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2.5 Inverse Matrices

Suppose A is a square matrix. We look for an “inverse matrix” A�1 of the same size, such
that A�1 times A equals I . Whatever A does, A�1 undoes. Their product is the identity
matrix—which does nothing to a vector, so A�1Ax D x. But A�1 might not exist.

What a matrix mostly does is to multiply a vector x. Multiplying Ax D b by A�1

gives A�1Ax D A�1b. This is x D A�1b. The product A�1A is like multiplying by
a number and then dividing by that number. A number has an inverse if it is not zero—
matrices are more complicated and more interesting. The matrix A�1 is called “A inverse.”

DEFINITION The matrix A is invertible if there exists a matrix A�1 such that

A�1A D I and AA�1 D I: (1)

Not all matrices have inverses. This is the first question we ask about a square matrix:
Is A invertible? We don’t mean that we immediately calculate A�1. In most problems
we never compute it! Here are six “notes” about A�1.

Note 1 The inverse exists if and only if elimination produces n pivots (row exchanges
are allowed). Elimination solves Ax D b without explicitly using the matrix A�1.

Note 2 The matrix A cannot have two different inverses. Suppose BA D I and also
AC D I . Then B D C , according to this “proof by parentheses”:

B.AC/ D .BA/C gives BI D IC or B D C: (2)

This shows that a left-inverse B (multiplying from the left) and a right-inverse C (multi-
plying A from the right to give AC D I ) must be the same matrix.

Note 3 If A is invertible, the one and only solution to Ax D b is x D A�1b:

Multiply Ax D b by A�1: Then x D A�1Ax D A�1b:

Note 4 (Important) Suppose there is a nonzero vector x such that Ax D 0. Then A

cannot have an inverse. No matrix can bring 0 back to x.

If A is invertible, then Ax D 0 can only have the zero solution x D A�10 D 0.

Note 5 A 2 by 2 matrix is invertible if and only if ad � bc is not zero:

2 by 2 Inverse:
�

a b

c d

��1

D 1

ad � bc

�
d �b

�c a

�
: (3)

This number ad �bc is the determinant of A. A matrix is invertible if its determinant is not
zero (Chapter 5). The test for n pivots is usually decided before the determinant appears.
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82 Chapter 2. Solving Linear Equations

Note 6 A diagonal matrix has an inverse provided no diagonal entries are zero:

If A D

2
64

d1

: : :

dn

3
75 then A�1 D

2
64

1=d1

: : :

1=dn

3
75 :

Example 1 The 2 by 2 matrix A D �
1 2
1 2

�
is not invertible. It fails the test in Note 5,

because ad � bc equals 2 � 2 D 0. It fails the test in Note 3, because Ax D 0 when
x D .2; �1/. It fails to have two pivots as required by Note 1.

Elimination turns the second row of this matrix A into a zero row.

The Inverse of a Product AB

For two nonzero numbers a and b, the sum a C b might or might not be invertible. The
numbers a D 3 and b D �3 have inverses 1

3
and � 1

3
. Their sum a C b D 0 has no inverse.

But the product ab D �9 does have an inverse, which is 1
3

times � 1
3

.
For two matrices A and B , the situation is similar. It is hard to say much about the

invertibility of A C B . But the product AB has an inverse, if and only if the two factors
A and B are separately invertible (and the same size). The important point is that A�1 and
B�1 come in reverse order:

If A and B are invertible then so is AB . The inverse of a product AB is

.AB/�1 D B�1A�1: (4)

To see why the order is reversed, multiply AB times B�1A�1. Inside that is BB�1 D I :

Inverse of AB .AB/.B�1A�1/ D AIA�1 D AA�1 D I:

We moved parentheses to multiply BB �1 first. Similarly B�1A�1 times AB equals I . This
illustrates a basic rule of mathematics: Inverses come in reverse order. It is also common
sense: If you put on socks and then shoes, the first to be taken off are the . The same
reverse order applies to three or more matrices:

