouped using spatial clus-
tering methods and an object of interest (the actor
performing the activity) is selected and tracked. The
subsequent activity detection and recognition can be
applied to each independently moving object. For
each selected object, a spatiotemporal template of mo-
tion features is obtained from the motion of the cor-
responding pixels, and it is used to match the test
sample with the reference motion templates of known
activities.

Spatial scale invariance is achieved by measur-
ing the spatial size of the object through successive
frames, estimating the spatial scale parameters and
compensating for the changes in scale. Spatial trans-
lation invariance is achieved by tracking the object of
interest through successive frames, estimating the spa-
tial translation parameters and compensating for the
translation of the object. The spatial translation pa-
rameters are estimated using a least squares technique
assuming the object is moving along a locally linear
trajectory.

Temporal scale invariance is achieved by detecting
the frequency of the activity and obtaining one cycle of
activity by averaging motion information of multiple
cycles. A more complete discussion of the periodicity
detection and frequency estimation can be found in
[Polana and Nelson, 1994a]. Temporal translation has
turned out to be hard to estimate from the motion
information, but it was handled in the matching stage
by matching the test template with reference template
at all possible temporal translations.

In the following subsections we focus on the normal-
ization procedures with respect to spatial translation
and scale changes and in a later subsection we describe
the steps involved in feature vector computation and
matching.

3.1 Tracking in the Presence of Other
Moving Objects

If there is a single moving object in the scene, the
object can be effectively tracked by following the cen-
troid of the moving pixels corresponding to that ob-
ject. Such a simple method of tracking does not work
if there is more than one moving object in the field of
view. Instead, we make use of an estimate of shape
of the object and its predicted position in the image
frame to restrict the centroid computation to the area
that is most likely corresponds to the object. Sup-
pose S(t) is the set of pixels that corresponds to the
estimated object, and (x, y;) is the position of the ob-
ject in flow frame ¢. From the position estimates of the
past few (say K) flow frames, we obtain an estimate of
the velocity of the object (assuming local linear trans-



latory motion as before). Let (ug, v) be the velocity
estimate at flow frame ¢. Then the predicted position
of the object in flow frame ¢ 4+ 1 is

pt+ 1) = (¢ + ue, yr + ve).

And, an estimate for the set of pixels corresponding
to the object in flow frame ¢ 4+ 1 is

S't+1)={(z+u,y+v): (x,y) € SH)}.

We measure the centroid of motion
A=Y GO

in frame (¢t + 1), and then updated estimates of posi-
tion of the object and its corresponding set of pixels
respectively in flow frame ¢ + 1 as

(Teg1,¥41) =wxpt+ 1)+ (1 —w) xc(t+ 1),
St4+1) = {(z+zep1—2e, y+yer1—ue) - (2, y) € S(t)}.

This is continued for every frame estimating the po-
sition of the object using its velocity estimated from
past K frames and centroid of motions in the current
frame.

A demonstration of the tracking algorithm in the
presence of multiple moving objects and occlusions
by other objects is shown in figure 1. The illustra-
tion shows an 1mage sequence consisting of two per-
sons walking towards and crossing each other. The
object of interest in this case is the person walking
from right to left. The first eight frames of the 64
frame 1mage sequence given here consist of only the
first person walking. The second person temporarily
occludes the first person. In the first eight frames, we
thresholded the motion to highlight significant motion.
Using those locations we estimated the shape of the
object of interest in the form of a rectangle surround-
ing the object, which is illustrated in the figure. The
estimated positions are shown with a plus (+) sign.
It can be seen that the tracking algorithm smoothly
tracks the first person even when there is occlusion.
The sequence on the right shows the tracking in detail
through successive frames during the occlusion.

3.2 Changing Scale

In this section, we show how the changes in spatial
scale of the activity can be detected and compensated
for. We make a key assumption here: that the height
of the object of interest does not change over time.
This 1s certainly true for the activities of human walk-
ing, running etc., and it is a reasonable assumption
for a host of other activities. (Even when the height
is changing, the periodic repetition of the activity re-
quires that the same height recur through successive
cycles of the activity, and hence fitting the model de-
scribed below over many periods in this case will give
good estimates of scale changes).

Let H be the actual height of the object in three-
dimensional world. (Tt is assumed that this H is
unchanging over time). According to the projective
imaging model with image plane at unit distance from
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Figure 1: Left: Tracking applied to a walking person
(every eighth frame shown); Right: image frames sur-
rounding the interfering motion (consecutive frames)

the origin, the image coordinates (x:, %) in image
frame ¢ are related to the three-dimensional world
coordinates (X, Yy, 7Zt) as (@, ) = (Xe/Ze, Y2/ 7),
where Z; is the distance of the object from the cam-
era at image frame ¢. From this it can be derived that
hy = H/Z; where h; is the projected image height of
the object at image frame ¢. Now, if we assume the
object 1s approaching or moving away from camera at
a locally constant velocity, say W, then Z; = Zy+W ¢
is the distance of the object from camera. Using the
relation hg = H/Zg, we find the image height of the
object over time to be

he = ho/(1+w 1)

where w = W/Z, is a constant scale factor. (Notice
that w is negative if the object is approaching the
camera, positive if the object is moving away, and it
1s exactly equal to zero if the object’s distance from
the camera does not change).
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Figure 2: Left: Image sequence of a person walking
across the street taken by a camera mounted on a van
moving at about 30 mph (every eighth frame); Right:
sequence after tracking (every eighth frame)

