
Chapter 2

Combinatorial Probability

2.1 Permutations and combinations

As usual we begin with a question:

Example 2.1. The New York State Lottery picks 6 numbers out of 59, or more
precisely, a machine picks 6 numbered ping pong balls out of a set of 59. How
many outcomes are there? The set of numbers chosen is all that is important.
The order in which they were chosen is irrelevant.

To work up to the solution we begin with something that is obvious but is
a key step in some of the reasoning to follow.

Example 2.2. A man has 4 pair of pants, 6 shirts, 8 pairs of socks, and 3 pairs
of shoes. Ignoring the fact that some of the combinations may look ridiculous,
in how many ways can he get dressed?

We begin by noting that there are 4 · 6 = 24 possible combinations of pants
and shirts. Each of these can be paired with one of 8 choices of socks, so there
are 192 = 24 · 8 ways of putting on pants, shirt, and socks. Repeating the last
argument one more time, we see that for each of these 192 combinations there
are 3 choices of shoes, so the answer is

4 · 6 · 8 · 3 = 576ways

The reasoning in the last solution can clearly be extended to more than four
experiments, and does not depend on the number of choices at each stage, so
we have

The multiplication rule. Suppose that m experiments are performed in
order and that, no matter what the outcomes of experiments 1, . . . , k − 1 are,
experiment k has nk possible outcomes. Then the total number of outcomes is
n1 · n2 · · ·nm.

Example 2.3. How many ways can 5 people stand in line?
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To answer this question, we think about building the line up one person at a
time starting from the front. There are 5 people we can choose to put at the
front of the line. Having made the first choice, we have 4 possible choices for the
second position. (The set of people we have to choose from depends upon who
was chosen first, but there are always 4 people to choose from.) Continuing,
there are 3 choices for the third position, 2 for the fourth, and finally 1 for the
last. Invoking the multiplication rule, we see that the answer must be

5 · 4 · 3 · 2 · 1 = 120

Generalizing from the last example we define n factorial to be

n! = n · (n− 1) · (n− 2) · · · 2 · 1 (2.1)

To see that this gives the number of ways n people can stand in line, notice
that there are n choices for the first person, n − 1 for the second, and each
subsequent choice reduces the number of people by 1 until finally there is only
1 person who can be the last in line.

Note that n! grows very quickly since n! = n · (n− 1)!.

1! 1 7! 5,040
2! 2 8! 40,320
3! 6 9! 362,880
4! 24 10! 3,628,800
5! 120 11! 39,916,800
6! 720 12! 479,001,600

The number of ways we can put the 22 volumes of an encyclopedia on a shelf is

22! = 1.24000728× 1021

Here we have used our TI-83. We typed in 22 then used the MATH button to
get to the PRB menu and scroll down to the fourth entry to get the ! which
gives us 22! after we press ENTER.

The number of ways that cards in a deck of 52 can be arranged is

52! = 8.065817517× 1067

Before there were calculators, people used Stirling’s formula

n! ≈ (n/e)n
√

2πn (2.2)

When n = 52, 52/e = 19.12973094 and
√

2πn = 18.07554591 so

52! ≈ (19.12973094)52 · 18.07554591 = 8.0529× 1067

Example 2.4. Twelve people belong to a club. How many ways can they pick
a president, vice-president, secretary, and treasurer?
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Again we think of filling the offices one at a time in the order in which they
were given in the last sentence. There are 12 people we can pick for president.
Having made the first choice, there are always 11 possibilities for vice-president,
10 for secretary, and 9 for treasurer. So by the multiplication rule, the answer
is

12
P

11
V

10
S

9
T

= 11, 800

To compute P12,4 with the TI-83 calculator: type 12, push the MATH button,
move the cursor across to the PRB submenu, scroll down to nPr on the second
row, and press ENTER. nPr appears on the screen after the 12. Now type 4
and press ENTER.

Passing to the general situation, if we have k offices and n club members
then the answer is

n · (n− 1) · (n− 2) · · · (n− k + 1)

To see this, note that there are n choices for the first office, n−1 for the second,
and so on until there are n−k+1 choices for the last, since after the last person
is chosen there will be n − k left. Products like the last one come up so often
that they have a name: the number of permutations of k objects from a
set of size n, or Pn,k for short. Multiplying and dividing by (n− k)! we have

n · (n− 1) · (n− 2) · · · (n− k + 1) · (n− k)!
(n− k)!

=
n!

(n− k)!

which gives us a short formula,

Pn,k =
n!

(n− k)!
(2.3)

The last formula would give us the answer to the lottery problem if the
order in which the numbers drawn was important. Our last step is to consider
a related but slightly simpler problem.

Example 2.5. A club has 23 members. How many ways can they pick 4 people
to be on a committee to plan a party?

To reduce this question to the previous situation, we imagine making the com-
mittee members stand in line, which by (2.3) can be done in 23 ·22 ·21 ·20 ways.
To get from this to the number of committees, we note that each committee
can stand in line 4! ways, so the number of committees is the number of lineups
divided by 4! or

23 · 22 · 21 · 20
1 · 2 · 3 · 4

= 23 · 11 · 7 · 5 = 8, 855

To compute C23,4 with the TI-83 calculator: type 23, push the MATH button,
move the cursor across to the PRB submenu, scroll down to nCr on the third
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row, and press ENTER. nCr appears on the screen after the 23, now type 4 and
press ENTER.

Passing to the general situation, suppose we want to pick k people out of a
group of n. Our first step is to make the k people stand in line, which can be
done in Pn,k ways, and then to realize that each set of k people can stand in
line k! ways, so the number of ways to choose k people out of n is

Cn,k =
Pn,k

k!
=

n!
k!(n− k)!

=
n · (n− 1) · · · (n− k + 1)

1 · 2 · · · k
(2.4)

by (2.4) and (2.1). Here, Cn,k is short for the number of combinations of k
things taken from a set of n. Cn,k is often written as

(
n
k

)
, a symbol that is

read as “n choose k.” We are now ready for the

Answer to the Lottery Problem, Example 2.1. We are choosing k = 6
objects out of a total of n = 59 when order is not important, so the number of
possibilities is

C59,6 =
59!

6!53!
=

59 · 58 · 57 · 56 · 55 · 54
1 · 2 · 3 · 4 · 5 · 6

= 59 · 58 · 19 · 7 · 11 · 9 = 45, 057, 474

You should consider this the next time you think about spending $1 for two
chances to win a jackpot that starts at $3 million and increases by $1 million
each week there is no winner.

Example 2.6. World Series (continued). Using (2.4) we can easily compute
the probability that the series last seven games. For this to occur the score must
be tied 3-3 after six games. The total number of outcomes for the first 6 games
is 26 = 64. The number that end in a 3-3 tie is

C6,3 =
6!

3! 3!
=

6 · 5 · 4
1 · 2 · 3

= 20

since the outcome is determined by choosing the three games that team A will
win. This gives us a probability of 20/64 = 5/16 for the series to end in seven
games. Returning to the calculation in the previous section, we see that the
number of outcomes that lead to A winning in six games is the number of ways of
picking two of the first five games for B to win or C5,2 = 5!/(2! 3!) = 5·4/2 = 10.