Reverse order .ABC/�1 D C �1B�1A�1: (5)

Example 2 Inverse of an elimination matrix. If E subtracts 5 times row 1 from row 2,
then E�1 adds 5 times row 1 to row 2:

E D
2
4 1 0 0

�5 1 0

0 0 1

3
5 and E�1 D

2
41 0 0

5 1 0

0 0 1

3
5 :

Multiply EE�1 to get the identity matrix I . Also multiply E �1E to get I . We are adding
and subtracting the same 5 times row 1. Whether we add and then subtract (this is EE �1/

or subtract and then add (this is E�1E/, we are back at the start.
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2.5. Inverse Matrices 83

For square matrices, an inverse on one side is automatically an inverse on the other side.
If AB D I then automatically BA D I . In that case B is A�1. This is very useful to know
but we are not ready to prove it.

Example 3 Suppose F subtracts 4 times row 2 from row 3, and F �1 adds it back:

F D
2
41 0 0

0 1 0

0 �4 1

3
5 and F �1 D

2
41 0 0

0 1 0

0 4 1

3
5 :

Now multiply F by the matrix E in Example 2 to find FE. Also multiply E �1 times F �1

to find .FE/�1. Notice the orders FE and E�1F �1!

FE D
2
4 1 0 0

�5 1 0

20 �4 1

3
5 is inverted by E�1F �1 D

2
4 1 0 0

5 1 0

0 4 1

3
5 : (6)

The result is beautiful and correct. The product FE contains “20” but its inverse doesn’t.
E subtracts 5 times row 1 from row 2. Then F subtracts 4 times the new row 2 (changed
by row 1) from row 3. In this order FE, row 3 feels an effect from row 1.

In the order E�1F �1, that effect does not happen. First F �1 adds 4 times row 2 to
row 3. After that, E�1 adds 5 times row 1 to row 2. There is no 20, because row 3 doesn’t
change again. In this order E�1F �1, row 3 feels no effect from row 1.

In elimination order F follows E. In reverse order E�1 follows F �1.
E�1F �1 is quick. The multipliers 5, 4 fall into place below the diagonal of 1’s.

This special multiplication E�1F �1 and E�1F �1G�1 will be useful in the next sec-
tion. We will explain it again, more completely. In this section our job is A�1, and we
expect some serious work to compute it. Here is a way to organize that computation.

Calculating A�1 by Gauss-Jordan Elimination

I hinted that A�1 might not be explicitly needed. The equation Ax D b is solved by
x D A�1b. But it is not necessary or efficient to compute A�1 and multiply it times b.
Elimination goes directly to x. Elimination is also the way to calculate A�1, as we now
show. The Gauss-Jordan idea is to solve AA�1 D I , finding each column of A�1.

A multiplies the first column of A�1 (call that x1/ to give the first column of I (call
that e1/. This is our equation Ax1 D e1 D .1; 0; 0/. There will be two more equations.
Each of the columns x1, x2, x3 of A�1 is multiplied by A to produce a column of I :

3 columns of A�1 AA�1 D A
�
x1 x2 x3

� D �
e1 e2 e3

� D I: (7)

To invert a 3 by 3 matrix A, we have to solve three systems of equations: Ax1 D e1 and
Ax2 D e2 D .0; 1; 0/ and Ax3 D e3 D .0; 0; 1/. Gauss-Jordan finds A�1 this way.
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The Gauss-Jordan method computes A�1 by solving all n equations together.
Usually the “augmented matrix” ŒA b� has one extra column b. Now we have three
right sides e1; e2; e3 (when A is 3 by 3). They are the columns of I , so the augmented
matrix is really the block matrix Œ A I �. I take this chance to invert my favorite matrix K,
with 2’s on the main diagonal and �1’s next to the 2’s:

�
K e1 e2 e3

� D

2
64

2 �1 0 1 0 0

�1 2 �1 0 1 0

0 �1 2 0 0 1

3
75

Start Gauss-Jordan on K

!
2
4 2 �1 0 1 0 0

0 3
2 �1 1

2 1 0
0 �1 2 0 0 1

3
5 . 1

2 row 1 C row 2/

!
2
4 2 �1 0 1 0 0

0 3
2

�1 1
2

1 0

0 0 4
3

1
3

2
3 1

3
5

. 2
3 row 2 C row 3/

We are halfway to K�1. The matrix in the first three columns is U (upper triangular). The
pivots 2; 3

2
; 4

3
are on its diagonal. Gauss would finish by back substitution. The contribution

of Jordan is to continue with elimination! He goes all the way to the “reduced echelon
form”. Rows are added to rows above them, to produce zeros above the pivots:

�
Zero above
third pivot

�
!

2
4 2 �1 0 1 0 0

0 3
2 0 3

4
3
2

3
4

0 0 4
3

1
3

2
3

1

3
5 . 3

4 row 3 C row 2/

�
Zero above
second pivot

�
!

2
64

2 0 0 3
2 1 1

2

0 3
2

0 3
4

3
2

3
4

0 0 4
3

1
3

2
3

1

3
75

. 2
3 row 2 C row 1/

The last Gauss-Jordan step is to divide each row by its pivot. The new pivots are 1. We
have reached I in the first half of the matrix, because K is invertible. The three columns
of K�1 are in the second half of Œ I K�1 �:

(divide by 2/

(divide by 3
2
/

(divide by 4
3
/

2
66664

1 0 0
3
4

1
2

1
4

0 1 0
1
2 1 1

2

0 0 1 1
4

1
2

3
4

3
77775 D �

I x1 x2 x3

� D �
I K�1

�
:

Starting from the 3 by 6 matrix Œ K I �, we ended with Œ I K �1 �. Here is the whole
Gauss-Jordan process on one line for any invertible matrix A:

Gauss-Jordan Multiply
�
A I

�
by A�1 to get Œ I A�1�:
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The elimination steps create the inverse matrix while changing A to I . For large matrices,
we probably don’t want A�1 at all. But for small matrices, it can be very worthwhile to
know the inverse. We add three observations about this particular K �1 because it is an
important example. We introduce the words symmetric, tridiagonal, and determinant:

1. K is symmetric across its main diagonal. So is K�1.

2. K is tridiagonal (only three nonzero diagonals). But K �1 is a dense matrix with
no zeros. That is another reason we don’t often compute inverse matrices. The
inverse of a band matrix is generally a dense matrix.

3. The product of pivots is 2. 3
2
/.4

3
/ D 4. This number 4 is the determinant of K.

K�1 involves division by the determinant K �1 D 1

4

2
43 2 1

2 4 2

1 2 3

3
5 . (8)

This is why an invertible matrix cannot have a zero determnant.

Example 4 Find A�1 by Gauss-Jordan elimination starting from A D �
2 3
4 7

�
. There are

two row operations and then a division to put 1’s in the pivots:

�
A I

� D
�

2 3 1 0

4 7 0 1

�
!

�
2 3 1 0

0 1 �2 1

� �
this is

�
U L�1

�	

!
�

2 0 7 �3
0 1 �2 1

�
!

�
1 0 7

2 � 3
2

0 1 �2 1

� �
this is

�
I A�1

�	
:

That A�1 involves division by the determinant ad � bc D 2 � 7 � 3 � 4 D 2. The code for
X D inverse.A/ can use rref, the “row reduced echelon form” from Chapter 3:

I D eye .n/I % Define the n by n identity matrix
R D rref .ŒA I �/I % Eliminate on the augmented matrix ŒA I �

X D R. W ; n C 1 W n C n/ % Pick A�1 from the last n columns of R

A must be invertible, or elimination cannot reduce it to I (in the left half of R).
Gauss-Jordan shows why A�1 is expensive. We must solve n equations for its n columns.

