
MATRICES part 2 

(modified content from Wikipedia articles on matrices http://en.wikipedia.org/wiki/Matrix_(mathematics)) 

3. Linear equations 

Matrices can be used to compactly write and work with systems of linear equations. For example, if A is an m-by-n matrix, x designates a column 
vector (i.e., n×1-matrix) of n variables x1, x2, ..., xn, and b is an m×1-column vector, then the matrix equation 

Ax = b 

is equivalent to the system of linear equations 

a1,1x1 + a1,2x2 + ... + a1,nxn = b1 

... 

am,1x1 + am,2x2 + ... + am,nxn = bm . 

For example, 

 3x1 +  2x2  –  x3  =   1 
 2x1 –  2x2 + 4x3  = – 2 
– x1 + 1/2x2 – x3  =   0  

is a system of three equations in the three variables x1, x2, and x3. This can be written in the matrix form Ax = b where 

A = �
3 2 −1
2 −2 4
−1 1/2 −1

� ,      x = �
𝑥1
𝑥2
𝑥3
�,       b = �

1
−2
0
� 

A solution to a linear system is an assignment of numbers to the variables such that all the equations are simultaneously satisfied.  
A solution to the system above is given by 

x1  =     1 
x2  =  – 2 
x3  =  – 2  
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since it makes all three equations valid. 

A linear system may behave in any one of three possible ways: 

1. The system has infinitely many solutions. 
2. The system has a single unique solution. 
3. The system has no solution. 

 

3.1. Solving linear equations 

There are several algorithms for solving a system of linear equations. 

Elimination of variables 

The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows: 

1. In the first equation, solve for one of the variables in terms of the others. 
2. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and one fewer unknown. 
3. Continue until you have reduced the system to a single linear equation. 
4. Solve this equation, and then back-substitute until the entire solution is found. 

For example, consider the following system: 

 

Solving the first equation for x gives x = 5 + 2z − 3y, and plugging this into the second and third equation yields 

 

Solving the first of these equations for y yields y = 2 + 3z, and plugging this into the second equation yields z = 2. We now have: 



 

Substituting z = 2 into the second equation gives y = 8, and substituting z = 2 and y = 8 into the first equation yields x = −15. Therefore, the solution 
set is the single point (x, y, z) = (−15, 8, 2). 

Gaussian elimination 

Elimination of variables method is natural for solving by hand, but is a little cumbersome to implement it as a computer program. The method of 
Gaussian elimination can be described as an easy to implement algorithm and is the standard algorithm for numerically solving a system of linear 
equations. Gaussian elimination relies on row-reduction of an augmented matrix as explained below. 

Augmented matrix 

Given a system of linear equations represented in the matrix form as Ax = b, its augmented matrix is obtained by concatenating m-by-1 column 
vector b to m-by-n A and creating m-by-(n+1) augmented matrix [A | b]. 

For example,  

A = �
3 2 −1
2 −2 4
−1 1/2 −1

� , b = �
1
−2
0
�         ⇒       [A | b] = �

3 2 −1 1
2 −2 4 −2
−1 1/2 −1 0

� 

Row reduction 

In row reduction, the linear system is represented as an augmented matrix and this matrix is then modified using elementary row operations until it 
reaches reduced row echelon form. A matrix is in row echelon form if 

• All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (all zero rows, if any, belong at the bottom of the 
matrix). 

• The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the 
leading coefficient of the row above it. 

This is an example of a 3×5 matrix in row echelon form: 
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A matrix is in reduced row echelon form (also called row canonical form) if it satisfies the following conditions: 

• It is in row echelon form. 
• Every leading coefficient is 1 and is the only nonzero entry in its column. 

This is an example of a matrix in reduced row echelon form: 

 

Because these operations are reversible, the augmented matrix produced always represents a linear system that is equivalent to the original. 

The Algorithm 
Gaussian elimination relies on the following 3 observations:  
(1) multiplying any equation by a scalar does not change the solution,  
(2) adding any equation to any other equation does not change the solution,  
(3) switching any two equations does not change the solution.  
These three operations are equivalent to the elementary row operations described above. The main idea of the Gaussian elimination is to use the 
elementary row operations to simplify the augmented matrix to its reduced row echelon form. Then, the augmented matrix is further simplified such 
that its first part is an identity matrix. Given this simplified form, the solution is the last column of the augmented matrix. Let us look at examples: 
 

