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Applications of Monte Carlo

• Simulation
– Animation

– Physical simulation (e.g. estimating neutron diffusion time)

• Optimization
– Generalization of simulated annealing

– Monte Carlo expectation maximization (EM)

• Integration
– Bayesian statistics: normalizing constants, expectations, marginalization

– Computing expected utilities and best responses toward Nash equilibria

– Computing volumes in high-dimensions

– Computing eigen-functions and values of operators (e.g. Shrodinger’s)

– Statistical physics

– Counting many things as fast as possible



A Simulation Example

[Chenney and Forsyth, 2000]



Learning and Bayesian inference 
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Integrals in Probabilistic Inference



Monte Carlo Integration



Monte Carlo Integration

Cannot sample 

Directly from 

p(x|data)



Monte Carlo Integration Formally
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Optimisation: 

Concentrate Samples on Modes
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Normalized Importance Sampling
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Sampling-Importance Sampling (SIR)
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What is the best proposal?
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Non-linear non-Gaussian filtering

y

Nasty integral



Importance Sampling for 

Optimal Filtering / Tracking

Importance Sampling for 

Optimal Filtering / Tracking



One can Compute the Integrals 

Recursively in Time

One can Compute the Integrals 

Recursively in Time

Given the samples from
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Particle Methods More Generally Particle Methods More Generally 

The goal is to approximate a target distribution over a 

sequence of states                                            that is 

growing with “time” as well as the partition function.

We do this using sequential importance sampling (M&U, 49)

e.g. For filtering, we use:



Example 2: Quantum Monte CarloExample 2: Quantum Monte Carlo

The target distribution (eigenfunction) and ground 

energy (eigenvalue) can be easily computed

We use a particle implementation of the power method

(time = iterations = kernel “multiplications”)



Particle FilteringParticle Filtering
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Autonomous robots and self-diagnosis

Y1 Y3

X1 X2 X3

Y2

Unknown continuous signals

Sensor readings

z1 z2 z3

Unknown internal discrete state



Rao-Blackwellised Particle FilteringRao-Blackwellised Particle Filtering



Rao-Blackwellised Particle FilteringRao-Blackwellised Particle Filtering



Naïve solution with PFNaïve solution with PF
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RBPF AlgorithmRBPF Algorithm



RBPF for Hybrid Control with PIDsRBPF for Hybrid Control with PIDs



RBPF Real-time diagnosisRBPF Real-time diagnosis

Given samples of z, 

we can solve for x 

exactly with a 

mixture of Kalman

filters.



RBPF for SLAMRBPF for SLAM



RBPF for SLAMRBPF for SLAM

See work of Sebastian Thrun, Frank Dellaert and Dieter Fox



Beyond Filtering Beyond Filtering 

Filtering:

Smoothing:

Viterbi:

Filtering is O(N), 

but smoothing and 

Viterbi are O(N  )2

Solution: Fast multipole methods (Greengard and Rohklin), dual 

metric trees (Gray and Moore) and Huttenlocher’s tricks – no FFT.



Bayesian smoothing

Smoothing is more informative:

If we have all the observations, why not use them?

When filtering we compute

When smoothing we are interested in



Particle Smoothing Methods

• Forward-Backward smoother (FBS)

– (Kitagawa, 1996)

• Two-Filter smoother (TFS)

– (Kitagawa, 1996; Isard et al., 1998)

– see paper for new generalized derivation

• Maximum a posteriori (MAP) smoother

– (Godsill et al., 2001)

For brevity, I’ll present details of only Forward-Backward 
smoothing.

Common methods:



Forward-Backward Particle Smoothing

Filtered:

Smoothed:

Particles are re-weighted only: support doesn’t change!

y



Forward-Backward Particle Smoothing

Hence, we can derive a particle smoother which 
performs forward filtering, then backward smoothing:



Sum-kernel computation

The bottleneck

Bayesian integrals

Monte Carlo estimator



Fast Multipole Methods use partitions 

and expansions of the kernel

Fast Multipole Methods use partitions 

and expansions of the kernel



Tree recursions: We start by partitioning points 

using kd-trees or any metric trees

Tree recursions: We start by partitioning points 

using kd-trees or any metric trees

(Gray and Moore, 2000)
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Multi-modal non-Gaussian model - MAP smoother

A difficult problem…

(Kitagawa et al., 1996) …solved with MAP particle smoothing.



Particle smoothing with 4 million particles!

FBS on Linear-Gaussian chain 
of length 10 (3 dimensions)

Better to use more particles, 
smoothed approximately, than 

fewer, smoothed exactly. 



2

Application to Beat Tracking for Music Retrieval



Parameter estimation in dynamic state 

space models is still an open problem

Parameter estimation in dynamic state 

space models is still an open problem

We’re doing importance sampling in a vast growing space. 

This is very dangerous !