To solve Ax D b without A�1, we deal with one column b to find one column x.

In defense of A�1, we want to say that its cost is not n times the cost of one system
Ax D b. Surprisingly, the cost for n columns is only multiplied by 3. This saving is
because the n equations Axi D ei all involve the same matrix A. Working with the right
sides is relatively cheap, because elimination only has to be done once on A.

The complete A�1 needs n3 elimination steps, where a single x needs n3=3. The next
section calculates these costs.
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Singular versus Invertible

We come back to the central question. Which matrices have inverses? The start of this
section proposed the pivot test: A�1 exists exactly when A has a full set of n pivots.
(Row exchanges are allowed.) Now we can prove that by Gauss-Jordan elimination:

1. With n pivots, elimination solves all the equations Ax i D ei . The columns xi go
into A�1. Then AA�1 D I and A�1 is at least a right-inverse.

2. Elimination is really a sequence of multiplications by E’s and P ’s and D�1:

Left-inverse .D�1 � � � E � � � P � � � E/A D I: (9)

D�1 divides by the pivots. The matrices E produce zeros below and above the pivots.
P will exchange rows if needed (see Section 2.7). The product matrix in equation (9) is
evidently a left-inverse. With n pivots we have reached A�1A D I .

The right-inverse equals the left-inverse. That was Note 2 at the start of in this section.
So a square matrix with a full set of pivots will always have a two-sided inverse.

Reasoning in reverse will now show that A must have n pivots if AC D I . (Then we
deduce that C is also a left-inverse and CA D I .) Here is one route to those conclusions:

1. If A doesn’t have n pivots, elimination will lead to a zero row.
2. Those elimination steps are taken by an invertible M . So a row of MA is zero.

3. If AC D I had been possible, then MAC D M . The zero row of MA, times C ,
gives a zero row of M itself.

4. An invertible matrix M can’t have a zero row! A must have n pivots if AC D I .

That argument took four steps, but the outcome is short and important.

Elimination gives a complete test for invertibility of a square matrix. A�1 exists (and
Gauss-Jordan finds it) exactly when A has n pivots. The argument above shows more:

If AC D I then CA D I and C D A�1

Example 5 If L is lower triangular with 1’s on the diagonal, so is L�1.

A triangular matrix is invertible if and only if no diagonal entries are zero.

Here L has 1’s so L�1 also has 1’s. Use the Gauss-Jordan method to construct L�1. Start
by subtracting multiples of pivot rows from rows below. Normally this gets us halfway to
the inverse, but for L it gets us all the way. L�1 appears on the right when I appears on
the left. Notice how L�1 contains 11, from 3 times 5 minus 4.
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Gauss-Jordan
on triangular L

2
41 0 0 1 0 0

3 1 0 0 1 0

4 5 1 0 0 1

3
5 D �

L I
�

!
!

2
41 0 0 1 0 0

0 1 0 �3 1 0

0 5 1 �4 0 1

3
5 .3 times row 1 from row 2/

.4 times row 1 from row 3/

.then 5 times row 2 from row 3/

!

2
41 0 0 1 0 0

0 1 0 �3 1 0
0 0 1 11 �5 1

3
5 D �

I L�1
�
:

L goes to I by a product of elimination matrices E32E31E21. So that product is L�1.
All pivots are 1’s (a full set). L�1 is lower triangular, with the strange entry “11”.

That 11 does not appear to spoil 3; 4; 5 in the good order E �1
21 E�1

31 E�1
32 D L.

REVIEW OF THE KEY IDEAS

1. The inverse matrix gives AA�1 D I and A�1A D I .

2. A is invertible if and only if it has n pivots (row exchanges allowed).

3. If Ax D 0 for a nonzero vector x, then A has no inverse.

4. The inverse of AB is the reverse product B�1A�1. And .ABC/�1 D C �1B�1A�1.

5. The Gauss-Jordan method solves AA�1 D I to find the n columns of A�1. The
augmented matrix

�
A I

�
is row-reduced to

�
I A�1

�
.