 
The table below is the row reduction process applied simultaneously to the system of equations, and its associated augmented matrix.  
In practice, one does not usually deal with the systems in terms of equations but instead makes use of the augmented matrix, which is more suitable 
for computer manipulations. The row reduction procedure in the table may be summarized as follows:  
eliminate x from all equations below L1, and then eliminate y from all equations below L 2. This will put the system into triangular form.  
Then, using back-substitution, each unknown can be solved for. 
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Once y is also eliminated from the third row, the result is a system of linear equations in triangular form, and so the first part of the algorithm is 
complete. From a computational point of view, it is faster to solve the variables in reverse order, a process known as back-substitution. One sees the 
solution is z = -1, y = 3, and x = 2. So there is a unique solution to the original system of equations. 
Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in reduced row echelon form, as it is done in the table. 
The process of row reducing until the matrix is reduced is sometimes referred to as Gauss-Jordan elimination, to distinguish it from stopping after 
reaching echelon form. 
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Another example is for the system we solved before by elimination of variables: 
 
 
 

 

The last matrix is in reduced row echelon form, and represents the solution x = −15, y = 8, z = 2.  

Time complexity 

The number of arithmetic operations required to perform row reduction is one way of measuring the algorithm's computational efficiency. For 
example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for 
each unknown in reverse order, requires n(n+1) / 2 divisions, (2n3 + 3n2 − 5n)/6 multiplications, and (2n3 + 3n2 − 5n)/6 subtractions, for a total of 
approximately 2n3 / 3 operations. Thus it has arithmetic complexity of O(n3). 

Matrix solution 

We are jumping ahead here, this paragraph will be clear after learning about the inverse matrix. If the equation system is expressed in the matrix form 
Ax = b, the entire solution set can also be expressed in matrix form. If the matrix A is square (has m rows and n=m columns) and has full rank (all m 
rows are independent), then the system has a unique solution given by x = A–1 b where A–1 is the inverse of A.  
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4. Rank of a matrix 
In linear algebra, the rank of a matrix A is the size of the largest collection of linearly independent columns of A (the column rank) or the size of the 
largest collection of linearly independent rows of A (the row rank). For every matrix, the column rank is equal to the row rank. The rank is 
commonly denoted rank(A). 

The vectors v1, v2, ..., vk are said to be linearly dependent if there exist a finite number of scalars a1, a2, ..., ak, not all zero, such that 

 
where zero denotes the zero vector. Otherwise, we said that vectors v1, v2, ..., vk are linearly independent. 

 

 

 

The Gaussian elimination algorithm can be applied to any m-by-n matrix A. In this way, for example, some matrices can be transformed to a matrix 
that has a row echelon form like 

 

where the *s are arbitrary entries and a, b, c, d, e are nonzero entries. This echelon matrix T contains a wealth of information about A:  
the rank of A is 5 since there are 5 non-zero rows in T.  
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5. Linear transformations 

Matrices and matrix multiplication reveal their essential features when related to linear transformations, also known as linear maps. A real m-by-n 
matrix A gives rise to a linear transformation Rn → Rm mapping each vector x in Rn to the (matrix) product Ax, which is a vector in Rm.  

Conversely, each linear transformation f: Rn → Rm arises from a unique m-by-n matrix A:  
explicitly, the (i, j)-entry of A is the ith coordinate of f(ej), where ej = (0,...,0,1,0,...,0) is the unit vector with 1 in the jth position and 0 elsewhere.  
The matrix A is said to represent the linear map f, and A is called the transformation matrix of f. 

For example, the 2×2 matrix 

 

can be viewed as the transform of the unit square into a parallelogram with vertices at (0, 0), (a, b), (a + c, b + d), and (c, d).  

The parallelogram pictured below is obtained by multiplying A with each of the column vectors  and .  
These vectors define the vertices of the unit square. 

The vectors represented by a 2-by-2 matrix correspond to the sides of a unit square transformed into a parallelogram. 
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The following table shows a number of 2-by-2 matrices with the associated linear maps of R2. The blue original is mapped to the green grid and 
shapes. The origin (0,0) is marked with a black point. 

Horizontal shear with m=1.25. Horizontal flip Squeeze mapping with r=3/2 Scaling by a factor of 3/2 Rotation by π/6R = 30° 
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6. Square matrices 
A square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order n. Any two square 
matrices of the same order can be added and multiplied. The entries aii form the main diagonal of a square matrix. They lie on the imaginary line 
which runs from the top left corner to the bottom right corner of the matrix. 