Example 2.7. Suppose we flip five coins. Compute the probability that we get
0, 1, or 2 heads.

There are 25 = 32 total outcomes. There is only 1, TTTTT that gives 0 heads.
If we want this to fit into our previous formula we set 0! = 1 (there is only one
way for zero people to stand in line) so that

C5,0 =
5!

5! 0!
= 1
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There are 5 outcomes that have one heads. We can see this by writing out the
possibilities: HTTTT , THTTT , TTHTT , TTTHT , and TTTTH, or note that
the number of ways to pick 1 toss for the heads to occur is

C5,1 =
5!

4! 1!
= 5

Extending the last reasoning to two heads, the number of outcomes is the num-
ber of ways of picking 2 tosses for the heads to occur or

C5,2 =
5!

3! 2!
=

5 · 4
2

= 10

By symmetry the numbers of outcomes for 3, 4, and 5 heads are 10, 5, and 1.
In terms of binomial coefficients this says

Cn,m = Cn,n−m (2.5)

The last equality is easy to prove: The number of ways of picking m objects
out of n to take is the same as the number of ways of choosing n−m to leave
behind. Of course, one can also check this directly from the formula in (2.4).

Pascal’s triangle. The number of outcomes for coin tossing problems fit to-
gether in a nice pattern:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Each number is the sum of the ones on the row above on its immediate left and
right. To get the 1’s on the edges to work correctly we consider the blanks to
be zeros. In symbols

Cn,k = Cn−1,k−1 + Cn−1,k (2.6)

Verbal proof. In picking k things out of n, which can be done in Cn,k ways, we
may or may not pick the last object. If we pick the last object then we must
complete our set of k by picking k − 1 objects from the first n − 1, which can
be done in Cn−1,k−1 ways. If we do not pick the last object then we must pick
all k objects from the first n− 1, which can be done in Cn−1,k ways.

Analytic proof. Using the definition (2.4)

Cn−1,k−1 + Cn−1,k =
(n− 1)!

(n− k)!(k − 1)!
+

(n− 1)!
(n− k)!(k − 1)!
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Factoring out the parts common to the two fractions

=
(n− 1)!

(n− k − 1)!(k − 1)!

(
1

n− k
+

1
k

)
=

(n− 1)!
(n− k − 1)!(k − 1)!

(
n

(n− k)k

)
=

n!
(n− k)!k!

which proves (2.6).

Binomial theorem.

The numbers in Pascal’s triangle also arise if we take powers of (x + y):

(x + y)2 = x2 + 2xy + y2

(x + y)3 = (x + y)(x2 + 2xy + y2) = x3 + 3x2y + 3xy2 + y3

(x + y)4 = (x + y)(x3 + 3x2y + 3xy2 + y3)
= x4 + 4x3y + 6x2y2 + 4xy3 + y4

or in general

(x + y)n =
n∑

m=0

Cn,mxmyn−m (2.7)

To see this consider (x + y)5 and write it as

(x + y)(x + y)(x + y)(x + y)(x + y)

Since we can choose x or y from each parenthesis, there are 25 terms in all. If
we want a term of the form x3y2 then in 3 of the 5 cases we must pick x, so
there are C5,3 = (5 · 4)/2 = 10 ways to do this. The same reasoning applies to
the other terms, so we have

(x + y)5 = C5,5x
5 + C5,4x

4y + C5,3x
3y2 + C5,2x

2y3 + C5,1xy4 + C5,0y
5

= x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

Poker. In the game of poker the following hands are possible; they are listed
in increasing order of desirability. In the definitions the word value refers to A,
K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, or 2. This sequence also describes the relative
ranks of the cards, with one exception: an Ace may be regarded as a 1 for the
purposes of making a straight. (See the example in (d), below.)

(a) one pair: two cards of equal value plus three cards with different values
J♠ J♦ 9♥ Q♣ 3♠

(b) two pair: two pairs plus another card with a different value
J♠ J♦ 9♥ 9♣ 3♠

(c) three of a kind: three cards of the same value and two with different values



2.1. PERMUTATIONS AND COMBINATIONS 37

J♠ J♦ J♥ 9♣ 3♠
(d) straight: five cards with consecutive values

5♥ 4♠ 3♠ 2♥ A♣
(e) flush: five cards of the same suit

K♣ 9♣ 7♣ 6♣ 3♣
(f) full house: a three of a kind and a pair

J♠ J♦ J♥ 9♣ 9♠
(g) four of a kind: four cards of the same value plus another card

J♠ J♦ J♥ J♣ 9♠
(h) straight flush: five cards of the same suit with consecutive values

A♣ K♣ Q♣ J♣ 10♣
This example is called a royal flush.

To compute the probabilities of these poker hands we begin by observing that
there are

C52,5 =
52 · 51 · 50 · 49 · 48

1 · 2 · 3 · 4 · 5
= 2, 598, 960

ways of picking 5 cards out of a deck of 52, so it suffices to compute the number
of ways each hand can occur. We will do three cases to illustrate the main ideas
and then leave the rest to the reader.

(d) straight: 10 · 45

A straight must start with a card that is 5 or higher, 10 possibilities. Once the
values are decided on, suits can be assigned in 45 ways. This counting regards
a straight flush as a straight. If you want to exclude straight flushes, suits can
be assigned in 45 − 4 ways.

(f) full house: 13 · C4,3 · 12 · C4,2

We first pick the value for the three of a kind (which can be done in 13 ways),
then assign suits to those three cards (C4,3 ways), then pick the value for the
pair (12 ways), then we assign suits to the last two cards (C4,2 ways).

(a) one pair: 13 · C4,2 · C12,3 · 43

We first pick the value for the pair (13 ways), next pick the suits for the pair
(C4,2 ways), then pick three values for the other cards (C12,3 ways) and assign
suits to those cards (in 43 ways).

A common incorrect answer to this question is 13 · C4,2 · 48 · 44 · 40. The
faulty reasoning underlying this answer is that the third card must not have the
same value as the cards in the pair (48 choices), the fourth must be different
from the third and the pair (44 choices), . . . However, this reasoning is flawed
since it counts each outcome 3! = 6 times. (Note that 48 ·44 ·40/3! = C12,3 ·43.)

The numerical values of the probabilities of all poker hands are given in the
next table.
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(a) one pair .422569
(b) two pair .047539
(c) three of a kind .021128
(d) straight .003940
(e) flush .001981
(f) full house .001441
(g) four of a kind .000240
(h) straight flush .000015

The probability of getting none of these hands can be computed by summing
the values for (a) through (g) (recall that (d) includes (h)) and subtracting the
result from 1. However, it is much simpler to observe that we have nothing if we
have five different values that do not make a straight or a flush. So the number
of nothing hands is (C13,5− 10) · (45− 4) and the probability of a nothing hand
is 0.501177.

More than two categories

We defined Cn,k as the number of ways of picking k objects out of n. To
motivate the next generalization we would like to observe that Cn,k is also the
number of ways we can divide n objects into two groups, the first one with k
objects and the second with n − k. To connect this observation with the next
problem, think of it as asking: “How many ways can we divide 12 objects into
three numbered groups of sizes 4, 3, and 5?”

Example 2.8. A house has 12 rooms. We want to paint 4 yellow, 3 purple,
and 5 red. In how many ways can this be done?