Parameter estimation is also Parameter estimation is also 
Particle methods and dual trees are a reasonable match for 
computing filter derivatives and parameter learning.
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MCMC: Metropolis-Hastings
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MCMC: Choosing the Right Proposal



MCMC: Theory



MCMC: Theory



MCMC: MH Annealed



MCMC: MH Annealed



Extending MH to directed probabilistic 

graphical models
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Gibbs Sampling
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Gibbs Sampling For Graphical models
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Trans-Dimensional MCMC and the Reversible 

Jump Algorithm of Peter Green: Use a mixture 

of dimension jumping algorithms



Must be Careful with Measures !



Trans-Dimensional MCMC
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Collapsing and Blocking



Monte Carlo EM



Application of MCEM

Frank Dellaert



Auxiliary Variable Samplers



Hybrid Monte Carlo
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Dynamic models are growing 

probabilistic models

Dynamic models are growing 

probabilistic models
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The new extension: Hot couplingThe new extension: Hot coupling

We want to sample from a static distribution, e.g. a fully 

connected Boltzmann machine, CRF or MRF. We do this 

by constructing an online sequence of distributions that 

converges to the right distribution.

Idea: start with a tractable 

model and grow it with 

succesive particle corrections 

until we reach the final static 

model. 



The new extension: Hot couplingThe new extension: Hot coupling



Online data processing is equivalent 

to adding constraints sequentially

θθθθ

Y1 Y2 YN

The same idea is adopted to carry out Bayesian 

experimental design, rare event simulation and 

stochastic control.



New particle methodsNew particle methods

This is how the artificial sequence is constructed (del 

Moral, Doucet and Jasra), where K(.) is an MCMC 

proposal kernel:



New particle methodsNew particle methods

A simple choice of the L(.) leads to annealed importance 

sampling (Jarzynski, Neal).

But we can be more general (and optimal):



Particle solution for experimental designParticle solution for experimental design
We construct an artificial sequence (Peter Muller) where 

simulations are “data”, while searching over good policies



Choosing input data to learn parameters

Hendrik

Kueck



Monte Carlo Planning: Problem statement
• The robot, with a rough prior map, has to accomplish a 

series of tasks in an environment (e.g. reaching End).

• It chooses a parameterized path           so as to learn the 

most about its own pose and the location of navigation 

landmarks (posterior map), while accomplishing tasks.



POMDP Formulation
• State (robot and landmark locations)

• Observations

• Actions (PID regulation about policy path)

• Transition model

• Observation model

• Cost function: Average Mean Square Error

• This cost function is very nasty!
– It is a function of the belief state, nonlinear, non-Gaussian and typically

not differentiable.

– Classical reinforcement learning, LQG, policy gradients and dynamic

programming do not apply. A new method is needed.



Algorithm

1. Given the current policy parameters, simulate

future states, actions and observations.

2. Approximate the AMSE cost with a Monte Carlo

estimate. 

3. Given the new AMSE estimate, update the policy

parameters using an active learning approach.



Monte Carlo Simulation
1. Sample states from the prior. 

2. Follow the policy path by generating actions with a PID 

controller. 

3. While doing this, sample states from the transition prior and

“fictitious” measurements from the observation model. 

4. For each of these samples, use a Bayesian SLAM filter to

approximate the posterior mean. Yes, this is very expensive.



Evaluation Component

• Adopt a simple Monte Carlo estimate:

• Reduce variance of the Monte Carlo 

estimate of the cost function. e.g. using 

common random numbers as in PEGASUS 
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The Expected Improvement Function: 

Trades-off exploration and exploitation



The Expected Improvement Function: 

Trades-off exploration and exploitation

• The cost function is 

approximated as a 

Gaussian process

• New parameters are 

selected using an expected 

improvement function.



Receding Horizon Control Strategies

Planning Step

Planning Horizon

OLC1

OLCn

OLFCn









A cheaper cost function approximation
• PCRB approach

– PCRB allow us to compute a bound for the cost function with 

one single Ricatti-like recursion for all the samples.

– Therefore, the computational cost can be dramatically reduced

(~20-30% of total computational cost for 30 samples).

– However, the bound can be loose, thus we have to test it 

empirically.

– We have tested two different PCRBs





Planning in the visual field



Target-directed attention

Assume, e.g. you have prior over where to find  people and  sky

Use Bayesian theory and maximum expected utility principle to combine 

this prior with bottom-up saliency maps and object likelihood models to 

obtain a more informative posterior.



Qualitative 

results



Planning with Next Level Games / 

Mike Cora



Motivation
• There exist stable and mature middleware solutions for:

– graphics, animation, physics, sound, online

• AI and gameplay middleware is the remaining wild-west frontier, 
and should:

– Automate parameter tuning

– Automate quality analysis

– Simplify the process of creating smart and adaptive agents

– Generalize to other applications and reduce the amount of game-
specific re-implementation

• In the long term, it should reduce the cost and improve the quality of 
game AI. 

• Simulated worlds also have real-world applicability for various 
strategy analysis and planning domains.



Project desiderata

• Investigate learning algorithms that reduce the need for 
manual parameter tuning.