Main types 
Name Example with n = 3 

Diagonal matrix 

 

 Lower triangular matrix 

 

Upper triangular matrix 

 

The identity matrix In of size n is the n-by-n matrix in which all elements on the main diagonal are equal to 1 and all other elements are equal to 0: 

 

It is called identity matrix because multiplication with it leaves a matrix unchanged: 

AIn = ImA = A for any m-by-n matrix A. 

A square matrix A that is equal to its transpose, i.e., A = AT, is a symmetric matrix. 
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6.1 Invertible matrix and its inverse 

A square matrix A is called invertible or non-singular if there exists a matrix B such that 

AB = BA = In.  

If B exists, it is unique and is called the inverse matrix of A, denoted A−1. 

A square nxn matrix is invertible iff its determinant (defined below) is not zero. 
A square nxn matrix is invertible iff its rank is n. 
A square nxn matrix A is invertible iff the equation Ax=0 has only the trivial solution x=0. 
 
If A and B are invertible, then so is A*B: (A*B)-1 = B-1 * A-1. 

Finding the inverse of a matrix 

A 2 by 2 matrix is invertible if and only if ad - bc is not zero: 

 

A diagonal matrix has an inverse provided no diagonal entries are zero: 

 

A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists.  
If A is a n by n square matrix, then one can use row reduction to compute its inverse matrix, if it exists.  
First, the n by n identity matrix is augmented to the right of A, forming a n by 2n block matrix [A | I].  
This is because we are trying to find matrix X which is the solution of A*X= I.  
Now through application of elementary row operations, find the reduced echelon form of this n by 2n matrix.  
The matrix A is invertible if and only if the left block can be reduced to the identity matrix I; in this case the right block of the final matrix is A−1.  
If the algorithm is unable to reduce the left block to I, then A is not invertible. 

For example, consider the following matrix 
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To find the inverse of this matrix, one takes the following matrix augmented by the identity, and row reduces it as a 3 by 6 matrix: 

 

 
 

By performing row operations, one can check that the reduced row echelon form of this augmented matrix is: 

 

The matrix on the left is the identity, which shows A is invertible. The 3 by 3 matrix on the right, B, is the inverse of A. This procedure for finding the 
inverse works for square matrices of any size. 

6.2. Trace 

The trace, tr(A) of a square matrix A is the sum of its diagonal entries, tr(A) = sum(Aii). While matrix multiplication is not commutative as 
mentioned above, the trace of the product of two matrices is independent of the order of the factors: 

tr(AB) = tr(BA). 

This is immediate from the definition of matrix multiplication: 

 

Also, the trace of a matrix is equal to that of its transpose, i.e., 

tr(A) = tr(AT). 
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6.3. Determinant 
 

 

A linear transformation on R2 is given by the indicated matrix. The determinant of this matrix is −1, as the area of the green parallelogram at the right is 1, but the 
map reverses the orientation, since it turns the counterclockwise orientation of the vectors to a clockwise one. 

The determinant det(A) or |A| of a square matrix A is a number encoding certain properties of the matrix.  

A matrix is invertible if and only if its determinant is nonzero.  

Its absolute value equals the area (in R2) or volume (in R3) of the image of the unit square (or cube),  
while its sign corresponds to the orientation of the corresponding linear map: the determinant is positive if and only if the orientation is preserved. 

The determinant of 2-by-2 matrices is given by 

 

The determinant of 3-by-3 matrices involves 6 terms (rule of Sarrus):  

 
Sarrus' rule: The determinant of the three columns on the left is the sum of the products along the solid diagonals minus the sum of the products 
along the dashed diagonals 
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Definition of Determinant 

There are various ways to define the determinant of a square matrix A. Perhaps the most natural way is expressed in terms of the columns of the 
matrix. If we write an n × n matrix in terms of its column vectors 

 

where the  are vectors of size n, then the determinant of A is defined so that 

 

where b and c are scalars, v is any vector of size n and I is the identity matrix of size n. Adding a multiple of any row to another row, or a multiple of 
any column to another column, does not change the determinant. Interchanging two rows or two columns affects the determinant by multiplying it by 
−1. Using these operations, any matrix can be transformed to a lower (or upper) triangular matrix, and for such matrices the determinant equals the 
product of the entries on the main diagonal; this provides a method to calculate the determinant of any matrix.  

An idea of Gaussian elimination can be used to find determinant of a matrix. For example, the determinant of 

 

can be computed using the following matrices: 

 
 
Site http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi can be used to see step by step calculations for matrices that are based on the idea of Gaussian 
elimination. It shows how reduction to row echelon form works and how it helps in 
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- Solving a system of linear equations 
- Finding an inverse matrix 
- Finding a determinant 
- Finding a rank 

Properties of the determinant 

The determinant has many properties. Some basic properties of determinants are: 

1.  where In is the n × n identity matrix. 

