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Probabilistic Inference

• Partition the random variables in a domain X into three disjoint
subsets, xE,xF ,xR. The general probabilistic inference problem is
to compute the posterior p(xF |xE) over query nodes xF .

• This involves conditioning on evidence nodes xE and
integrating (summing) out marginal nodes xR.

• If the joint distribution is represented as a huge table, this is trivial:
just select the appropriate indicies in the columns corresponding to
xE based on the values, sum over the columns corresponding to
xR, and renormalize the resulting table over xF .

• If the joint is a known continuous function this can sometimes be
done analytically. (e.g. Gaussian: eliminate rows/cols
corresponding to xR; apply conditioning formulas for p(xF |xE)).

• But what if the joint distribution over X is represented by a
directed or undirected graphical model?



Simple Case: Bayes Rule

• For simple models, we can derive the inference formulas by hand
using Bayes rule (e.g. responsibility in mixture models).
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a) p(x, y) = p(x)p(y|x)

b) p(y|x)

c) p(x|y) =
p(x)p(y|x)

∑

x p(x)p(y|x)

This is called “reversing the arrow”.

• In general, the calculation we want to do is:

p(xF |xE) =

∑

xR
p(xE,xF ,xR)

∑

xF ,xR
p(xE,xF ,xR)

• Q: Can we do these sums efficiently?
Can we avoid repeating unecessary work each time we do inference?
A: Yes, if we exploit the factorization of the joint distribution.



Example
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The key is to factor and then apply the distributive law.

p(x1|x̄6) = p(x1, x̄6)/p(x̄6)

= p(x1, x̄6)/
∑

x1
′

p(x1
′, x̄6)

p(x1, x̄6) =
∑

x2

∑

x3

∑

x4

∑

x5

p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x̄6|x2,x5)

= p(x1)
∑

x2

p(x2|x1)
∑

x3

p(x3|x1)
∑

x4

p(x4|x2)
∑

x5

p(x5|x3)p(x̄6|x2,x5)

= p(x1)
∑

x2

p(x2|x1)
∑

x3

p(x3|x1)Φ5(x2,x3)
∑

x4

p(x4|x2)

= p(x1)
∑

x2

p(x2|x1)Φ4(x2)
∑

x3

p(x3|x1)Φ5(x2,x3)

= p(x1)
∑

x2

p(x2|x1)Φ4(x2)Φ3(x1,x2)

= p(x1)Φ2(x1)



Marginalization without Evidence

• Marginalization of joint distributions represented by graphical
models is a special case of probabilistic inference.

• To compute the marginal p(xi) of a single node, we set it to be the
query node and set the evidence set to be empty.

• In directed models, we can ignore all nodes downstream from the
query node, and marginalize only the part of the graph before it.

• If the node has no parents, we can read off its marginal directly.

• In directed models, we often know that a certain sum must
evaluate to unity, since it is a conditional probability.

• For example, consider the term Φ4(x2) in our six node example:

Φ4(x2) =
∑

x4

p(x4|x2) ≡ 1



Moralization

• For directed graphs, the parents may not be explicitly connected,
but they are involved in the same potential function p(xi|xπi).

• Thus to correctly account for all the dependencies, we first must
connect all the parents of every node and the drop the directions on
the links.

• This step is known as “Moralization” and it is essential: since
conditioning couples parents in directed models (“explaining away”)
we need a mechanism for respecting this when we do inference.
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Efficient Inference on Tree Structured DAGs

• We want to develop inference algorithms which are correct and
efficient when we perform multiple queries (e.g. during learning
with latent variables and EM).

• For now, we will focus on tree-structured graphical models, which
include all two-node models and all chains as well.

• Exact inference on trees is the basis for the junction tree algorithm
which solves the general exact inference problem for directed acyclic
graphs and for many approximate algorithms which can work on
intractable or cyclic graphs.

(a) (b) (c)



Efficient Summation on Trees: Leaves → Root

• Consider summing out node j which is has node i as its parent:

• Which nodes appear in the factors created by summing over j?
– nothing in the subtree below j (already summed out)
– nothing from other subtrees, since the graph is a tree
– only i, which relates i and j through p(j|i)

• Call the factor that is created mji(xi),
and think of it as a message that
j passes to i when j is summed.

• This message is created by
summing over j the product of
all earlier messages mkj(xj)

sent to j as well as δ(xj = xobsj )

(if j is an evidence node).
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Inference = Efficient Summation = Message Passing

• On a tree, inference can be thought of as passing messages up to
the query node at the root from the other nodes at the leaves or
interior. Since we ignore subtrees with no evidence, observed
(evidence) nodes at always at the leaves.