WORKED EXAMPLES

2.5 A The inverse of a triangular difference matrix A is a triangular sum matrix S :

�
A I

� D
2
4 1 0 0 1 0 0

�1 1 0 0 1 0

0 �1 1 0 0 1

3
5 !

2
4 1 0 0 1 0 0

0 1 0 1 1 0

0 �1 1 0 0 1

3
5

!
2
4 1 0 0 1 0 0

0 1 0 1 1 0

0 0 1 1 1 1

3
5 D �

I A�1
� D �

I sum matrix
�

:

If I change a13 to �1, then all rows of A add to zero. The equation Ax D 0 will now
have the nonzero solution x D .1; 1; 1/. A clear signal: This new A can’t be inverted.
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2.5 B Three of these matrices are invertible, and three are singular. Find the inverse
when it exists. Give reasons for noninvertibility (zero determinant, too few pivots, nonzero
solution to Ax D 0) for the other three. The matrices are in the order A; B; C; D; S; E:

�
4 3

8 6

� �
4 3

8 7

� �
6 6

6 0

� �
6 6

6 6

� 2
4 1 0 0

1 1 0

1 1 1

3
5

2
4 1 1 1

1 1 0

1 1 1

3
5

Solution

B�1 D 1

4

�
7 �3

�8 4

�
C �1 D 1

36

�
0 6

6 �6

�
S�1 D

2
4 1 0 0

�1 1 0

0 �1 1

3
5

A is not invertible because its determinant is 4 � 6 � 3 � 8 D 24 � 24 D 0. D is not
invertible because there is only one pivot; the second row becomes zero when the first row
is subtracted. E is not invertible because a combination of the columns (the second column
minus the first column) is zero—in other words Ex D 0 has the solution x D .�1; 1; 0/.

Of course all three reasons for noninvertibility would apply to each of A; D; E.

2.5 C Apply the Gauss-Jordan method to invert this triangular “Pascal matrix” L.
You see Pascal’s triangle—adding each entry to the entry on its left gives the entry below.
The entries of L are “binomial coefficients”. The next row would be 1; 4; 6; 4; 1.

Triangular Pascal matrix L D

2
664

1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1

3
775 D abs(pascal (4,1))

Solution Gauss-Jordan starts with Œ L I � and produces zeros by subtracting row 1:

Œ L I � D

2
664

1 0 0 0 1 0 0 0

1 1 0 0 0 1 0 0

1 2 1 0 0 0 1 0

1 3 3 1 0 0 0 1

3
775 !

2
664

1 0 0 0 1 0 0 0

0 1 0 0 �1 1 0 0

0 2 1 0 �1 0 1 0

0 3 3 1 �1 0 0 1

3
775 :

The next stage creates zeros below the second pivot, using multipliers 2 and 3. Then the
last stage subtracts 3 times the new row 3 from the new row 4:

!

2
664

1 0 0 0 1 0 0 0

0 1 0 0 �1 1 0 0

0 0 1 0 1 �2 1 0

0 0 3 1 2 �3 0 1

3
775!

2
664

1 0 0 0 1 0 0 0

0 1 0 0 �1 1 0 0

0 0 1 0 1 �2 1 0

0 0 0 1 �1 3 �3 1

3
775D ŒI L�1� :

All the pivots were 1! So we didn’t need to divide rows by pivots to get I . The inverse
matrix L�1 looks like L itself, except odd-numbered diagonals have minus signs.