By estimating height of the object in each flow
frame and using the model described above, we obtain
an estimate for the locally constant scale factor w and
then compensate for the scale changes by scaling the
image frame ¢ so as to match the scale of the activity
in the reference database (which is fixed before hand).
Unfortunately, the relation hy = ho/(1 4+ w x t) is not
linear in w and so we can not directly use the least
squares technique to estimate w. Instead, we use an
approximation to the model hy = hg(1 — w * t) which
is a good approximation if the term w ¢ is small. We
keep w *x ¢ small by using the model in small temporal
neighborhoods, so that t is very small (also w = W/Zg
is small if the distance of the object from camera is
large compared to the speed with which it is approach-
ing or moving afar, which is true in most circum-
stances). Note that the relation 1/hy = (1 + w#1)/hg
is linear in w, but using least squares to minimize the

error between observed and model heights 1s not same
as minimizing the error between observed and model
inverted heights, and hence the estimate of w is not
same, even though it may produce a reasonable esti-
mate.

Thus the steps involved in detecting and compen-
sating for changes in scale are: measure the image
height of the object in each flow frame, use the heights
in the last K frames to estimate the scale factor w and
scale the 1image frame ¢ to match the fixed scale cor-
responding to the activities in the reference database.

To demonstrate the above technique, we have dig-
itized an image sequence from the video recorded by
NIST (National Institute of Standards & Technol-
ogy) using a video camera mounted on a van look-
ing straight ahead while the van is being driven on
the road at about 30mph around the NIST grounds
in Gaithersberg, Maryland. The image sequence is
shown 1in figure 2 which consists of a person walking
across the street as the van is approaching. The im-
age heights of the person for this sequence are hand-
measured and plotted (dotted-line) in figure 3. As can
be seen, a linear fit over the entire image sequence is
inappropriate for this data. We estimated the scale
factor over the entire sequence using the least squares
technique for inverted heights and plotted (solid-line)
the resulting fit to the data in the same figure. It
gives a reasonably good approximation in the begin-
ning where the distance from camera is large and at
the right end a slight deviation from actual heights
is seen where the distance of the person from cam-
era 1s smaller compared to the speed of the vehicle.
By using local linear models a better approximation
is obtained and when the image frames are scaled and
tracked as before, we obtain the stationary walking
activity shown in figure 2. The motion magnitude fea-
ture vector is computed for this image sequence and
classification algorithm applied and it was correctly
classified as walking (there being six other choices and
unknown).

To Zo EL) o 55 =

Figure 3: Actual image heights of the person (dotted)
and the fitted model (solid)



Figure 4: Sample total motion magnitude feature vector for a sample of walk (top) and a sample of run (bottom),
one cycle of activity is divided into six time divisions shown horizontally, each frame shows spatial distribution of
motion in a 4x4 spatial grid (size of each square is proportional to the amount of motion in the neighborhood).

3.3 Feature Vector
Matching

Given a gray-valued image sequence, the actor is
detected, tracked and spatial scale changes are es-
timated. The image sequence is transformed so as
to compensate for the spatial translation and scale
changes of the actor. The resulting image sequence
consists of the actor at the center of the image frame
and at the same distance from the camera through-
out the image sequence. The 1mage frame is reduced
to the size of the object and the motion is computed
between successive image frames.

Compensating for translation and scale changes so
that the object remains in the center of the image
frames causes the previously stationary background
to appear to be moving. In the transformed image
frames, the background will be moving with the same
velocity magnitude as the object velocity estimated
but in the opposite direction. After computing the
flow fields between successive frames of the trans-
formed image sequence, we eliminate any motion that
is consistent with the background velocity by making
the estimate at that point unknown. (Alternatively,
instead of recomputing motion after transforming and
then eliminating background motion, we could update
the previously computed flow field by subtracting the
estimated trajectory motion of the object. Such a
subtraction, however leads to large inaccuracies in the
measured flow, primarily because the differential tech-
niques we use for speed have low accuracy, and sub-
traction can cause the values to lose all significance.)

Each flow frame ¢ is divided into a spatial grid of
XxY dimension and the motion magnitudes in each
spatial cell are summed. Let M (x,y,t) be the motion
magnitude in flow frame t corresponding to spatial cell
(z,y). According to the definition of a periodic activ-
ity, for each fixed (z, y), the signal M (z,y,t) over time
should be periodic. For each (z,y), we compute the
periodicity index as described in [Polana and Nelson,
1994a] and combine the individual periodicity indices
to get a periodicity measure for the whole image frame.
By thresholding the resulting periodicity measure it is
possible to determine if the motion produced by the
object is periodic. If it is found that there is sufficient
periodicity in the motion, we proceed to compute the
feature vector of motion magnitudes.