This problem can be solved using what we know already. We first pick 4 of the
12 rooms to be painted yellow, which can be done in C12,4 ways, and then pick
3 of the remaining 8 rooms to be painted purple, which can be done in C8,3

ways. (The 5 unchosen rooms will be painted red.) The answer is:

C12,4C8,3 =
12!
4! 8!

· 8!
3! 5!

=
12!

4! 3! 5!
= 27, 720

A second way of looking at the problem, which gives the last answer directly,
is to first decide the order in which the rooms will be painted, which can be
done in 12! ways, then paint the first 4 on the list yellow, the next 3 purple, and
the last 5 red. One example is

9
Y

6
Y

11
Y

1
Y

8
P

2
P

10
P

5
R

3
R

7
R

12
R

4
R

Now, the first four choices can be rearranged in 4! ways without affecting the
outcome, the middle three in 3! ways, and the last five in 5! ways. Invoking
the multiplication rule, we see that in a list of the 12! possible permutations
each possible painting thus appears 4! 3! 5! times. Hence the number of possible
paintings is

12!
4! 3! 5!
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The second computation is a little more complicated than the first, but
makes it easier to see

Theorem 2.1. The number of ways a group of n objects to be divided into m
groups of size n1, . . . , nm with n1 + · · ·+ nm = n is

n!
n1!n2! · · ·nm!

(2.8)

The formula may look complicated but it is easy to use.

Example 2.9. There are 39 students in a class. In how many ways can a
professor give out 9 A’s, 13 B’s, 12 C’s, and 5 F’s?

39!
9! 13! 12! 5!

= 1.57× 1022

Example 2.10. Four people play a card game in which each gets 13 cards.
How many possible deals are there?

52!
(13!)4

= 5.364473777× 1028

Example 2.11. Suppose we draw 13 cards from a deck. How many outcomes
are there? How many lead to hands with 4 spades, 3 hearts, 3 diamonds, and 3
clubs? 3 spades, 5 hearts, 2 diamonds, and 3 clubs?

C52,13 = 6.350135596× 1011

C13,4C13,3C13,3C13,3 = 715 · (286)3 = 16, 726, 464, 040
C13,3C13,5C13,2C13,3 = 286 · 1287 · 78 · 286 = 8, 211, 173, 256

Example 2.12. Suit distributions. The last bridge hand in the previous
example is said to have a 5-3-3-2 distribution. Here, we have listed the number
cards in the longest suit first and continued in decreasing order. Permuting the
four numbers we see that the example 3 spades, 5 hearts, 2 diamonds, and 3
clubs is just one of 4!/2! possible ways of assigning the numbers to suits, so the
probability of a 5-3-3-2 distribution is

12 · 8, 211, 173, 256
6.350135596× 1011

= 0.155

Similar computations lead to the results in the next table. We have included
the number of different permutations of the pattern to help explain why slightly
unbalanced distributions have larger probability than 4-3-3-3.

Distribution Probability Permutations
4-4-3-2 0.216 12
5-3-3-2 0.155 12
5-4-3-1 0.129 24
5-4-2-2 0.106 12
4-3-3-3 0.105 4
6-3-2-2 0.056 12
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2.2 Binomial and multinomial distributions

Example 2.13. Suppose we roll 6 dice. What is the probability of A =“we get
exactly two 4’s”?

One way that A can occur is

×
1

4
2
×
3

4
4
×
5
×
6

where × stands for “not a 4.” Since the six events “die one shows ×,” “die two
shows 4,” . . . , “die six shows ×” are independent, the indicated pattern has
probability

5
6
· 1
6
· 5
6
· 1
6
· 5
6
· 5
6

=
(

1
6

)2 (
5
6

)4

Here we have been careful to say “pattern” rather than “outcome” since the
given pattern corresponds to 54 outcomes in the sample space of 66 possible
outcomes for 6 dice. Each pattern that results in A corresponds to a choice of 2
of the 6 trials on which a 4 will occur, so the number of patterns is C6,2. When
we write out the probability of each pattern, there will be two 1/6’s and four
5/6’s so each pattern has the same probability and

P (A) = C6,2

(
1
6

)2 (
5
6

)4

Generalizing from the last example, suppose we perform an experiment n times
and on each trial an event we call “success” has probability p. (Here and in
what follows, when we repeat an experiment, we assume that the outcomes of
the various trials are independent.) Then the probability of k successes is

Cn,kpk(1− p)n−k (2.9)

This is called the binomial(n,p) distribution. Taking n = 6, k = 2, and
p = 1/6 in (2.9) gives the answer in the previous example. The reasoning for
the general formula is similar. There are Cn,k ways of picking k of the n trials
for successes to occur, and each pattern of k successes and n − k failures has
probability pk(1− p)n−k.

Theorem 2.2. The binomial(n, p) distribution has mean np, variance np(1−p).

Proof using theory. Let Xi = 1 if the ith trial is a success and 0 otherwise.
Sn = X1 + · · · + Xn is the number of successes in n trials. Using (1.8) we see
that ESn = nEXi = np, i.e., the expected number of successes is the number
of trials n times the success probability p on each trial.

Since X1, . . . Xn are independent (6.9) implies that var (Sn) = var (X1) +
· · ·+ var (Xn) = n var (X1). To compute var (X1) we note that EX2

1 = 1 · p +
0 · (1−p) = p, so var (X1) = EX2

1 − (EX1)2 = p−p2 = p(1−p) and the desired
result follows.
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Proof by computation. Using the definition of expected value

EN =
n∑

m=0

m
n!

m!(n−m)!
pm(1− p)n−m

The m = 0 term contributes nothing so we can cancel m’s and rearrange to get

= np

n∑
m=1

m
(n− 1)!

(m− 1)!(n−m)!
pm−1(1− p)n−m = np

since the sum computes the total probability for the binomial(n − 1, p) distri-
bution.

As in the case of the geometric, our next step is to compute

E(N(N − 1) =
n∑

m=2

m(m− 1)
n!

m!(n−m)!
pm(1− p)n−m

We have dropped the first two terms which contribute nothing so we can cancel
to get

= n(n− 1)p2
n∑

m=2

m(m− 1)
(n− 2)!

(m− 2)!(n−m)!
pm−2(1− p)n−m

since the sum computes the total probability for the binomial(n − 2, p) distri-
bution.

To finish up we note that

var (N) = EN2 − (EN)2 = E(N(N − 1)) = EN − (EN)2

= n(n− 1)p2 + np− n2p2 = n(p− p2) = np(1− p)

which completes the proof.

Example 2.14. A student takes a test with 10 multiple-choice questions. Since
she has never been to class she has to choose at random from the 4 possible
answers. What is the probability she will get exactly 3 right?

The number of trials is n = 10. Since she is guessing the probability of success
p = 1/4, so using (2.9) the probability of k = 3 successes and n− k = 7 failures
is

C10,3(1/4)3(3/4)7 =
10 · 9 · 8
1 · 2 · 3

· 37

410
= 120 · 2187

1, 048, 576
= 0.250

In the same way we can compute the other probabilities. The results are given
in Figure 2.1.