The same pattern continues to n by n Pascal matrices, L�1 has “alternating diagonals”.
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Problem Set 2.5

1 Find the inverses (directly or from the 2 by 2 formula) of A; B; C :

A D
�

0 3

4 0

�
and B D

�
2 0

4 2

�
and C D

�
3 4

5 7

�
:

2 For these “permutation matrices” find P �1 by trial and error (with 1’s and 0’s):

P D
2
40 0 1

0 1 0

1 0 0

3
5 and P D

2
40 1 0

0 0 1

1 0 0

3
5 :

3 Solve for the first column .x; y/ and second column .t; z/ of A�1:�
10 20

20 50

� �
x

y

�
D

�
1

0

�
and

�
10 20

20 50

� �
t

z

�
D

�
0

1

�
:

4 Show that
�

1 2
3 6

�
is not invertible by trying to solve AA�1 D I for column 1 of A�1:�

1 2

3 6

� �
x

y

�
D

�
1

0

� �
For a different A, could column 1 of A�1

be possible to find but not column 2?

�

5 Find an upper triangular U (not diagonal) with U 2 D I which gives U D U �1.

6 (a) If A is invertible and AB D AC , prove quickly that B D C .

(b) If A D �
1 1
1 1

�
, find two different matrices such that AB D AC .

7 (Important) If A has row 1 C row 2 D row 3, show that A is not invertible:

(a) Explain why Ax D .1; 0; 0/ cannot have a solution.

(b) Which right sides .b1; b2; b3/ might allow a solution to Ax D b?

(c) What happens to row 3 in elimination?

8 If A has column 1 C column 2 D column 3, show that A is not invertible:

(a) Find a nonzero solution x to Ax D 0. The matrix is 3 by 3.

(b) Elimination keeps column 1 C column 2 D column 3. Explain why there is no
third pivot.

9 Suppose A is invertible and you exchange its first two rows to reach B . Is the new
matrix B invertible and how would you find B �1 from A�1?

10 Find the inverses (in any legal way) of

A D

2
664

0 0 0 2

0 0 3 0

0 4 0 0

5 0 0 0

3
775 and B D

2
664

3 2 0 0

4 3 0 0

0 0 6 5

0 0 7 6

3
775 :
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11 (a) Find invertible matrices A and B such that A C B is not invertible.

(b) Find singular matrices A and B such that A C B is invertible.

12 If the product C D AB is invertible .A and B are square), then A itself is invertible.
Find a formula for A�1 that involves C �1 and B .

13 If the product M D ABC of three square matrices is invertible, then B is invertible.
(So are A and C .) Find a formula for B�1 that involves M �1 and A and C .

14 If you add row 1 of A to row 2 to get B , how do you find B �1 from A�1?

Notice the order. The inverse of B D
�

1 0

1 1

� �
A

�
is :

15 Prove that a matrix with a column of zeros cannot have an inverse.

16 Multiply
�

a b
c d

�
times

�
d �b�c a

�
. What is the inverse of each matrix if ad ¤ bc?

17 (a) What matrix E has the same effect as these three steps? Subtract row 1 from
row 2, subtract row 1 from row 3, then subtract row 2 from row 3.

(b) What single matrix L has the same effect as these three reverse steps? Add row
2 to row 3, add row 1 to row 3, then add row 1 to row 2.

18 If B is the inverse of A2, show that AB is the inverse of A.

19 Find the numbers a and b that give the inverse of 5 � eye(4) – ones(4,4):2
664

4 �1 �1 �1

�1 4 �1 �1

�1 �1 4 �1

�1 �1 �1 4

3
775

�1

D

2
664

a b b b

b a b b

b b a b

b b b a

3
775 :

What are a and b in the inverse of 6 � eye(5) – ones(5,5)?

20 Show that A = 4 � eye(4) – ones(4,4) is not invertible: Multiply A � ones(4,1).

21 There are sixteen 2 by 2 matrices whose entries are 1’s and 0’s. How many of them
are invertible?

Questions 22–28 are about the Gauss-Jordan method for calculating A �1.

