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Abstract- In this paper, we describe a new method for visual 
recognition of objects in an image that combines feature-based 
object classification with efficient search mechanisms based on 
swarm intelligence. Our approach utilizes the particle swarm 
optimization algorithm (PSO), a population based 
evolutionary algorithm, which is effective for optimization of a 
wide range of functions. PSO searches a multi-dimensional 
solution space for a global optimum using a population of 
“particles” in which each particle has its own velocity vector. 
In our approach, we extend PSO using sequential niching 
methods to handle multiple minima. Also, in our approach, 
each particle in the swarm is actually a self-contained 
classifier that “flys” through the solution space seeking the 
most “object-like” regions. By performing this optimization, 
the classifier swarm simultaneously finds objects in the scene, 
determines their size, and optimizes the classifier parameters. 

 

I. INTRODUCTION 

We describe a new method for visual recognition of 
objects in a scene which combines feature-based object 
classification with efficient search mechanisms based on 
swarm intelligence. Objects in a visual scene need to be 
located and classified so they can be tracked effectively for 
automotive safety, surveillance, perimeter protection, and a 
variety of other government, military, and commercial 
applications. Typically, classification of objects in an image 
is performed using features extracted from an analysis 
window that is scanned across the image. This brute force 
search can be very computationally intensive, especially if a 
small window is used since a classification must be 
performed at each window position. Conventional 
approaches to reducing the computational load are based on 
reducing the search space by using another sensor such as a 
scanning radar to cue the vision system and measure the 
range of the object. Limitations of the radar approach 
include high cost, false alarms, the need to associate radar 
tracks with visual objects, and overall system complexity.  
Alternatively, previous vision-only approaches have utilized 
motion-based segmentation using background estimation 
methods to reduce the search space by generating areas of 
interest (AOI) around moving objects and/or using stereo 
vision to estimate range in order to reduce searching in 
scale. These methods add cost and complexity by requiring 
additional cameras and computations. Motion-based 
segmentation is also problematic under challenging lighting 
conditions or if background motion exists as is the case for 
moving host platforms.  

We describe a novel search mechanism that can 
efficiently find multiple instances of multiple object 
classes in a scene without the need for cueing sensors or 

scan-based searching. Our approach utilizes the particle 
swarm optimization (PSO) algorithm [1,2], a population 
based evolutionary algorithm, which is effective for 
optimization of a wide range of functions. The algorithm 
models the exploration of multi-dimensional solution 
space by a population of individuals where the success of 
each individual has an influence on the dynamics of other 
members of the swarm. Basic PSO has proved effective in 
exploring complicated fitness landscapes and converging 
populations of particles to a single global optimum, 
although it has been shown that the basic PSO is not 
guaranteed to converge to a local or global optimum. 
However, some optimization problems require the 
identification of global as well as local minima in a multi-
modal framework. We extend the PSO algorithm using 
sequential niching methods [3,4] to enable it to locate 
multiple objects in the scene. Our approach is substantially 
different from the previous work in that each particle from 
the population is a unique classifier. As the population 
swarms around, the classifiers adjust parameters to best 
detect the objects in the scene. 

Our method also differs from other vision algorithms 
that use swarm intelligence in that the other methods use 
swarms to build up features using ant colony pheromone-
based ideas. In our method swarming is done at the 
classifier level in a space consisting of object location, 
scale, and classifier parameter dimensions and where each 
particle is a complete classifier. The particles swarm in this 
space in order to find the local optima that correspond to 
objects in the image. The classifier details are not visible at 
the abstraction level of the swarm. 

To our knowledge, there are no existing methods that 
using particle swarms to implement object detection 
systems. However, there have been attempts to use Genetic 
Algorithms (GAs) and Evolutionary Algorithms for object 
detection [5]. In [5], the authors employ GA to detect and 
verify faces from images encoding only the position of the 
face. Object scale is handled by scaling the input image. 
Distances to eigen spaces are used as the fitness functions. 
Genetic algorithms have been used before for decreasing 
the search space in vision systems [6]. These systems 
employ a population of individual solutions that crossover 
and mutate in an effort to maximize the fitness function. 
Other efforts have used GAs for training and adapting 
neural networks to recognize objects [7].  