The frequency of the activity is found along with

Computation and

the periodicity measure and it is used to divide the
entire image sequence into a number of cycles of the
activity. The flow frames are folded over temporally,
so as to obtain a single cycle of the activity and the
motion in different cycles is averaged to obtain motion
in a single combined cycle of activity. The length of
the cycle 1s divided into T" temporal divisions and mo-
tion is summed in each temporal division correspond-
ing to each spatial cell (#, y) separately. The resulting
spatiotemporal motion template is used as the feature
vector to match against reference motion templates of
known activities.

The classification method we have used is the near-
est centroid algorithm, which is simple to implement
and effectively shows the discriminating power of the
feature vector. To recognize an activity as unknown,
we need to fix thresholds for the distance between a
test sample and the reference classes. These thresh-
olds can be taken as the average distance of reference
samples from the centroid. This way, we would be rec-
ognizing a test vector as belonging to class k if the test
vector falls within a circular region of radius thresh-
old and center as the centroid. To achieve greater
accuracy we first find the principal components of the
reference vectors in each class and weigh the test vec-
tor elements inversely proportional to the correspond-
ing coefficients in the first principal component. Fea-
ture vector elements which are more consistent within
the class are given higher priority in matching by the
above process and the elements whose variability is
large are weighed down. The net result of this proce-
dure 1s to make the recognition regions around each
class centroid ellipsoidal instead of circular.

3.4 Real-Time Implementation

We have implemented the above algorithm on SGI
architecture with multiple processors. The complex-
ity 1s proportional to the number of pixels involved in
the activity. The majority of the work involved is the
normal flow computation at the original resolution of
the image sequence. With four processors, the flow
computation at 128x64 resolution takes 40 to 50 mil-
liseconds between two successive image frames. The
remaining processing involves frames of much reduced
resolution and it takes from 20-30 milliseconds. The
implementation includes displaying the original image
frame, gradient, flow, and the XxY grid motion mag-
nitudes and the classification result at every frame of



the image sequence. The total computation for each
frame takes 60-80 milliseconds. Of course, more pro-
cessors can be used for faster running times.

4 Results

The algorithm was used to classify seven different
types of activities which included: walking, running,
Jumping jacks, exercises on a machine, swinging, ski-
ing and swimming activity of a toy frog The 1m-
age sequences consist of 128 frames of 128x128 8-bit
graylevel pixels (except walking and running whose
frames are of 128x64 pixels). The image sequences
contained a minimum of four cycles of activity to re-
liably detect the fundamental frequency given that
there is a considerable amount of non-repetitive struc-
ture from the background in the case of translating ac-
tors. We used four samples of each activity to create
a reference database. The test samples differed from
the reference database samples in frequency, speed of
motion, spatial scale, different lighting conditions and
different background and foreground gradients. The
test database contained four separate samples of each
activity and in addition contained ten samples of walk-
ing by a different persons six of which involve simul-
taneous translation and scale changes (these samples
had frames of 128x256 pixels so that the actor remains
in the frame through the entire sequence).

We have tested classification using a feature vector
of motion magnitudes in a spatiotemporal grid of size
4x4x6. The recognition algorithm could successfully
classify all samples achieving a 100% correct classifi-
cation. To test the degree of robustness of the activity
recognition algorithm, we have attempted classifying
degraded the samples of walking by adding motion
clutter of leaves blowing in the wind at increasing mo-
tion magnitudes. The motion of leaves was chosen
in stead of random noise for the degradation because
it 1s a realistic example of structured motion clutter
that is commonly present in the background. The re-
sults showed that the classification scheme can tol-
erate structured motion clutter whose magnitude is
equal to one half that of the activity, and it displayed
degraded, but still useful performance for even higher
clutter magnitudes.

5 Conclusions

We have described a general technique for activity
recognition and applied it to the case of walking recog-
nition. This technique uses a periodicity measure to
detect the activity and a feature vector based on mo-
tion information to classify the activity into one of
several known classes. We have illustrated the tech-
nique using real-world examples, and shown that it
robustly recognizes the activity under various compli-
cations. It is robust to varying image illumination and
contrast because the method uses only motion infor-
mation which is invariant to these. It is also invariant
to spatial and temporal translation and scale due to
the normalization of the feature vectors, and the mul-
tiple temporal matching. It is also fairly robust with
respect to small changes in viewing angle (i.e on the
order of 20 degrees). The swing and exercise sequences
were taken outdoors where there is a small amount of

background motion. This comprises not only mov-
ing trees and plants, but also moving people and an
occasional crossing of a car. That the activities can
be detected even in these cases demonstrates that the
technique is tolerant of the usual background clutter
and an occasional disturbance.
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