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Map of the lecture

• Homogeneous coordinates in 3D

• Geometric transformations in 3D
– translations, rotations, scaling,…

• Hierarchical modelling:
– the need for hierarchical modelling

– how to do it?



Homogeneous coordinates in 3D

• In order to model all transformations as 
matrices:
– introduce a fourth coordinate, w

– two vectors are equal if: 
x/w = x’/w’, y/w = y’/w’ and z/w=z’/w’

• All transformations are 4x4 matrices
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Translations in 3D

T (tx, ty ,tz ) =

1 0 0 t x

0 1 0 t y

0 0 1 t z

0 0 0 1
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Scaling in 3D

S (sx, sy ,sz) =

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1
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Rotations in 3D

• One rotation: one axis and one angle

• Matrix depends on both axis and angle
– direct expression possible, from axis and 

angle, using cross-products

• Rotations about axis have simple 
expression
– other rotations express as composition of 

these rotations



Rotation around x-axis

Rx(θ) =

1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1
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Sanity check: a rotation of π/2 
should change y in z, and z in -y Rx(

π
2 ) =

1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1
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x-axis is
unmodified



Rotation around y-axis

Ry(θ ) =

cosθ 0 sinθ 0

0 1 0 0

−sinθ 0 cosθ 0

0 0 0 1
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Sanity check: a rotation of π/2 
should change z in x, and x in -z

Ry(
π
2 ) =

0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1
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y-axis is
unmodified



Rotation about z-axis

Rz (θ) =

cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1
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Sanity check: a rotation of π/2 
should change x in y, and y in -x

Rz(
π
2 ) =

0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1
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z-axis is
unmodified



Any transformation in 3D

• All transformations in 3D can be 
expressed as combinations of 
translations, rotations, scaling
– expressed using matrix multiplication

• Transformations can be expressed as 
4x4 matrices



Defining complex objects
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Defining complex objects

• Object defined as a combination of 
smaller objects:
– robot, car, tire

• Ensure a consistent behaviour:
– the object stays connected

– If I move the hand, the arm follows

• Use “natural” parameters: x,α,β,γ



How to do this?

• Easier to specify the position of the 
wheel with respect to the car

• Easier to specify the position of the bolts 
on the wheel with respect to the wheel

• We don’t use absolute coordinates in life



Relative coordinates

• Use relative coordinates:
– specify the position of the forearm with 

respect to the arm

• Using concatenation of transformations:
– translate to the arm position

– draw the arm

– translate to the forearm position relative to 
the arm

– draw the forearm



Concatenation of transformations

• Sometimes I want to go back to the 
origin:
– I finished drawing the hand, now it’s the 

other arm

– better specify the position of the other arm 
with respect to the body (instead of the arm)

• I need the possibility to go back



Transformations stack

• Keep current transformation information
–  initially =  M, from model to viewport

– M’=MT (translation by x)

– draw robot body

– M”=M’T1 (translation to center of 1st wheel)

– draw first wheel as circle of center (0,0)

– return to M’

– M’’’=M’T2 (translation to center of 2nd wheel)

– draw second wheel



Stack in graphics libraries

• OpenGL:
– popmatrix(), pushmatrix()

• SPHIGS:
– openStructure(), 
closeStructure()

• Postscript:
– gsave, grestore



Sample implementation

– Set transformation as projection matrix

– translate by x (concatenate translation matrix with 
transformation matrix)

– draw car body

– save transformation matrix

– translate+rotate

– draw first wheel

– restore transformation matrix

– save transformation matrix

– translate+rotate

– draw second wheel

– restore transformation matrix



Hierarchical definition

• How to make sure you’re having the 
right transformation?

• How to know it’s time to go back to 
previous transformation?

• Define your object hierarchically

• Drawing = traversal of the tree



Object defined hierarchically

1st arm

Rot. α

transl. x

body

1st wh.

transl.

2nd wh.

transl. transl.

…



Object hierarchy: conclusion

• Define your object as a tree:
– specify parts position relative to others

– use a transformation stack

• Interests:
– easy variation of parameters

– objects are re-usable
• one procedure for all four wheels

– ensured consistency
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