The paper is organized as follows. In Section II, we 
briefly introduce the PSO algorithm. Details on using 
classifier swarms for object detection are presented in 
Section III. The Sequential Niching-based PSO (SNPSO) 
is introduced in detail in Section IV. In Section V, we 
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present a variety of results on the human detection 
application. Finally, we summarize our conclusions in 
Section VI. 
 

II. PARTICLE SWARM OPTIMIZATION 

 
PSO is a relatively simple optimization method that 

has its roots in artificial life in general, and to bird flocking 
and swarming theory in particular [1,2]. Conceptually, it 
includes aspects of genetic algorithms and evolutionary 
programming. Each potential solution is assigned a 
randomized velocity vector and the potential solutions 
called particles then “fly” through the space in search of 
the function optima. Each particle keeps track of its 
coordinates in multi-dimensional space that are associated 
with the best solution (pbest) it has observed so far. A 
global best parameter (gbest) is used to store the best 
location among all particles. The velocity of each particle 
is then changed towards pbest and gbest in a probabilistic 
way according to  
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Where )(txi and )(tvi are the position and velocity vectors 
at time t of the i-th particle and c1 and c2 are parameters 
that weight the influence of their respective terms in the 
velocity update equation. w is a decay constant which 
allows the swarm to converge to a solution more quickly. 
The rand() function generates a random number between 0 
and 1 with a uniform distribution. The above dynamics 
reflect a socio-psychological model where individual 
particles change their beliefs in accordance with a 
combination of their own experience and the best 
experience of the group. (This is in contrast to other 
models of cognition where an individual changes his 
beliefs to become more consistent with his own experience 
only.) The random element introduces a source of noise, 
which enables an initial random search of the solution 
space. The search then becomes more directed after a few 
iterations as the swarm starts to concentrate on more 
favorable regions.  This type of search is much more 
efficient than scanning or gradient based search methods.  
It is similar to genetic algorithms in that it can be used for 
discontinuous and noisy solution spaces since it only 
requires an evaluation of the function to be optimized at 
each particle position. No gradient information is used. 
Unlike GAs, the PSO particles are not modified at each 
iteration, they just travel to a different position, calculate 
the solution at that position, and compare it with their own 
and global best value in order to update their velocity 
vectors. PSO relies on the fact that in most practical 

problems the optimum solution usually has better than 
average solutions residing in a volume around it. These 
good solutions tend to attract the particles to the region 
where the optimum lies. The swarm becomes more and 
more concentrated on likely regions until the optimum is 
found, e.g. gbest no longer changes. PSO has been applied 
to a wide variety of optimization problems. It has been 
found experimentally that the number of particles and 
iterations required scale weakly with the dimensionality of 
the solution space. The total number of function 
evaluations is very small compared to the size of the 
solution space, as will be seen below. Basic PSO searches 
only for a single optimum in the solution space, but 
various approaches have been described for finding 
multiple local optima or “niches”[8,9]. We now introduce 
classifier swarms and describe them in detail. 
 

III. CLASSIFIER SWARMS 

 
Objects in a visual scene need to be located and 

classified so they can be tracked effectively for automotive 
safety, surveillance, perimeter protection, and a variety of 
other government, military, and commercial applications. 
Typically, classification of objects in an image is performed 
using features extracted from an analysis window that is 
scanned across the image. We propose an approach where a 
swarm of classifiers moves around in the search space 
looking for selected class of objects. One of the novel 
aspects of our approach is that two of the dimensions are 
used to locate objects in the image, while the rest of the 
dimensions are used to optimize the classifier parameters. 