Example 2.15. A football team wins each week with probability 0.6 and loses
with probability 0.4. If we suppose that the outcomes of their 10 games are
independent, what is the probability they will win exactly 8 games?
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.1

.2

0 1 2 3 4 5 6 7 8 9 10

Figure 2.1: Binomial(10,1/4) distribution.

The number of trials is n = 10. We are told that the probability of success
p = 0.6, so using (2.9) the probability of k = 8 successes and n− k = 2 failures
is

C10,8(0.6)8(0.4)2 =
10 · 9
1 · 2

(0.6)8(0.4)2 = 0.1209

In the same way we can compute the other probabilities. The results are given in
Figure 2.2. With a TI-83 calculator these answers can be found by going to the
DISTR menu and using binompdf(10,0.25,k). Here pdf is short for probability
density function.

Example 2.16. Aces at Bridge. When we draw 13 cards out of a deck of
52, each ace has a probability 1/4 of being chosen, but the four events are not
independent. How does the probability of k = 0, 1, 2, 3, 4 aces compare with
that of the binomial distribution with n = 4 and p = 1/4?

We first consider the probability of drawing two aces:

C4,2C48,11

C52,13
=

6 · 48 · · · 38
11!

52 · · · 40
13!

= 6 · 13 · 12 · 39 · 38
52 · 51 · 50 · 49

= 0.2135

In contrast the probability for the binomial is

C4,2(1/4)2(3/4)2 = 0.2109

To compare the two formulas note that 13/52 = 1/4, 12/51 = 0.2352, 39/50 =
0.78, 38/51 = 0.745 versus (1/4)2(3/4)2 in the binomial formula. Similar com-
putations show that if D = 52 · 51 · 50 · 49 then the answers are:
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.1

.2

0 1 2 3 4 5 6 7 8 9 10

Figure 2.2: Binomial(10,0.6) distribution

aces binomial

0
39 · 38 · 37 · 36
52 · 51 · 50 · 49

(3/4)4

1 4 · 13 · 39 · 38 · 37
52 · 51 · 50 · 49

4 · (1/4)(3/4)3

2 6 · 13 · 12 · 39 · 38
52 · 51 · 50 · 49

6 · (1/4)2(3/4)2

3 4 · 13 · 12 · 11 · 39
52 · 51 · 50 · 49

4 · (1/4)3(3/4)

4
13 · 12 · 11 · 10
52 · 51 · 50 · 49

(1/4)4

Evaluating these expressions leads to the following probabilities:

aces binomial
0 0.3038 0.3164
1 0.4388 0.4218
2 0.2134 0.2109
3 0.0412 0.0468
4 0.00264 0.00390

Example 2.17. In 8 games of bridge, Harry had 6 hands without an ace.
Should he doubt that the cards are being shuffled properly?

The number of hands with no ace has a binomial distribution with n = 8 and
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p = 0.3038. The probability of at least 6 hands without an ace is

8∑
k=6

C8,k(0.3038)k(0.6962)8−k = 1−
5∑

k=0

C8,k(0.3038)k(0.6962)8−k

We have turned the probability around because on the TI-83 calculator the
sum can be evaluated as binomcdf(8, 0.3038, 5) = 0.9879. Here, cdf is short for
cumulative distribution function, i.e., the probability of ≤ 5 hands without an
ace. Thus the probability of luck this bad is 0.0121.

Example 2.18. In men’s tennis the winner is the first to win 3 out of 5 sets.
If Roger Federer wins a set against his opponent with probability 2/3, what is
the probability w that he will win the match?

He can win in three sets, four or five, but he must win the last set, so

w =
(

2
3

)3

+ C3,2

(
2
3

)3 1
3

+ C4,2

(
2
3

)3 (
1
3

)2

=
(

2
3

)3

(1 + 3(1/3) + 6(1/9)) =
8
27
· 8
3

= 0.790
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Figure 2.3: Winning probabilities for series.

Replacing 2/3 by p and 1/3 by (1 − p) we get the general solution for best
three out of five, which generalizes easily to other common formats:

2 out of 3: p2 + C2,1p
2(1− p)

3 out of 5: p3 + C3,2p
3(1− p) + C4,2p

3(1− p)2

4 out of 7: p4 + C4,3p
4(1− p) + C5,3p

4(1− p)2 + C6,3p
4(1− p)3
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As we should expect, if p > 1/2 then the winning probability increases with
the length of the series. When p = 0.6 the three values are 0.648, 0.68256, and
0.710208. The graph in Figure 2.3 compares the winning probabilities for a
team that wins each game with probability p.

The multinomial distribution

The arguments above generalize easily to independent events with more than
two possible outcomes. We begin with an example.

Example 2.19. Consider a die with 1 painted on three sides, 2 painted on
two sides, and 3 painted on one side. If we roll this die ten times what is the
probability we get five 1’s, three 2’s and two 3’s?

The answer is
10!

5! 3! 2!

(
1
2

)5 (
1
3

)3 (
1
6

)2

The first factor, by (2.8), gives the number of ways to pick five rolls for 1’s,
three rolls for 2’s, and two rolls for 3’s. The second factor gives the probability
of any outcome with five 1’s, three 2’s, and two 3’s. Generalizing from this
example, we see that if we have k possible outcomes for our experiment with
probabilities p1, . . . , pk then the probability of getting exactly ni outcomes of
type i in n = n1 + · · ·+ nk trials is

n!
n1! · · ·nk!

pn1
1 · · · pnk

k (2.10)

since the first factor gives the number of outcomes and the second the probability
of each one.

Example 2.20. A baseball player gets a hit with probability 0.3, a walk with
probability 0.1, and an out with probability 0.6. If he bats 4 times during a
game and we assume that the outcomes are independent, what is the probability
he will get 1 hit, 1 walk, and 2 outs?

The total number of trials n = 4. There are k = 3 categories hit, walk, and out.
n1 = 1, n2 = 1, and n3 = 2. Plugging in to our formula the answer is

4!
1!1!2!

(0.3)(0.1)(0.6)2 = 0.1296

Example 2.21. The output of a machine is graded excellent 70% of the time,
good 20% of the time, and defective 10% of the time. What is the probability
a sample of size 15 has 10 excellent, 3 good, and 2 defective items?

The total number of trials n = 15. There are k = 3 categories: excellent, good,
and defective. We are interested in outcomes with n1 = 10, n2 = 3, and n3 = 2.
Plugging in to our formula the answer is

15!
10! 3! 2!

· (0.7)10(0.2)3(0.1)2
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2.3 Poisson approximation to the binomial

X is said to have a Poisson distribution with parameter λ, or Poisson(λ) if

P (X = k) = e−λ λk

k!
for k = 0, 1, 2, . . .

Here λ > 0 is a parameter. To see that this is a probability function we recall

ex =
∞∑

k=0

xk

k!
(2.11)

so the proposed probabilities are nonnegative and sum to 1.
Figure 2.4 shows the Poisson distribution with λ = 4.

.05

.1

.15

0 1 2 3 4 5 6 7 8 9 10

Figure 2.4: Poisson(4) distribution.

Theorem 2.3. The Poisson distribution has mean λ and variance λ.