2.  

3.  
4. For square matrices A and B of equal size, 

 

5.  for an n × n matrix. 
6. If A is a triangular matrix, i.e. ai,j = 0 whenever i > j or, alternatively, whenever i < j, then its determinant equals the product of the diagonal 

entries: 

 

A number of additional properties relate to the effects on the determinant of changing particular rows or columns: 

7. If in a matrix, any row or column is 0, then the determinant of that particular matrix is 0. 
8. Whenever two columns of a matrix are identical, or more generally some column can be expressed as a linear combination of the other 

columns (i.e. the columns of the matrix form a linearly dependent set), its determinant is 0. 
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6.4. Eigenvalues and eigenvectors 

In linear algebra, an eigenvector or characteristic vector of a square matrix is a vector that points in a direction which is invariant under the 
associated linear transformation. In other words, if v is a vector which is not zero, then it is an eigenvector of a square matrix A if Av is a scalar 
multiple of v. This condition could be written as the equation 

 

where λ is a number (also called a scalar) known as the eigenvalue or characteristic value associated with the eigenvector v. 

There is a correspondence between n by n square matrices and linear transformation from an n-dimensional vector space to itself. For this reason, it is 
equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations. 

   

In this shear mapping the red arrow changes direction but the blue arrow does not. The blue arrow is an eigenvector of this shear mapping because it doesn't 
change direction, and since in this example its length is unchanged its eigenvalue is 1. 

Two dimensional example 

Consider the transformation matrix A, given by, 

 

The eigenvectors v of this transformation satisfy the equation, 
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Rearrange this equation to obtain 

 

which has a nontrivial solution (v ≠ 0) only when its determinant | A − λI | equals zero. 

Set the determinant to zero to obtain the polynomial equation, 

 

known as the characteristic polynomial of the matrix A. In this case, it has the roots λ = 1 and λ = 3. 

For λ = 1, the equation becomes, 

 

which has the solution, 

 

For λ = 3, the equation becomes, 

 

which has the solution, 

 

Thus, the vectors v and w are eigenvectors of A associated with the eigenvalues λ = 1 and λ = 3, respectively. 
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Diagonal matrices 

Matrices with entries only along the main diagonal are called diagonal matrices. It is easy to see that the eigenvalues of a diagonal matrix are the 
diagonal elements themselves. Consider the matrix A, 

 

The characteristic polynomial of A is given by 

 

which has the roots λ = 1, λ = 2 and λ = 3. 

Associated with these roots are the eigenvectors, 

 

respectively. 

 

Triangular matrices 

Consider the lower triangular matrix A, 

 

The characteristic polynomial of A is given by 
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which has the roots λ = 1, λ = 2 and λ = 3. 

Associated with these roots are the eigenvectors, 

 

respectively. 

 

Eigenvalues 

Since the eigenvalues are roots of the characteristic polynomial, an  matrix has at most  distinct eigenvalues. If the matrix has real entries, 
the coefficients of the characteristic polynomial are all real; but it may have fewer than  real roots, or no real roots at all. 

For example, consider the cyclic permutation matrix 

 

This matrix shifts the coordinates of the vector up by one position, and moves the first coordinate to the bottom. Its characteristic polynomial is 
which has only one real root  . Any vector with three equal non-zero coordinates is an eigenvector for this eigenvalue. For example, 
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Properties of eigenvalues and eigenvectors 

Let A be an arbitrary n-by-n matrix with eigenvalues , , ... . (Here it is understood that an eigenvalue with algebraic multiplicity  occurs  
times in this list.) Then 

• The trace of , defined as the sum of its diagonal elements, is also the sum of all eigenvalues: 

. 

• The determinant of is the product of all eigenvalues: 

. 

• The eigenvalues of the th power of , i.e. the eigenvalues of , for any positive integer , are  
• The matrix is invertible if and only if all the eigenvalues  are nonzero. 
• If is invertible, then the eigenvalues of  are . Clearly, the geometric multiplicities coincide. Moreover, since the 

characteristic polynomial of the inverse is the reciprocal polynomial for that of the original, they share the same algebraic multiplicity. 
• If  is a symmetric real matrix then every eigenvalue is real 
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Eigenvalues of geometric transformations 

The following table presents some example transformations in the plane along with their 2×2 matrices, eigenvalues, and eigenvectors. 

 
scaling unequal scaling rotation horizontal shear hyperbolic rotation 

illustration 

 

 

 

 

 

matrix  
  
  

 
  
  

 
 
 

 
  
  

 
 
 

characteristic 
polynomial  

 
 

 

 

eigenvalues  
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eigenvectors All non-zero vectors  
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Diagonalization and eigendecomposition 

Let  have a set of  linearly independent eigenvectors. Let  be a square matrix whose columns are those eigenvectors, in any order. Then we will 
have , where  is the diagonal matrix such that  is the eigenvalue associated to column  of . Since the columns of  are linearly 
independent, the matrix  is invertible. Premultiplying both sides by we get . By definition, therefore, the matrix  is 
diagonalizable. 