Our approach is a much more efficient method for 
finding objects in an image compared to searching based on 
scanning the image or using gradient information, 
especially if the scale of the object is not known 
beforehand. We have measured speedup factors of over 
1000 relative to sequential scanning when searching in three 
dimensions. The number of false alarms per image is also 
greatly reduced, which is very important for practical 
applications. The speedup and false alarm advantages over 
sequential scanning increase as the number of dimensions is 
increased which makes it feasible to include object rotation 
angle as one of the search space dimensions. This approach 
will help increase the range of applications for vision 
systems by improving performance, reducing computational 
requirements dramatically, eliminating the need for cueing 
sensors such as radar, and reducing overall cost of practical 
systems. 

The basic architecture for our approach is shown in 
Fig. 1. The objective is to find multiple instances of an 
object class in an input image. The PSO particles fly in a 
solution space where two of the dimensions represent the x 
and y coordinates in the input image. The key concept in 
our approach is that each particle in the PSO swarm is a 
self-contained object classifier which outputs a value 
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representing the classification confidence that the image 
distribution in the analysis window associated with that 
particle is or is not a member of the object class. All 
particles are instances of the same classifier and only the 
classifier parameters vary as the particle visits different 
positions in the solution space. As mentioned before, two 
of the solution space dimensions represent the location of 
the analysis window on the input image. A third dimension 
represents the size or scale of the analysis window in order 
to match the unknown size of objects in the image. 
Additional dimensions can be used to represent other 
classifier parameters such as, for example, the rotation 
angle of the object.  

One can imagine a multidimensional surface of 
classifier confidence (or saliency map) that can be 
generated if the classifier is scanned across all of the 
dimensions. The saliency map for an image can be 
discontinuous and noisy, with many isolated false alarms 
where the classifier responds incorrectly to patterns in the 
image. Thus gradient-based methods cannot be used to 
find objects in the image, which is why brute force 
scanning is usually used. By generating saliency maps for 
many images, we have found experimentally that objects 
in the scene tend to have large “cores” of high confidence 
values. Many false alarms tend to be isolated with small 
cores. Since the probability of a particle passing near or 
through a larger core is greater for a larger core, the 
particles are attracted more to larger cores and the number 
of false alarms in a image are reduced using SNPSO 
compared to simple scanning. In simple scanning, all of 
the false alarms in an image will be detected so the 
classifier must be biased towards very low false alarm 
rates in order to keep the overall false alarm rate low, 
which also has the side effect of reducing the detection 
rate. 

A comparison of the computational requirements of 
PSO classification compared to brute force scanning is 
given in Table. 2. The speedup factor for PSO is SM2/PK 
where it is assumed that M scan positions are searched 
along x and y and S positions are searched along the scale 
dimension. P is the number of particles and K is the 
number of iterations. We have found for realistic images 
that P=80 and K=10 work well for 3 dimensions. If 
M=S=100, then the speedup factor is 1250. The speedup 
advantage of PSO increases further with the number of 
dimensions. The number of false alarms is also reduced 
relative to brute force scanning. 

In our case, we developed a classifier to detect 
humans [8]. Given a 2:1 aspect ratio window in an image, 
pre-selected Haar wavelet features were computed along 
with a set of fuzzy edge-symmetry features. This combined 
190D feature vector was then passed to a Non-linear 
Discriminant Analysis (NDA) neural network for detecting 
the presence of a human in the selected window region. 
Typically, to find all humans in the scene, the window 
needs to be scanned across the entire image. In 

conventional approaches, an estimate of the object height 
or depth from the camera needs to be known to determine 
the height of the scanning window. In our approach, the 
height of the classifier is also automatically obtained from 
the PPSO swarm dynamics. The performance of the 
trained human detection classifier on different infrared 
imagery is presented in Figures 2. 

We now describe the sequential niching approach to 
classifier swarms that will be used to find multiple objects 
in the scene. 
 