Proof. Since the k = 0 term makes no contribution to the sum,

EX =
∞∑

k=1

ke−λ λk

k!
= λ

∞∑
k=1

e−λ λk−1

(k − 1)!
= λ

since
∑∞

k=1 P (X = (k − 1)) = 1. As in the case of the binomial and geometric
our next step is to compute

E(X(X − 1)) =
∞∑

k=2

k(k − 1)e−λ λk

k!
= λ2

∞∑
k=2

e−λ λk−2

(k − 2)!
= λ2
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From this it follows that

var (X) = EX2 − (EX)2 = E(X(X − 1)) + EX − (EX)2

= λ2 + λ− λ2

which completes the proof.

Our next result will explain why the Poisson distribution arises in a number
of situations.

Poisson approximation to the binomial. Suppose Sn has a binomial dis-
tribution with parameters n and pn. If pn → 0 and npn → λ as n →∞ then

P (Sn = k) → e−λ λk

k!
(2.12)

In words, if we have a large number of independent events with small probability
then the number that occur has approximately a Poisson distribution. The key
to the proof is the following fact:

Lemma. If pn → 0 and npn → λ then as n →∞

(1− pn)n → e−λ (2.13)

Proof. Calculus tells us that if x is small then

ln(1− x) = −x− x2

2
− . . .

Using this we have

(1− pn)n = exp(n ln(1− pn))
≈ exp(−npn − np2

n/2) ≈ exp(−λ)

In the last step we used the observation that pn → 0 to conclude that npn ·pn/2
is much smaller than npn.

Proof of (2.12) . Since P (Sn = 0) = (1− pn)n (2.13) gives the result for k = 0.
To prove the result for k > 0, we let λn = npn and observe that

P (Sn = k) = Cn,k

(
λn

n

)k (
1− λn

n

)n−k

=
n(n− 1) · · · (n− k + 1)

nk
· λk

n

k!

(
1− λn

n

)n (
1− λn

n

)−k

→ 1 · λk

k!
· e−λ · 1

Here n(n−1) · · · (n−k+1)/nk → 1 since there are k factors in the numerator and
for each fixed j, (n− j)/n = 1− (j/n) → 1. The last term (1−{λn/n})−k → 1
since k is fixed and 1− {λn/n} → 1.
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When we apply (2.12) we think, “If Sn = binomial(n, p) and p is small then
Sn is approximately Poisson(np).” The next example illustrates the use of this
approximation and shows that the number of trials does not have to be very
large for us to get accurate answers.

Example 2.22. Suppose we roll two dice 12 times and we let D be the number
of times a double 6 appears. Here n = 12 and p = 1/36, so np = 1/3. We will
now compare P (D = k) with the Poisson approximation for k = 0, 1, 2.

k = 0 exact answer:

P (D = 0) =
(

1− 1
36

)12

= 0.7132

Poisson approximation: P (D = 0) = e−1/3 = 0.7165

k = 1 exact answer:

P (D = 1) = C12,1
1
36

(
1− 1

36

)11

=
(

1− 1
36

)11

· 1
3

= 0.2445

Poisson approximation: P (D = 1) = e−1/3 1
3 = 0.2388

k = 2 exact answer:

P (D = 2) = C12,2

(
1
36

)2 (
1− 1

36

)10

=
(

1− 1
36

)10

· 12 · 11
362

· 1
2!

= 0.0384

Poisson approximation: P (D = 2) = e−1/3
(

1
3

)2 1
2! = 0.0398

Example 2.23. Death by horse kick. Ladislaus Bortkiewicz published a
book about the Poisson distribution titled the Law of Small Numbers in 1898.
In this book he analyzed the number of German soldiers kicked to death by
cavalry horses between 1875 and 1894 in each of 14 cavalry corps, arguing that
it fit the Poisson distribution. I.J. Good and others have argued that the Poisson
distribution should be called the Bortkiewicz distribution, but then it would be
very difficult to say or write.

Example 2.24. V-2 rocket hits in London during World War II. The
area under study was divided into 576 areas of equal size. There were a total of
537 hits or an average of 0.9323 per subdivision. Using the Poisson distribution
the probability a subdivision is not hit is e−0.9323 = 0.3936. Multiplying by 576
we see that the expected number not hit was 226.71 which agrees well with the
229 that were observed not to be hit.
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Example 2.25. Shark Attacks. In the summer of 2001 there were 6 shark
attacks in Florida, while the yearly average is 2. Is this unusual?

In an article in the September 7, 2001 National Post, Professor David Kelton
of Penn State University argued that this was a random event. “Just because
you see events happening in a rash this does not imply that there is some
physical driver causing them to happen. It is characteristic of random processes
that they have bursty behavior.” He did not seem to realize that the probability
of six shark attacks under the Poisson distribution is

e−2 26

6!
= 0.01203

This probability can be found with the TI-83 by using Poissonpdf(2,6) on DISTR
menu. If we want the probability of at least six we would use 1−Poissoncdf(2, 5).

Example 2.26. Alliteration in Shakespeare. Did Shakespeare consciously
choose words with the same sounds or did lines like “full fathom five thy father
lies” just occur by chance. Psychologist B.F. Skinner addressed this question in
two papers (one in 1939 in The Psychological Record 3, 186–192 and one in 1941
in The American Journal of Psychology 54, 64–79). He looked at 100 sonnets
(for a total of 1400 lines) and counted the number of times s sounds appeared
in a line. The next table compares the counts to those expected under a Poisson
distribution with the same mean.

s sounds 0 1 2 3 4
Observed 702 501 161 29 7
Expected 685 523 162 26 2

It turns out that most of the discrepancy in the last two cells goes away if the
same word on a line is not counted more than once. However, even without this
manipulation the similarity to the Poisson is remarkable. This example comes
a 1989 article by Diaconis and Mosteller on coincidences in the Journal of the
American Statistical Association 84, 853–861.

Example 2.27. Birthday problem, II. If we are in a group of n = 183
individuals, what is the probability no one else has our birthday?

By (2.13) the probability is(
1− 1

365

)182

≈ e−182/365 = 0.6073

From this we see that in order to have a probability of about 0.5 we need
365 ln 2 = 253 people as we calculated before.

Example 2.28. Birthday problem, I. Consider now a group of n = 25 and
ask our original question: What is the probability two people have the same
birthday?
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The events Ai,j that persons i and j have the same birthday are only pairwise
independent, so strictly speaking (2.12) does not apply. However it gives a
reasonable approximation. The number of pairs of people is C25,2 = 300 while
the probability of a match for a given pair is 1/365, so by (2.13) the probability
of no match is

≈ exp(−300/365) = 0.4395

versus the exact probability of .4313 from the table in Section 1.1.

General Poisson approximation result

The Poisson distribution is often used as a model for the number of people
who go to a fast-food restaurant between 12 and 1, the number of people who
make a cell phone call between 1:45 and 1:50, or the number of traffic accidents in
a day. To explain the reasoning in the last case we note that any one person has
a small probability of having an accident on a given day, and it is reasonable to
assume that the events Ai = “the ith person has an accident” are independent.
However, it is not reasonable to assume that the probabilities of having an
accident pi = P (Ai) are all the same, nor is it reasonable to assume that all
women have the same probability of giving birth, but fortunately the Poisson
approximation does not require this.