• The message mji(xi) is created when we sum over xj

mji(xi) =
∑

xj



ψE(xj)p(xj|xi)
∏

k∈c(j)

mkj(xj)





• At the final node xf , we obtain the answer:

p(xf |x̄E) ∝ ψE(xf )
∏

k∈c(f)

mkf (xf )

• If j is an evidence node, ψE(xj) = δ(xj, x̄j), else ψE(xj) = 1.

• If j is a leaf node, c(j) is empty, otherwise c(j) are the children of j



Messages are Reused in Multiple Queries

• Consider querying x1, x2, x3 and x4 in the graph below.

• The messages needed for x1, x2, x4 individually are shown (a-c).

• Also shown in (d) is the set of messages needed to compute all
possible marginals over single query nodes.
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• Key insight: even though the naive approach (redo the query from
scratch) needs to compute N 2 messages to find marginals for all N
query nodes, there are only 2N possible messages.

• We can compute all possible messages in only double the amount
of work it takes to do one query!

• Then we take the product of relevant messages to get marginals.



Computing All Possible Messages

• How can we compute all possible messages efficiently?

• Idea: respect the following Message-Passing-Protocol:
A node can send a message to a neighbour only when it has
received messages from all its other neighbours.

• Protocol is realizable: designate one node (arbitrarily) as the root.
Collect messages inward to root then distribute back out to leaves.

• Once we have the messages, we can compute marginals using:

p(xi|x̄E) ∝ ψE(xi)
∏

k∈c(i)

mki(xi)

• Remember that the directed tree on which we pass messages might
not be same directed tree we started with.

• We can also consider “synchronous” or “asynchronous” message
passing nodes that respect the protocol but don’t use the
Collect-Distribute schedule above. (Must prove this terminates.)



Belief Propagation (Sum-Product) Algorithm

• Choose a root node (arbitrarily or as first query node).

• If j is an evidence node, ψE(xj) = δ(xj, x̄j), else ψE(xj) = 1.

• Pass messages from leaves up to root and then back down using:

mji(xi) =
∑

xj



ψE(xj)ψ(xi, xj)
∏

k∈c(j)

mkj(xj)





• Given messages, compute marginals using:

p(xi|x̄E) ∝ ψE(xi)
∏

k∈c(i)

mki(xi)
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Computing Joint Pairwise Posteriors

• We can also easily compute the joint pairwise posterior distribution
for any pair of connected nodes xi, xj.

• To do this, we simply take the product of all messages coming into
node i (except the message from node j), all the messages coming
into node j (except the message from node i) and the potentials
ψi(xi), ψj(xj), ψij(xi, xj).

• The posterior is proportional to this product:

p(xi, xj|x̄E) ∝ ψE(xi)ψ
E(xj)ψ(xi, xj)

∏

k 6=j∈c(i)

mki(xi)
∏

`6=i∈c(j)

m`j(xj)

• These joint pairwise posteriors cover all the maximal cliques in the
tree, and so those are all we need to do learning.

• Inference of other pairwise or higher order joint posteriors is
possible, but more difficult.



Maximizing instead of Summing

•Belief Propagation summed over all possible values of the
marginal (non-query, non-evidence) nodes to get a marginal
probability.

• What if we wanted to maximize over the non-query, non-evidence
nodes to find the probabilty of the single best setting consistent
with any query and evidence?

max
x

p(x) = max
x1

max
x2

max
x3

max
x4

max
x5

p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2,x5)

= max
x1

p(x1) max
x2

p(x2|x1) max
x3

p(x3|x1) max
x4

p(x4|x2) max
x5

p(x5|x3)p(x6|x2,x5)

• This is known as the maximum a-posteriori or MAP configuration.

• It turns out that (on trees), we can use an algorithm exactly like
belief-propagation to solve this problem.
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Hidden Markov Models (HMMs)

Add a latent (hidden) variable xt to a Markov model.

• HMM ≡ “ probabilistic function of a Markov chain”:

1. 1st-order Markov chain generates hidden state sequence (path):

P(xt+1 = j|xt = i) = Sij P(x1 = j) = πj

2. A set of output probability distributions Aj(·) (one per state)
converts state path into sequence of observable symbols/vectors

P(yt = y|xt = j) = Aj(y)

(state transition diagram)

• Even though hidden state seq. is 1st-order Markov, the output
process is not Markov of any order [ex.
1111121111311121111131. . . ]



Applications of HMMs

• Speech recognition.