III. SEQUENTIAL NICHING PARTICLE SWARM 
OPTIMIZATION (SNPSO) 

 
The flow chart for our sequential niching method for 

finding multiple objects in a scene is shown in Fig. 1.  
After an input image is received, a running list of object 
positions in the scene is cleared as well as the boundary 
flag table described below. The particle swarm of 
classifiers is then initialized in random positions in the 
solution space. The boundaries of the initialization volume 
can be set using various criteria. For example, if the flat 
ground constraint is appropriate, then we can utilize the 
fact that objects of a certain size will appear only in certain 
subregions of the image to reduce the search volume. After 
initialization, the swarm dynamics are iterated until the 
global best (gbest) exceeds a preset threshold or the 
number of iterations reaches a preset maximum value. If 
gbest does not exceed the threshold then it is assumed no 
targeted objects are present in the scene and the system 
waits for the next input image. If gbest does exceed the 
threshold, then a neighborhood check is performed around 
the gbest position to see if a certain number of neighboring 
positions in the image also exceed the threshold for that 
analysis window size. If the gbest position passes the 
neighborhood test, then gbest is added to the list of object 
positions. The image is then erased locally at the gbest 
position with a Gaussian whose width is proportional to 
the analysis window size. If gbest does not pass the 
neighborhood test, then the image is erased at gbest 
without adding gbest to the object list. The purpose of the 
local erasure step is to remove that object’s influence on 
the swarm when the swarm is re-initialized to search for 
the next object. By erasing the image locally, the influence 
of that region on the swarm across all dimensions is 
eliminated. After the image erasure step, a boundary flag 
table is updated with the erasing Gaussian. This table has 
the same dimensions as the image and is in one-to-one 
correspondence with it. All table entries within the width 
of the erasing Gaussian are set ON. If a particle lands on a 
location whose flag is ON, the particle will not run its 
classifier since it is already known that an object is present 
at that location. Instead, the particle will keep its previous 
pbest value. This eliminates unnecessary classifier 
evaluations in regions where it has already been 
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determined that an object exists which speeds up the 
swarm, especially if large objects are present in the scene. 
We do not implement any repelling forces at object 
locations to avoid isolating regions. After the Gaussian 
flag table is updated, the swarm is re-initialized to search 
for the next object.  The boundary flag table is cleared 
when a new image is acquired. 

This approach can be extended naturally to searching 
for members of different object classes in parallel. We 
simply run multiple swarms for multiple object classes. 
Each swarm maintains its own gbest, particle best (pbest), 
and object lists. The swarms interact indirectly only 
through the erasing Gaussians and boundary table which 
are common to all swarms. Thus if a swarm detects an 
object at a particular location in the image, the other 
swarms do not try to find other objects there. 

 
IV. RESULTS 

We have successfully implemented the sequential 
niching swarming classifiers method for detecting objects 
in a scene of unknown position and size. Each of the 
particles represented a classifier based on Haar wavelet 
and fuzzy symmetry features and a backpropagation neural 
network classification engine. The demonstration was done 
in Matlab with the particle classifiers implemented using a 
C++ dynamic link library called from Matlab. Due to the 
paucity of space we only show few relevant examples. The 
results are shown in Figs. 3 to 5. The swarm was 
programmed to search for pedestrians in the x, y, and size 
dimensions. In these examples we used infrared images, 
but the approach works equally well in the visible. In fact, 
the classifier was trained using visible light images only. 
The first test image was a single person walking outside 
between a building and a fence with hills in the 
background. Fig. 3 shows the swarm after a single 
iteration. The 3D solution space with the current positions 
of the classifier particles is shown in the upper left. At this 
early stage the particles are distributed widely in x, y, and 
scale. Particles that exceed the classification threshold but 
don’t pass the neighborhood test are colored red, particles 
that pass both criteria are colored green, and all other 
particles are blue. The upper right image shows the particle 
positions projected on the x-y plane of the input image, 
including the effects of any erasing Gaussians. The 
analysis windows corresponding to the green particles are 
shown superimposed on the input image in the lower part 
of the figure. After only a single iteration, the particles are 
all blue and the pedestrian has not yet been found. Fig. 4 
shows the swarm after 10 iterations. The particles are now 
centered on the pedestrian with a range of window sizes. 
Only one particle passes the classifier threshold and 
neighborhood tests. The corresponding erasing Gaussian 
and window are shown. It should be emphasized that it is 
not necessary to wait until the entire swarm condenses on 
an object before deciding an object is at that location. We 