Theorem 2.4. Consider independent events Ai, i = 1, 2, . . . , n with probabili-
ties pi = P (Ai). Let N be the number of events that occur, let λ = p1 + · · ·+pn,
and let Z have a Poisson distribution with parameter λ. Then, for any set of
integers B,

|P (N ∈ B)− P (Z ∈ B)| ≤
n∑

i=1

p2
i (2.14)

We can simplify the right-hand side by noting

n∑
i=1

p2
i ≤ max

i
pi

n∑
i=1

pi = λ max
i

pi

This says that if all the pi are small then the distribution of N is close to a Pois-
son with parameter λ. Taking B = {k} we see that the individual probabilities
P (N = k) are close to P (Z = k), but this result says more. The probabilities of
events such as P (3 ≤ N ≤ 8) are close to P (3 ≤ Z ≤ 8) and we have an explicit
bound on the error.

For a concrete situation, consider Example 2.22, where n = 12 and all the
pi = 1/36. In this case the error bound is

12∑
i=1

p2
i = 12

(
1
36

)2

=
1

108

while the error for the approximation for k = 1 is 0.0057.



2.3. POISSON APPROXIMATION TO THE BINOMIAL 51

Example 2.29. The previous example justifies the use of the Poisson distribu-
tion in modeling the number of visits to a web site in a minute. Suppose that
the average number of visitors per minute is λ = 5, but that the site will crash
if there are 12 visitors or more. What is the probability the site will crash?

The probability of 12 or more visitors is

1−
11∑

k=0

e−5 5k

k!

This would be tedious to do by hand, but is easy if we use the TI-83 calculator.
Using the distributions menu,

11∑
k=0

e−5 5k

k!
= Poissoncdf(5, 11) = 0.994547

Subtracting this from 1, we have the answer 0.005453.

Example 2.30. Births in Ithaca. The Poisson distribution can be used for
births as well as for deaths. There were 63 births in Ithaca, NY between March
1 and April 8, 2005, a total of 39 days, or 1.615 per day. The next table gives
the observed number of births per day and compares with the prediction from
the Poisson distribution.

0 1 2 3 4 5 6
observed 9 12 9 5 3 0 1
Poisson 7.75 12.52 10.11 5.44 2.19 .71 .19

Example 2.31. Wayne Gretsky. He scored a remarkable 1669 points in
696 games as an Edmonton Oiler, for a rate of 1669/696 = 2.39 points per
game. From the Poisson formula with k = 0 the probability of Gretzky having
a pointless game is e−2.39 = 0.090. The next table compares that actual number
of games with the numbers predicted by the Poisson approximation.

points games Poisson
0 69 63.27
1 155 151.71
2 171 181.90
3 143 145.40
4 79 87.17
5 57 41.81
6 14 16.71
7 6 5.72
8 2 1.72
9 0 0.46

Coincidences
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If we see an event with a chance of one in a hundred million then we are
amazed, even though each day in the US such events will happen to three people.
This observation helps explain why some incredible things occur. Some times,
as in our first example, it is just a miscalculation.

Example 2.32. Quoting a United Press story on September 10, 1981 reported
by James Hanley in his article in the American Statistician 46, 197–202: Lottery
officials say that there is 1 chance in 100 million that the same four digit lottery
number would be drawn in Massachusetts and New York on the same night.
That’s just what happened Tuesday. The number 8902 came up paying $5842
in Massachusetts and $4500 New York.

These lotteries pick four digit numbers so each number has a 1 in 104 chance.
The probability that 8902 is chosen in both states is 1 in 108 but then again
some number will be chosen in Massachusetts and after that has been done the
probability the same number is chosen in New York is 1 in 104. When you take
into account there are a half-dozen states that have similar games and drawings
occur twice a day in New York, one should expect this to happen every few
years.

Example 2.33. Lottery Double Winner. The following item was reported
in the February 14, 1986 edition of the New York Times: A New Jersey woman,
Evelyn Adams, won the lottery twice within a span of four months raking in a
total of 5.4 million dollars. She won the jackpot for the first time on October
23, 1985 in the Lotto 6/39 in which you pick 6 numbers out of 39. Then she
won the jackpot in the new Lotto 6/42 on February 13, 1986. Lottery officials
calculated the probability of this as roughly one in 17.1 trillion. What do you
think of this statement?

It is easy to see where they get this from. The probability of a person picked
in advance of the lottery getting all six numbers right both times is

1
C39,6

· 1
C42,6

=
1

17.1× 1012

One can immediately reduce the odds against this event by noting that the first
lottery had some winner, who if they played only one ticket in the second lottery
had a 1/C42,6 chance.

The odds drop even further when you consider that there are a large number
of people who submit more than one entry for the twice weekly drawing and that
wins on October 23, 1985 and February 13, 1986 is not the only combination.
Suppose for concreteness that each week one million people play the lottery and
each buys exactly five tickets. The probability of one person winning on a given
week is

p1 =
5

C42,6
= 9.531× 10−7

The number of times one person will win a jackpot in the next year (100 twice
weekly drawings) is roughly Poisson with mean

λ1 = 100p1 = 9.531× 10−5
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The probability that a given player wins the jackpot two or more times is

p0 = 1− e−λ1 − e−λ1λ1 = 4.54× 10−9

The number of double winners in a population of 1 million players is Poisson
with mean

λ0 = (1, 000, 000)p0 = 4.54× 10−3

so the probability of at least one double winner is 1 − e−0.00454 ≈ 0.00454. If
you take into account that many states have lotteries and we were just looking
at one year, we see that a double winner is not unusual at all.

My favorite double winner story is Maureen Wilcox. In June 1980 she bought
tickets for the both the Massachusetts Lottery and the Rhode Island lottery.
She picked the winning numbers for both lotteries. Unfortunately for her, her
Massachusetts numbers won in Rhode Island and vice versa.

Example 2.34. Scratch-off Triple Winner. 81-year old Keith Selix won
three lottery prizes totaling $81,000 from scratch off games in the twelve months
preceding May 3, 2006. He won $30,00 twice in “Wild Crossword” games and
$21,000 playing “Double Blackjack.” Again we want to calculate the probability
of this.

The odds of winning in these games are 89,775 to 1 and 119,700 to 1 re-
spectively. One of the reasons Selix won so many times in 2006 is that he spent
about $200 a week or more than $10,000 a year on scratch-off games. If the
games cost $1 then this would be 10,000 plays with an approximate 1/100,000
chance of winning. Thus his expected number of wins would be 0.1 and the
probability of exactly three wins would be

e−0.1 (0.1)3

3!
or <

1
60, 000

Example 2.35. Sally Clark. Sometimes coincidences are not happy events
like lottery wins. In 1999, a British jury convicted Sally Clark of murdering her
two children who had died suddenly at the ages of 11 and 8 weeks respectively
of sudden infant death syndrome or “cot deaths”. There was no physical or
other evidence of a murder, nor was there a motive. Most likely the jury was
convinced by a pediatrician who said that a baby had a probability of roughly
1/8500 of dying a cot death, so having two children die this way had probability
roughly 1/73,000,000.