• Language modeling.

• Information retrieval.

• Motion video analysis/tracking.

• Protein sequence and genetic sequence alignment and analysis.

• Financial time series prediction.

• . . .



HMM Graphical Model

PSfrag replacements
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• Hidden states {xt}, outputs {yt}
Joint probability factorizes:

P({x}, {y}) =
T
∏

t=1

P(xt|xt−1)P(yt|xt)

= πx1

T−1
∏

t=1

Sxt,xt+1

T
∏

t=1

Axt(yt)

• NB: Data are not i.i.d.
There is no easy way to use plates to show this model. (Why?)



Links to Other Models

• You can think of an HMM as:
A Markov chain with stochastic measurements.
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or
A mixture model with states coupled across time.
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• The future is independent of the past given the present.
However, conditioning on all the observations couples hidden states.



Example: HMM Likelihood Calculation

• To evaluate the probability P({y}), we want:

P({y}) =
∑

{x}

P({x}, {y})

P(observed sequence) =
∑

all paths

P( observed outputs , state path )

• Looks hard! ( #paths = #statesT ). But joint probability factorizes:

P({y}) =
∑

x1

∑

x2

· · ·
∑

xT

T
∏

t=1

P(xt|xt−1)P(yt|xt)

=
∑

x1

P(x1)P(y1|x1)
∑

x2

P(x2|x1)P(y2|x2) · · ·
∑

xT

P(xT |xT−1)P(yT |xT )

• By moving the summations inside, we can save a lot of work.



The forward (α) recursion

• We want to compute:

L = P({y}) =
∑

{x}

P({x}, {y})

• There is a clever “forward recursion” to compute the sum efficiently.

αj(t) = P( yt1 , xt = j )

αj(1) = πjAj(y1)

αk(t + 1) = {
∑

j

αj(t)Sjk}Ak(yt+1)

• Notation: xba ≡ {xa, . . . ,xb}; yba ≡ {ya, . . . ,yb}

• This enables us to easily (cheaply) compute the desired likelihood L
since we know we must end in some possible state:

L =
∑

k

αk(T )



HMM Inference: Bugs on a Grid

• Naive algorithm:

1. start bug in each state at t=1 holding value 0

2. move each bug forward in time: make copies & increment the
value of each copy by transition prob. + output emission prob.

3. go to 2 until all bugs have reached time T

4. sum up values on all bugs

st
at

es

time



Bugs on a Grid - Trick

• Clever recursion:
adds a step between 2 and 3 above which says: at each node, replace
all the bugs with a single bug carrying the sum of their values

st
at

es

timeα

• This trick is called dynamic programming, and can be used whenever
we have a summation, search, or maximization problem that can be
set up as a grid in this way. The axes of the grid don’t have to be
“time” and “states”.



HMMs: Inference of Hidden States

• What if we we want to estimate the hidden states given
observations? To start with, let us estimate a single hidden state:

p(xt|{y}) = γ(xt) =
p({y}|xt)p(xt)

p({y})

=
p(yt1|xt)p(y

T
t+1|xt)p(xt)

p(yT1 )

=
p(yt1, xt)p(y

T
t+1|xt)

p(yT1 )

p(xt|{y}) = γ(xt) =
α(xt)β(xt)

p(yT1 )

where αj(t) = p( yt1 , xt = j )

βj(t) = p(yTt+1 | xt = j )

γi(t) = p(xt = i | yT1 )



Forward-Backward Algorithm

• We compute these quantites efficiently using another recursion.
Use total prob. of all paths going through state i at time t to
compute the conditional prob. of being in state i at time t:

γi(t) = p(xt = i | yT1 )

= αi(t)βi(t)/L

where we defined:

βj(t) = p(yTt+1 | xt = j )

• There is also a simple recursion for βj(t):

βj(t) =
∑

i

Sjiβi(t + 1)Ai(yt+1)

βj(T ) = 1

• αi(t) gives total inflow of prob. to node (t, i)
βi(t) gives total outflow of prob.



Forward-Backward Algorithm

• αi(t) gives total inflow of prob. to node (t, i)
βi(t) gives total outflow of prob.

st
at

es

timeα β

• Bugs again: we just let the bugs run forward from time 0 to t and
backward from time T to t.

• In fact, we can just do one forward pass to compute all the αi(t)
and one backward pass to compute all the βi(t) and then compute
any γi(t) we want. Total cost is O(K2T ).