label that location as an object as soon as a single particle 
passes the classification and neighborhood tests, at which 
point the image is erased locally, the boundary table is 
updated, the swarm is re-initialized, and search starts for 
the next object in the scene. In Figure 5, we show results 
for an infrared image with multiple pedestrians. After 13 
iterations all 3 pedestrians were detected and it was 
determined that no more pedestrians were present. Note 
the 3 erasing Gaussians in the upper right centered on the 
pedestrians.  

The same swarm parameters and classifier were used 
for both of these examples. The number of particles was 80 
and the maximum number of iterations was limited to 10. 
The total number of classifier evaluations was 1280 for the 
single pedestrian and 1840 for the multi-pedestrian 
example. This is far less than the number of evaluations 
necessary to search by scanning in x, y, and scale. 
Pedestrians are often detected within 2 to 3 iterations. 
Most of the processing is spent on determining that no 
more pedestrians are present by propagating the swarm 
until the maximum allowed number of iterations is 
reached. The effect of this overhead can be reduced by 
using the time dimension or if the number of objects is 
known a priori. When the time dimension is used, the 
swarm searches a video cube consisting of a stack of 
image snapshots taken at discrete time intervals instead of 
a single image. Advantages of searching in time as well as 
space include automatically finding the space-time paths of 
objects, further reduction in false alarms because 
consistent objects will form extended saliency “tubes” in 
space-time, and the object sweep necessary for 
determining if all objects have been found needs to be 
done only once for each image stack rather than for each 
individual image. 

 
V. CONCLUSIONS 

In this paper, we introduced the concept of classifier 
swarms for effectively searching an image for multiple 
objects of interest. We first extended the particle swarm 
optimization algorithm using sequential niching methods 
to search for multiple minima. A human detection 
classifier that uses Haar wavelet and edge-symmetry 
features was designed. A human detection classifier was 
used in place of the usually used particle in the sequential 
niching PSO. From the variety of results presented, we can 
see that the proposed approach is an efficient and effective 
search mechanism. It is also shown to be very fast and can 
robustly detect multiple objects in the scene. 
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Figure 1. Flow chart for sequential niching PSO vision system. 
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Table. 1. Comparison of computational requirements of PSO vision system with brute force scanning. 
Conventional Scanning Particle Swarm 

Wavelet Size = NxN 
Image Size = MxM 
No. of Features =F 
Operations per Feature = 2N(N-2) 
Total complexity per image = M2*F*2*N(N-2) 
(Assumes that complete image is scanned to find 
objects of interest, stepsize = 1 pixel) 

No. of Particles = P 
No. of Iterations = K 
No. of Features =F 
Operations per Feature = 2N(N-2) 
Total complexity per image = P*K*F*2*N(N-2) 
(Note that P*K << M2) 

 
 
 

   
 

   
 

   
Figure 2. Saliency maps generated by human detection classifier for the IR images on the left. The saliency maps show the 
classifier response at each spatial location in the IR image. Black and white indicate the maximum and minimum classifier 
responses, respectively. 
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Figure. 3. Results for sequential niching PSO vision system for single pedestrian in the infrared. Results are shown after a 

single iteration of the swarm. The object is not yet detected. 
 
 

 

 
Fig. 4. Results for sequential niching PSO vision system for single pedestrian in the infrared. Results are shown after 10 

iterations of the swarm. The object has been detected and it was determined that no other pedestrians are present in the image. 
 
 

 

 
Fig. 5. Results for sequential niching PSO vision system for multiple pedestrians in the infrared. Results are shown after 10 

iterations of the swarm. All three objects have been detected and it was determined that no other pedestrians are present in the 
image. 
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