There are two problems with the computation: (i) many families have chil-
dren who die this way, so the first factor of 1/8500 should be dropped. (ii) two
cot deaths in the same family are not independent events; once on occurs the
second child faces an increased risk of about 1/100 of dying this way. Thus
the probability that it would happen again without foul play is 1/100. If this
number had been presented to the jury, Sally probably would not have had to
spend three years in jail before the verdict was overturned.
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2.4 Card Games and Other Urn Problems

A number of problems in probability have the following form.

Example 2.36. Suppose we pick 4 balls out of an urn with 12 red balls and 8
black balls. What is the probability of B = “We get two balls of each color”?

Almost by definition, there are

C20,4 =
20 · 19 · 18 · 17

1 · 2 · 3 · 4
= 5 · 19 · 3 · 17 = 4, 845

ways of picking 4 balls out of the 20. To count the number of outcomes in B, we
note that there are C12,2 ways to choose the red balls and C8,2 ways to choose
the black balls, so the multiplication rule implies

|B| = C12,2C8,2 =
12 · 11
1 · 2

· 8 · 7
1 · 2

= 6 · 11 · 4 · 7 = 1, 848

It follows that P (B) = 1848/4845 = 0.3814.
We will now consider two gambling games in which numbered balls are picked

out of urns.

Example 2.37. New York Lotto. As mentioned in Section 2.1, if there are
59 numbered balls and 6 are picked, the number of outcomes is

C59,6 = 45, 057, 474

In the lottery you do win some money if at least three of your six numbers. The
problem is to compute the probability of winning these other prizes.

Five out of six has probability

C6,5C53,1

C59,6
=

6 · 53
C59,6

=
1

141, 690

Four out of six has probability

C6,4C53,2

C59,6
=

15 · 1378
C59,6

=
1

2180

Three out of six has probability

C6,3C53,3

C59,6
=

20 · 23, 426
C59,6

=
1
96

To add more prizes, a bonus number has been added to the card. You win
if you match 5 out of six and also the bonus number which has probability

C6,5C52,1

C59,6

1
52

=
6

C59,6
=

1
7, 509, 579



2.4. CARD GAMES AND OTHER URN PROBLEMS 55

It is hard to compute the expected value because the rewards for 6 out of 6,
and 5 out of 6 plus the bonus number depend on the number of weeks that
there has been no winner, and all prizes with the exception of 3 out of 6 which
always pays $1 depend both on the number of people who play and the number
of people who win. However, one can get some idea of the expected value by
noting that 54.7% of the money bet is returned in prizes, 32.9% to education,
and 12.4% to various operating expenses.

The next table gives data for the number of winners and winning amounts
for the month of January 2008.

date 6 5+ 5 4 3
1/2 10M 503,347 2284 23 1

0 0 15 1601 36,719
1/5 11M 557,243 1635 29 1

0 1 25 1502 36,203
1/9 12M 46,833 2200 34 1

1 0 16 1128 26,319
1/12 3M 96,488 2354 32 1

0 1 16 1299 30,689
1/16 4M 41,839 2645 36 1

0 0 12 951 24,147
1/19 5M 91,440 984 21 1

0 0 37 1909 42,927
1/23 6M 133,696 1885 26 1

0 0 17 1319 31,131
1/26 7M 184,664 1104 26 1

0 1 34 1582 37,648
1/30 8M 38,956 461 11 1

2 1 60 2700 45,386

As you can see from the table, the big prize starts at 3 million and increases
by 1 million each week when there are no winners. The 5 out of 6 plus bonus
number is about 40,000 times the number of weeks since the previous winner.
One can get a pretty good idea of the number of people who played each week
by multiplying the number of 3 out of 6 winners by 96 (or 100 which is easier).

Example 2.38. Keno. In this game the casino picks 20 balls out of 80 num-
bered balls. Before the draw you may, for example pick 10 numbers and bet
$1. In this case you win $1 if 4 of your numbers are chosen; $2 for 5; $20 for 6;
$105 for 7; $500 for 8; $5000 for 9; and $12,000 if all ten are chosen. We want
to compute the expected value of the bet.

The number of possible draws is astronomically large:

C80,20 = 3.5353× 1018

The probability that k of your numbers are chosen is

pk =
C10,kC70,20−k

C80,20
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When k = 0 this is

C70,20

C80,20
=

70!60!
80!50!

=
60 · 59 · · · 51
80 · 79 · · · 71

= 0.045791

To compute the other probabilities it is useful to note that for 1 ≤ m ≤ n

Cn,m =
n!

m!(n−m)!
=

n + 1−m

m
· n!
(m− 1)!(n + 1−m)!

=
n + 1−m

m
· Cn,m−1

so we have

pk = pk−1 ·
11− k

k
· 21− k

50 + k

Writing wk for the winning when k of our numbers are drawn, using this recur-
sion and the result for p0 gives

k pk wk wkpk

0 0.045791 0
1 0.179571 0
2 0.295257 0
3 0.267402 0
4 0.147319 1 0.147319
5 0.051428 2 0.102855
6 0.011479 20 0.229588
7 0.001611 105 0.169701
8 0.000135 500 0.067710
9 6.12× 10−6 5000 0.030603
10 1.12× 10−7 12,000 0.001347

4-10 .2120 .7486

Thus, we win something about 21.2% of the time and our average winning is a
little less than 75 cents, a typical expected value for Keno bets. The last column
shows the contribution of the different payoffs to the expected value.

Example 2.39. Bridge. In the game of bridge there are four players called
North, West, South, and East according to their positions at the table. Each
player gets 13 cards. The game is somewhat complicated so we will content
ourselves to analyze one situation that is important in the play of the game.
Suppose that North and South have a total of eight Hearts. What is the prob-
ability that West will have 3 and East will have 2?

Even though this is not how the cards are usually dealt, we can imagine that
West randomly draws 13 cards from the 26 that remain. This can be done in

C26,13 =
26!

13! 13!
= 10, 400, 600 ways
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North and South have 8 hearts and 18 non-hearts so in the 26 that remain there
are 13−8 = 5 hearts and 39−18 = 21 non-hearts. To construct a hand for West
with 3 hearts and 10 non-hearts we must pick 3 of the 5 hearts, which can be
done in C5,3 ways and 10 of the 21 non-hearts in C21,10. The multiplication rule
then implies that the number of outcomes for West with 3 hearts is C5,3 ·C21,10

and the probability of interest is

C5,3 · C21,10

C26,13
= 0.339

Multiplying by 2 gives the probability that one player will have 3 cards and the
other 2, something called a 3 − 2 split. Repeating the reasoning gives that an
i− j split (i + j = 5) has probability

2 · C5,i · C21,13−i

C26,13

This formula tells us that the probabilities are

3-2 0.678
4-1 0.282
5-0 0.039

Thus while a 3-2 split is the most common, one should not ignore the possibility
of a 4-1 split. Similar calculations show that if North and South have 9 hearts
then the probabilities are

2-2 0.406
3-1 0.497
4-0 0.095

In this case the uneven 3-1 split is more common than the 2-2 split since it can
occur two ways, i.e., West might have 3 or 1.

Example 2.40. Disputed elections. In a close election in a small town,
2,656 people voted for candidate A compared to 2,594 who voted for candidate
B, a margin of victory of 62 votes. An investigation of the election, instigated
no doubt by the loser, found that 136 of the people who voted in the election
should not have. Since this is more than the margin of victory, should the
election results be thrown out even though there was no evidence of fraud on
the part of the winner’s supporters?