• Algorithms should allow for easy integration with game AI 
development.

• It should be easy for non-programmers to design and tune 
behaviors, and enable learning where applicable. Tuning for 
fun is much different than tuning for optimality.

• Algorithms should learn quickly, since there are tight 
computational and memory constraints on consoles.



Experimental setup
• Taxi Domain:

– Learn map navigation to pickup and dropoff passengers.

– Well known benchmark application for Hierarchical 
Reinforcement Learning.

• Expanded on existing algorithms with:

– Low-level active policy optimizer to learn control of 
continuous non-linear vehicle dynamics.

– Mid-level active path learning for navigating a 
topological map.

– High-level model-based learning for deciding when to 
navigate, park, pickup and dropoff passengers.

• Applied to The Open Racing Car Simulator.



Hierarchical Policies
• Break the problem into sub-problems: actions/tasks decomposed into 

subtasks that

– extend over time (temporal abstraction)

– depend on subsets of the state (state abstraction)

– are easy for non-programmers to create

• Each task is a separate decision process, with termination criteria and 
reward functions.

• Enables different algorithms and policy representations at different 
tasks.

• Follows the most common pattern of game AI development: 
hierarchical state machines.



Hybrid Task Hierarchy



Low-Level: Trajectory following

Vx

Vy
Yerr

Ωerr

trajectory

TORCS: 3D game 
engine that 
implements complex 
vehicle dynamics 
complete with 
manual and automatic 
transmission, engine, 
clutch, tire, and 
suspension models.



Active Path Finding in Middle Level

• Mid-level Navigate policy generates sequence of waypoints on a 
topological map to navigate from a location to a destination.

• V(�) value function represents the path length from the current node, 
to the target.

• Parameterized by the current taxi location, and the target intersection 
coordinates: �={XC, YC, XT, YT}

• Adjacent waypoints that maximize the expected V(�), and have the 
highest uncertainty (unexplored) are sampled from the Gaussian 
Process model GPV(�)

• After every episode, every state along the path is updated with new 
value estimates.



Mid-level: Topological map



Hierarchical systems apply to many 

robot tasks – key to build large systems

We used TORCS: A 3D game engine that implements complex vehicle 
dynamics complete with manual and automatic transmission, engine, 
clutch, tire, and suspension models.



Mike’s results
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Beyond simple Monte Carlo for POMDPs

• Realistic POMDPs are very hard to solve as they are often nonlinear, 

non-Gaussian, high-dimensional, hybrid (discrete and continuous 

variables) and non-differentiable. 

• Fortunately, a few researchers, including Dayan & Hinton (1997),

Attias (2003), Toussaint & Storkey (2006), Verma and Rao (2006), 

and Peters and Schaal (2006) have been able to map these 

probabilistic decision problems to inference and learning tasks. 

• These new mappings enable us to develop a vast set of machine 

learning tools (algorithms that exploit structure and relations, EM, 

MCMC, GPs, variational approximations, …) for solving POMDPs.



The decision making model: MDP
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Objective:

Can also easily parameterize the reward and transition models
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The key infinite mixture insight: 

Deterministic policies and rewards
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r0

• Stochastic

• Deterministic



The key infinite mixture insight: 

appears implicitly in some RL works

(Wang, Bowling & Schuurmans 2007, Lagoudakis &Parr 2003)

Doina Precup



The EM approach 
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The E step 
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The M step 

Assuming a conditional probability table representation for the policy: 

But one can use many other representations. 

As in standard EM for HMMs, the likelihood (expected reward) is 

maximized by optimizing the Q function:

Complete data likelihood



Improvements (Toussaint et al)

• Alpha and beta messages are computed only once for all 

MDPs. Define betas in terms of time-to-go.

• We can optimize the Q function easily for a large class of 

policies.

• The technique also applies to linear Gaussian MDPs.

• It can be easily extended to POMDPs

• For structured models, one can apply the junction tree 

algorithm.



Mixture reward functions: Relaxing 

the Q in LQG optimal control

That is, although the dynamics are linear-Gaussian, the reward can be 

an arbitrary positive function. This has nice applications in robotics 

(Jan Peters).



Mixture reward functions: E step



Mixture reward functions: M step

Differentiating the Q function: 

We obtain the following analytical estimates of the parameters:



Gaussian mixture rewards

The approach is a “policy 

iteration” version of the 

value iteration method for 

continuous state spaces of 

Porta, Poupart et al. Yet, 

here, the action models are 

more general.



The trans-dimensional MCMC approach 

with infinite mixtures

The MDP distribution is trans-dimensional. We need to sample over 

the space of models and model dimension in order to characterize it 

properly. The samples can be used to approximate the Q function.

We can take this further by specifying a prior over the parameters. 

Then, in this Bayesian setting, the target is proportional to the 

reward:



The trans-dimensional MCMC approach 

with infinite mixtures



The trans-dimensional MCMC approach 

with infinite mixtures



Exploiting structure: hybrid JMLS models
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The EM approach