Using HMMs for Recognition

• Use many HMMs for recognition by:

1. training one HMM for each class (requires labelled training data)

2. evaluating probability of an unknown sequence under each HMM

3. classifying unknown sequence: HMM with highest likelihood

L1 L2 Lk

• This requires the solution of two problems:

1. Given model, evaluate prob. of a sequence.
(We can do this exactly & efficiently.)

2. Give some training sequences, estimate model parameters.
(We can find the local maximum of parameter space nearest our
starting point using Baum-Welch (EM).)



Parameter Estimation using EM (Baum-Welch)

• Sij are transition probs; state j has output distribution Aj(y)

P(xt+1 = j|xt = i) = Sij P(x1 = j) = πj
P(yt = y|xt = j) = Aj(y)

• Complete log likelihood:

log p(x, y) = log{πx1

T−1
∏

t=1

Sxt,xt+1

T
∏

t=1

Axt(yt)}

= log{
∏

i

π
[xi1]
i

T−1
∏

t=1

∏

ij

S
[xit,x

j
t+1]

ij

T
∏

t=1

∏

k

Ak(yt)
[xkt ]}

=
∑

i

[xi1] log πi +
T−1
∑

t=1

∑

ij

[xit, x
j
t+1] logSij +

T
∑

t=1

∑

k

[xkt ] logAk(yt)

where the indicator [xit] = 1 if xt = i and 0 otherwise

• For EM, we need to compute the expected complete log likelihood.



State expectations required from the E-Step

• The expected complete log likelihood requires

γi(t) =< [xit] > and xiij(t) =< [xit, x
j
t+1] >

• So in the E-step we need to compute both
γi(t) = p(xt = i|{y}) and xiij(t) = p(xt = i, xt+1 = j|{y}).

• We already know how to compute γi(t) using α and β recursions.
We can compute xiij(t) the same way (recall BP):

xiij(t) = p(xit, xjt+|{y}) = p(xit|{y})p(xjt+|xit, {y})

= p(xit, y
t
1|y

T
t+1)p(xjt+|xit, y

T
t+1)/p(y

t
1|y

T
t+1)

=
p(xit, y

t
1)p(y

T
t+1|xit, y

t
1)

p(yt1|y
T
t+1)p(y

T
t+1)

p(yTt+1|xjt+, xit)p(xjt+|xit)

p(yTt+1|xi = t)

=
p(xit, y

t
1)p(y

T
t+1|xit)

p(yT1 )

p(yt+1|xjt+)p(yTt+2|xjt+)p(xjt+|xit)

p(yTt+1|xi = t)

= αi(t)Aj(yt+1)Sijβj(t + 1)/L



M-step: New Parameters are just
Ratios of Frequency Counts

• Initial state distribution: expected #times in state i at time 1:

π̂i = γi(1)

• Expected #transitions from state i to j which begin at time t:

xiij(t) = αi(t)SijAj(yt+1)βj(t + 1)/L

so the estimated transition probabilities are:

Ŝij =
T−1
∑

t=1

xiij(t)

/

T−1
∑

t=1

γi(t)

• The output distributions are the expected number of times we
observe a particular symbol in a particular state:

Âj(y0) =
∑

t|yt=y0

γj(t)

/

T
∑

t=1

γj(t)



HMM Examples

English character sequences
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Geyser data (continuous)
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Summary: Probabilistic Graphical Models

• Graphical models provide a compact factorizations of large joint
probability distributions by exploiting conditional independencies.

• Efficient algorithms exist for learning the parameters of a graphical
model and for inferring distributions over certain variables in the
model given observations of other variables.

• The simplest graphical models have only a single node and
represent parametric distributions as in traditional statistics.

• The next most complex models have two nodes and represent
classification, regression, clustering and latent factor models.

• Even more complex models have chain and tree structures.

• For fully observed models, maximum likelihood learning decouples
across the network and each node can learn its parameters given
only observations of itself and its parents.



Summary: EM and Belief Propagation

• In networks with hidden or latent variables, learning is much harder
and requires inferring the distribution over the unobserved variables
given the observed variables.

• Given the results of such inference, the
EM algorithm can be used to update the
parameters in a way that never decreases
the likelihood of the training data.

lik
el

ih
oo

d

parameter space

• Inference in two-node models is just a simple application of Bayes’
rule. This is used at test time in supervised models and at training
time in unsupervised models.

• In more complex models such as chains and trees, efficient
inference can be performed with the belief propagation (BP)
algorithm which is the natural extension of dynamic programming
to statistical models.


