
3D transformations and
hierarchical modelling

Dr Nicolas Holzschuch

University of Cape Town

e-mail: holzschu@cs.uct.ac.za

mailto:holzschu@cs.uct.ac.za

Map of the lecture

• Homogeneous coordinates in 3D

• Geometric transformations in 3D
– translations, rotations, scaling,…

• Hierarchical modelling:
– the need for hierarchical modelling

– how to do it?

Homogeneous coordinates in 3D

• In order to model all transformations as
matrices:
– introduce a fourth coordinate, w

– two vectors are equal if:
x/w = x’/w’, y/w = y’/w’ and z/w=z’/w’

• All transformations are 4x4 matrices

x

y

z

w



















Translations in 3D

T (tx, ty ,tz) =

1 0 0 t x

0 1 0 t y

0 0 1 t z

0 0 0 1



















′ x

′ y

′ z

′ w




 





=
=
=
=

x + wtx

y + wty

z + wtz

w

Scaling in 3D

S (sx, sy ,sz) =

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1



















′ x

′ y

′ z

′ w




 





=
=
=
=

sxx

syy

sz z

w

Rotations in 3D

• One rotation: one axis and one angle

• Matrix depends on both axis and angle
– direct expression possible, from axis and

angle, using cross-products

• Rotations about axis have simple
expression
– other rotations express as composition of

these rotations

Rotation around x-axis

Rx(θ) =

1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1



















Sanity check: a rotation of π/2
should change y in z, and z in -y Rx(

π
2) =

1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1



















x-axis is
unmodified

Rotation around y-axis

Ry(θ) =

cosθ 0 sinθ 0

0 1 0 0

−sinθ 0 cosθ 0

0 0 0 1



















Sanity check: a rotation of π/2
should change z in x, and x in -z

Ry(
π
2) =

0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1



















y-axis is
unmodified

Rotation about z-axis

Rz (θ) =

cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1



















Sanity check: a rotation of π/2
should change x in y, and y in -x

Rz(
π
2) =

0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



















z-axis is
unmodified

Any transformation in 3D

• All transformations in 3D can be
expressed as combinations of
translations, rotations, scaling
– expressed using matrix multiplication

• Transformations can be expressed as
4x4 matrices

Defining complex objects

x

α
β

γ

Our problem:

Defining complex objects

• Object defined as a combination of
smaller objects:
– robot, car, tire

• Ensure a consistent behaviour:
– the object stays connected

– If I move the hand, the arm follows

• Use “natural” parameters: x,α,β,γ

How to do this?

• Easier to specify the position of the
wheel with respect to the car

• Easier to specify the position of the bolts
on the wheel with respect to the wheel

• We don’t use absolute coordinates in life

Relative coordinates

• Use relative coordinates:
– specify the position of the forearm with

respect to the arm

• Using concatenation of transformations:
– translate to the arm position

– draw the arm

– translate to the forearm position relative to
the arm

– draw the forearm

Concatenation of transformations

• Sometimes I want to go back to the
origin:
– I finished drawing the hand, now it’s the

other arm

– better specify the position of the other arm
with respect to the body (instead of the arm)

• I need the possibility to go back

Transformations stack

• Keep current transformation information
– initially = M, from model to viewport

– M’=MT (translation by x)

– draw robot body

– M”=M’T1 (translation to center of 1st wheel)

– draw first wheel as circle of center (0,0)

– return to M’

– M’’’=M’T2 (translation to center of 2nd wheel)

– draw second wheel

Stack in graphics libraries

• OpenGL:
– popmatrix(), pushmatrix()

• SPHIGS:
– openStructure(),
closeStructure()

• Postscript:
– gsave, grestore

Sample implementation

– Set transformation as projection matrix

– translate by x (concatenate translation matrix with
transformation matrix)

– draw car body

– save transformation matrix

– translate+rotate

– draw first wheel

– restore transformation matrix

– save transformation matrix

– translate+rotate

– draw second wheel

– restore transformation matrix

Hierarchical definition

• How to make sure you’re having the
right transformation?

• How to know it’s time to go back to
previous transformation?

• Define your object hierarchically

• Drawing = traversal of the tree

Object defined hierarchically

1st arm

Rot. α

transl. x

body

1st wh.

transl.

2nd wh.

transl. transl.

…

Object hierarchy: conclusion

• Define your object as a tree:
– specify parts position relative to others

– use a transformation stack

• Interests:
– easy variation of parameters

– objects are re-usable
• one procedure for all four wheels

– ensured consistency

	3D transformations and hierarchical modelling
	Map of the lecture
	Homogeneous coordinates in 3D
	3D transformations
	Translations in 3D
	Scaling in 3D
	Rotations in 3D
	Rotation around x-axis
	Rotation around y-axis
	Rotation about z-axis

	Any transformation in 3D

	Defining complex objects
	Defining complex objects
	How to do this?
	Relative coordinates
	Concatenation of transformations
	Transformations stack
	Stack in graphics libraries
	Sample implementation
	Hierarchical definition
	Object defined hierarchically
	Object hierarchy: conclusion