22 Change I into A�1 as you reduce A to I (by row operations):

�
A I

� D
�

1 3 1 0

2 7 0 1

�
and

�
A I

� D
�

1 4 1 0

3 9 0 1

�

23 Follow the 3 by 3 text example but with plus signs in A. Eliminate above and below
the pivots to reduce Œ A I � to Œ I A�1 �:

�
A I

� D
2
42 1 0 1 0 0

1 2 1 0 1 0

0 1 2 0 0 1

3
5 :
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24 Use Gauss-Jordan elimination on Œ U I � to find the upper triangular U �1:

U U �1 D I

2
41 a b

0 1 c

0 0 1

3
5

2
4x1 x2 x3

3
5 D

2
41 0 0

0 1 0

0 0 1

3
5 :

25 Find A�1 and B�1 (if they exist) by elimination on Œ A I � and Œ B I �:

A D
2
42 1 1

1 2 1

1 1 2

3
5 and B D

2
4 2 �1 �1

�1 2 �1

�1 �1 2

3
5 :

26 What three matrices E21 and E12 and D�1 reduce A D �
1 2
2 6

�
to the identity matrix?

Multiply D�1E12E21 to find A�1.

27 Invert these matrices A by the Gauss-Jordan method starting with Œ A I �:

A D
2
41 0 0

2 1 3

0 0 1

3
5 and A D

2
41 1 1

1 2 2

1 2 3

3
5 :

28 Exchange rows and continue with Gauss-Jordan to find A�1:

�
A I

� D
�

0 2 1 0

2 2 0 1

�
:

29 True or false (with a counterexample if false and a reason if true):

(a) A 4 by 4 matrix with a row of zeros is not invertible.

(b) Every matrix with 1’s down the main diagonal is invertible.

(c) If A is invertible then A�1 and A2 are invertible.

30 For which three numbers c is this matrix not invertible, and why not?

A D
2
42 c c

c c c

8 7 c

3
5 :

31 Prove that A is invertible if a ¤ 0 and a ¤ b (find the pivots or A�1):

A D
2
4a b b

a a b

a a a

3
5 :



92 Chapter 2. Solving Linear Equations

32 This matrix has a remarkable inverse. Find A�1 by elimination on Œ A I �. Extend
to a 5 by 5 “alternating matrix” and guess its inverse; then multiply to confirm.

Invert A D

2
664

1 �1 1 �1

0 1 �1 1

0 0 1 �1

0 0 0 1

3
775 and solve Ax D .1; 1; 1; 1/:

33 Suppose the matrices P and Q have the same rows as I but in any order. They are
“permutation matrices”. Show that P � Q is singular by solving .P � Q/x D 0.

34 Find and check the inverses (assuming they exist) of these block matrices:

�
I 0

C I

� �
A 0

C D

� �
0 I

I D

�
:

35 Could a 4 by 4 matrix A be invertible if every row contains the numbers 0; 1; 2; 3 in
some order? What if every row of B contains 0; 1; 2; �3 in some order?

36 In the Worked Example 2.5 C, the triangular Pascal matrix L has an inverse with
“alternating diagonals”. Check that this L�1 is DLD, where the diagonal matrix
D has alternating entries 1; �1; 1; �1. Then LDLD D I , so what is the inverse of
LD D pascal (4,1)?

37 The Hilbert matrices have Hij D 1=.i C j � 1/. Ask MATLAB for the exact 6 by
6 inverse invhilb(6). Then ask it to compute inv(hilb(6)). How can these be different,
when the computer never makes mistakes?

38 (a) Use inv(P) to invert MATLAB’s 4 by 4 symmetric matrix P D pascal(4).

(b) Create Pascal’s lower triangular L D abs(pascal(4,1)) and test P D LLT.

39 If A D ones(4) and b D rand(4,1), how does MATLAB tell you that Ax D b has no
solution? For the special b D ones(4,1), which solution to Ax Db is found by Anb?

