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A Note on Google’s PageRank

According to Google, google-search on a given topic results in a list-
ing of most relevant web pages related to the topic. Google ranks the
importance of webpages according to an eigenvector of a weighted link
matrix. The following offers an insight into how this is done and is a basic
application of the eigenvalue problem from linear algebra. It is based on
the Bryan, Leise paper.

A Tiny Web Example

• Core idea: in assigning a score to any given web page, the page’s score
(ranking) is derived from the links made to that page from other web
pages.

• The links to a given page are called the backlinks for that page

• The web is represented as a directed graph G = (E, V ) with vertices being
the web pages and edges the links. There is a directed edge from page i
to page j if page i contains a hyperlink to page j.

• Denote the importance score of page k by xk (xi > xj means that page i
is more important)

• As in the paper, the approach that doesn’t work is to take xk as the
number of backlinks for page k.

E.g. here x1 = 2, x2 = 1, x3 = 3, x4 = 2:

But we want a link to page k from an important page to boost page k’s
importance score more than a link from an unimportant page. (A page’s
importance is presumably higher when, say, the US Supreme Court’s web-
page links to it than when just Joe Blow’s web page links to it.)

E.g., in the above graph, pages 1 and 4 have the same score, but one of
page 1’s backlinks is from the seemingly important page 3 (which seems
important because everybody else links to it), while one of page 4’s back-
links is from the relatively unimportant page 1. Thus, we’d be rating page
1’s importance higher than page 4’s.
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• In an attempt to fix this, we can try to compute the score of page j as the
sum of the scores of all pages linking to page j.

For example, the score of page 1 would be determined by the relation
x1 = x3 +x4, because pages 3 and 4 are 1’s backlilnks and their scores are
x3 and x4.

• However, there’s a bit of a problem with this: we don’t want a single
individual webpage to gain influence merely by casting multiple votes (just
as in elections, we don’t want a single individual to gain undue influence
by casting multiple votes)

• So we make a correction: if page j contains nj out links, one of which links
to page k, then we boost page k’s score by xj/nj rather than by xj .

• Notice that in this scheme each web page gets a total of one vote, weighted
by that web page’s score, that is evenly divided up among all of its outgoing
links.

Let Lk = {1, 2, . . . , n} denote the set of pages with a link to page k, that
is, Lk is the set of k’s backlinks. For each k require:

xk =
∑
j∈Lk

xj
nj

(1)

where nj is the set of outgoing links from page j.

Assigning a Score to a Page, an Example

• For the web in the above figure, using the outlined scheme, we have:

x1 = x3/1 + x4/2

x2 = x1/3

x3 = x1/3 + x2/2 + x4/2

x4 = x1/3 + x2/3

• These linear equations can be written as Ax = x:
0 0 1 1/2

1/3 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0



x1
x2
x3
x4

 =


x1
x2
x3
x4


• Thus, we have reduced the web ranking problem to the problem of finding

an eigenvector for the link matrix A: Ax = λx. In particular, we are
looking for the eigenvector corresponding to the eigenvalue λ = 1. (Note
that A is not the graph adjacency matrix. AT is the graph adjacency
matrix.)
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Figure 1: Example of a dangling node.

• If the web graph has no ‘dangling’ nodes (a dangling webpage is a page
that has no outgoing links), e.g., see Fig. 1 then A will always have 1 as
an eigenvalue - easy to show.

By construction, the link matrix A is such that Aij = 1/nj if page j links
to page i and 0 otherwise1. Thus the j-th column of A contains nj non-
zero entries summing up to 1 (each is 1/nj). So A’s columns all sum up
to 1. Such matrix is called column-stochastic.

Claim: Every column-stochastic matrix has 1 as an eigenvalue. (proof :
take a vector of all ones, e, and consider ATe = e, which obviously holds
because the rows of AT add up to one. Thus 1 is an eigenvalue of AT .
Recalling that the eigenvlues of AT and A are the same, proves the claim.)

• In this small example the eigenvector corresponding to λ = 1 is easy to
find ‘by hand’. The following MATLAB code also finds the eigenvalus and
eigenvectors of A:

A = [ 0 0 1 1/2 ;
1/3 0 0 0 ;
1/3 1/2 0 1/2 ;
1/3 1/2 0 0 ] ;

[V D] = e i g (A) ;

V( : , 1 ) ∗(12/V(1 , 1 ) )
% s c a l e the e i g env e c t o r s
x = V( : , 1 ) /sum(V( : , 1 ) )

We can output (note that we agree to scale the eigenvector so that its
components sum up to 1) and plot the rankings as well:

12/31
4/31
9/31
6/31

1The number of non-zero entries in the ith row of A is the in-degree of node i - i.e. how
many other pages link to it. And the number of non-zero entries in the jth column is the
out-degree of node j - i.e. how many other pages j links to.
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Case of Disconnectd SubWebs

• There maybe more than one eigenvector that solves Ax = x if the web
graph is not connected, e.g., see the graph below. In this case the solu-
tion is not unique, and hence the dimensionality of the eigenspace V1(A)
corresponding to λ = 1 is larger that one.

• To solve this problem, we will replace the matrix A with the matrix:

M = (1−m)A +mS,

where S is n × n matrix with all entries 1/n. This means we add ’weak’
links form every webpage to every other. The value of m originally used
by Google is reportedly 0.15. For any m ∈ [0, 1] the matrix M is column-
stochastic and we can show that V1(M) is always one-dimensional if m ∈
(0, 1] if there is no dangling nodes.

• The equation x = Mx can also be cast as

x = (1−m)Ax +ms,

where s is a column vector with all entries 1/n. Note that Sx = s if∑n
i=1 xi = 1, where x = (x1, . . . , xn)T .
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