If  is diagonalizable, the space of all -coordinate vectors can be decomposed into the direct sum of the eigenspaces of . This decomposition is 
called the eigendecomposition of , and it is preserved under change of coordinates. 

Finite-dimensional spectral theorem. Any symmetric matrix whose entries are real can be diagonalized by an orthogonal matrix.  
More explicitly: For every symmetric real matrix A there exists a real orthogonal matrix Q such that D = QTAQ is a diagonal matrix. Every 
symmetric matrix is thus, up to choice of an orthonormal basis, a diagonal matrix. D is composed of the eigenvalues of A. 

 

 

 

Orthogonal matrix 

An orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors). 
Equivalently, a matrix A is orthogonal if its transpose is equal to its inverse: 

 

which entails 

 

where I is the identity matrix. 

An orthogonal matrix A is necessarily invertible (with inverse A−1 = AT). The determinant of any orthogonal matrix is either +1 or −1. A special 
orthogonal matrix is an orthogonal matrix with determinant +1. As a linear transformation, every orthogonal matrix with determinant +1 is a pure 
rotation, while every orthogonal matrix with determinant -1 is either a pure reflection, or a composition of reflection and rotation. 

http://en.wikipedia.org/wiki/Diagonalizable_matrix�
http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix�
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29#Square_matrices�
http://en.wikipedia.org/wiki/Real_number�
http://en.wikipedia.org/wiki/Orthogonal�
http://en.wikipedia.org/wiki/Unit_vector�
http://en.wikipedia.org/wiki/Orthonormality�
http://en.wikipedia.org/wiki/Transpose�
http://en.wikipedia.org/wiki/Invertible_matrix�
http://en.wikipedia.org/wiki/Identity_matrix�
http://en.wikipedia.org/wiki/Invertible_matrix�
http://en.wikipedia.org/wiki/Determinant�
http://en.wikipedia.org/wiki/Determinant�
http://en.wikipedia.org/wiki/Linear_transformation�
http://en.wikipedia.org/wiki/Rotation_%28mathematics%29�
http://en.wikipedia.org/wiki/Reflection_%28mathematics%29�


Calculation of eigenvalues and eigenvectors 

The eigenvalues of a matrix A can be determined by finding the roots of the characteristic polynomial. Explicit algebraic formulas for the roots of a 
polynomial exist only if the degree n is 4 or less. Therefore, for matrices of order 5 or more, the eigenvalues and eigenvectors cannot be obtained by 
an explicit algebraic formula, and must therefore be computed by approximate numerical methods. 

In theory, the coefficients of the characteristic polynomial can be computed exactly, since they are sums of products of matrix elements; and there are 
algorithms that can find all the roots of a polynomial of arbitrary degree to any required accuracy. However, this approach is not viable in practice 
because the coefficients would be contaminated by unavoidable round-off errors, and the roots of a polynomial can be an extremely sensitive 
function of the coefficients. Efficient, accurate methods to compute eigenvalues and eigenvectors of arbitrary matrices were not known until the 
advent of the QR algorithm in 1961.  

Once the (exact) value of an eigenvalue is known, the corresponding eigenvectors can be found by finding non-zero solutions of the eigenvalue 
equation, that becomes a system of linear equations with known coefficients.  

 

6.5. Few other types of square matrices 
Definite matrix 

A symmetric n×n-matrix is called positive-definite (respectively negative-definite; indefinite), if for all nonzero vectors x ∈ Rn the associated 
quadratic form given by 

Q(x) = xTAx 

takes only positive values (respectively only negative values; both some negative and some positive values). If the quadratic form takes only non-
negative (respectively only non-positive) values, the symmetric matrix is called positive-semidefinite (respectively negative-semidefinite); hence the 
matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite. 

• If is also positive-definite, positive-semidefinite, negative-definite, or negative-semidefinite every eigenvalue is positive, non-negative, 
negative, or non-positive respectively. 
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