Challenge Problems

40 (Recommended) A is a 4 by 4 matrix with 1’s on the diagonal and �a; �b; �c on the
diagonal above. Find A�1 for this bidiagonal matrix.

41 Suppose E1; E2; E3 are 4 by 4 identity matrices, except E1 has a; b; c in column 1

and E2 has d; e in column 2 and E3 has f in column 3 (below the 1’s). Multiply
L D E1E2E3 to show that all these nonzeros are copied into L.

E1E2E3 is in the opposite order from elimination (because E3 is acting first). But
E1E2E3 D L is in the correct order to invert elimination and recover A.
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42 Direct multiplications 1–4 give MM �1 D I , and I would recommend doing #3.
M �1 shows the change in A�1 (useful to know) when a matrix is subtracted from A:

1 M D I � uv and M �1 D I C uv=.1 � vu/ .rank 1 change in I /

2 M D A � uv and M �1 D A�1 C A�1uvA�1=.1 � vA�1u/

3 M D I � U V and M �1 D In C U.Im � V U /�1V

4 M D A � U W �1V and M �1 D A�1 C A�1U.W � VA�1U /�1VA�1

The Woodbury-Morrison formula 4 is the “matrix inversion lemma” in engineering.
The Kalman filter for solving block tridiagonal systems uses formula 4 at each step.
The four matrices M �1 are in diagonal blocks when inverting these block matrices
(v is 1 by n, u is n by 1, V is m by n, U is n by m).�

I u

v 1

� �
A u

v 1

� �
In U

V Im

� �
A U

V W

�

43 Second difference matrices have beautiful inverses if they start with T11 D 1

(instead of K11 D 2). Here is the 3 by 3 tridiagonal matrix T and its inverse:

T 11 D 1 T D
2
4 1 �1 0

�1 2 �1

0 �1 2

3
5 T �1 D

2
43 2 1

2 2 1

1 1 1

3
5

One approach is Gauss-Jordan elimination on Œ T I �. That seems too mechanical.
I would rather write T as the product of first differences L times U . The inverses of
L and U in Worked Example 2.5 A are sum matrices, so here are T and T �1:

LU D
2
4 1

�1 1

0 �1 1

3
5

2
41 �1 0

1 �1

1

3
5

difference difference

U �1L�1 D
2
41 1 1

1 1

1

3
5

2
41

1 1

1 1 1

3
5

sum sum

Question. (4 by 4) What are the pivots of T ? What is its 4 by 4 inverse?
The reverse order UL gives what matrix T �? What is the inverse of T �?

44 Here are two more difference matrices, both important. But are they invertible?

Cyclic C D

2
664

2 �1 0 �1

�1 2 �1 0

0 �1 2 �1

�1 0 �1 2

3
775 Free ends F D

2
664

1 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 1

3
775 :

One test is elimination—the fourth pivot fails. Another test is the determinant,
we don’t want that. The best way is much faster, and independent of matrix size:

Produce x ¤ 0 so that Cx D 0. Do the same for F x D 0. Not invertible.

Show how both equations Cx D b and F x D b lead to 0 D b1 C b2 C � � � C bn.
There is no solution for other b.
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45 Elimination for a 2 by 2 block matrix: When you multiply the first block row by
CA�1 and subtract from the second row, the “Schur complement” S appears:

�
I 0

�CA�1 I

� �
A B

C D

�
D

�
A B

0 S

�
A and D are square

S D D � CA�1B:

Multiply on the right to subtract A�1B times block column 1 from block column 2.

�
A B

0 S

� �
I �A�1B

0 I

�
D ‹ Find S for

�
A B

C I

�
D

2
42 3 3

4 1 0

4 0 1

3
5 :

The block pivots are A and S . If they are invertible, so is Œ A B I C D �.

46 How does the identity A.I C BA/ D .I C AB/A connect the inverses of I C BA

and I C AB? Those are both invertible or both singular: not obvious.