Like many problems that come from the real world (a court case De Martini
v. Power), this one is not precisely formulated. To turn this into a probability
problem we suppose that all the votes were equally likely to be one of the 136
erroneously cast and we investigate what happens when we remove 136 balls
from an urn with 2,656 white balls and 2,594 black balls. Now the probability
of removing exactly m white and 136−m black balls is

C2656,mC2594,136−m

C5250,136
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In order to reverse the outcome of the election, we must have

2, 656−m ≤ 2, 594− (136−m) or m ≥ 99

With the help of a short computer program we can sum the probability above
from m = 99 to 136 to conclude that the probability of the removal of 136
randomly chosen votes reversing the election is 7.492× 10−8. This computation
supports the Court of Appeals decision to overturn a lower court ruling that
voided the election in this case.

Exercise. What do you think should have been done in Ipolito v. Power, where
the winning margin was 1,422 to 1,405 but 101 votes had to be thrown out?

Example 2.41. Quality control. A shipment of 50 precision parts including
4 that are defective is sent to an assembly plant. The quality control division
selects 10 at random for testing and rejects the entire shipment if 1 or more are
found defective. What is the probability this shipment passes inspection?

There are C50,10 ways of choosing the test sample, and C46,10 ways of choosing
all good parts so the probability is

C46,10

C50,10
=

46!/36!10!
50!/40!10!

=
46 · 45 · · · 37
50 · 49 · · · 41

=
40 · 39 · 38 · 37
50 · 49 · 48 · 47

= 0.396

Using almost identical calculations a company can decide on how many bad
units they will alow in a shipment and design a testing program with a given
probability of success.

Example 2.42. Capture-recapture experiments. An ecology graduate stu-
dent goes to a pond and captures k = 60 beetles, marks each with a dot of paint,
and then releases them. A few days later she goes back and captures another
sample of r = 50, finding m = 12 marked beetles and r − m = 38 unmarked.
What is her best guess about the size of the population of beetles?

To turn this into a precisely formulated problem, we will suppose that no beetles
enter or leave the population between the two visits. With this assumption, if
there were N beetles in the pond, then the probability of getting m marked and
r −m unmarked in a sample of r would be

pN =
Ck,m CN−k,r−m

CN,r

To estimate the population we will pick N to maximize pN , the so-called max-
imum likelihood estimate. To find the maximizing N , we note that

Cj−1,i =
(j − 1)!

(j − i− 1)!i!
so Cj,i =

j!
(j − i)!i!

=
jCj−1,i

(j − i)
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and it follows that

pN = pN−1 ·
N − k

N − k − (r −m)
· N − r

N

Now pN/pN−1 ≥ 1 if and only if

(N − k)(N − r) ≥ N(N − k − r + m)

that is,
N2 − kN − rN + kr ≥ N2 − kN − rN + mN

or equivalently if N ≤ kr/m. Thus the value of N that maximizes the proba-
bility pN is the largest integer ≤ kr/m. This choice is reasonable since when
N = kr/m the proportion of marked beetles in the population, k/N , equals the
proportion of marked beetles in the sample, m/r. Plugging in the numbers from
our example, kr/m = (60 · 50)/12 = 250, so the probability is maximized when
N = 250.
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2.5 Probabilities of unions, Joe DiMaggio

In Section 1.1, we learned that P (A ∪ B) = P (A) + P (B)− P (A ∩ B). In this
section we will extend this formula to n > 2 events. We begin with n = 3 events:

P (A ∪B ∪ C) =P (A) + P (B) + P (C)
− P (A ∩B)− P (A ∩ C)− P (B ∩ C)
+ P (A ∩B ∩ C) (2.15)

Proof. As in the proof of the formula for two events, we have to convince
ourselves that the net number of times each part of A ∪ B ∪ C is counted is 1.
To do this, we make a table that identifies the areas counted by each term and
note that the net number of pluses in each row is 1:

A B C A ∩B A ∩ C B ∩ C A ∩B ∩ C
A ∩B ∩ C + + + − − − +
A ∩B ∩ Cc + + −
A ∩Bc ∩ C + + −
Ac ∩B ∩ C + + −
A ∩Bc ∩ Cc +
Ac ∩B ∩ Cc +
Ac ∩Bc ∩ C +

Example 2.43. Suppose we roll three dice. What is the probability that we
get at least one 6?

Let Ai = “we get a 6 on the ith die.” Clearly,

P (A1) = P (A2) = P (A3) = 1/6
P (A1 ∩A2) = P (A1 ∩A3) = P (A2 ∩A3) = 1/36
P (A1 ∩A2 ∩A3) = 1/216

So plugging into (2.15) gives

P (A1 ∪A2 ∪A3) = 3 · 1
6
− 3 · 1

36
+

1
216

=
108− 18 + 1

216
=

91
216

To check this answer, we note that (A1∪A2∪A3)c = “no 6” = Ac
1∩Ac

2∩Ac
3 and

|Ac
1 ∩Ac

2 ∩Ac
3| = 5 · 5 · 5 = 125 since there are five “non-6’s” that we can get on

each roll. Since there are 63 = 216 outcomes for rolling three dice, it follows that
P (Ac

1∩Ac
2∩Ac

3) = 125/216 and P (A1∪A2∪A3) = 1−P (Ac
1∩Ac

2∩Ac
3) = 91/216.

The same reasoning applies to sets.

Example 2.44. In a freshman dorm, 60 students read the Cornell Daily Sun,
40 read the New York Times and 30 read the Ithaca Journal. 20 read the
Cornell Daily Sun and the New York Times, 15 read the Cornell Daily Sun and
the Ithaca Journal, 10 read the New York Times and the Ithaca Journal, and 5
read all three. How many read at least one newspaper?



2.5. PROBABILITIES OF UNIONS, JOE DIMAGGIO 61

Using our formula the answer is

60 + 40 + 30− 20− 15− 10 + 5 = 90

To check this we can draw picture using D, N , and I for the three newspapers

D

I

N

5 515

1030 10

15

To figure out the number of students in each category we work out from the
middle. D ∩ N ∩ I has 5 students and D ∩ N has 20, so D ∩ N ∩ Ic has 15.
In the same way we compute that D ∩ N c ∩ I has 15 − 5 = 10 students and
Dc∩N ∩ I has 10−5 = 5 students. Having found that 30 of students in D read
at least one other newspaper, the number who read only D is 60− 30 = 30. In
a similar way, we compute that there are 40− 25 = 15 students who only read
N and 30 − 20 = 10 students who only read I. Adding up the numbers in the
seven regions gives a total of 90, as we found before.

The general formula for n events is the inclusion-exclusion formula.

P (∪n
i=1Ai) =

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak)

· · ·+ (−1)n+1P (A1 ∩ . . . ∩An) (2.16)

In words, we take all possible intersections of one, two, . . . n events and the
signs of the sums alternate.

Proof. A point that is in exactly k sets is counted k times by the first sum,
Ck,2 times by the second, Ck,3 times by the third, and so on until it is counted
Ck,k = 1 time by the kth term. The net result is

Ck,1 − Ck,2 + Ck,3 . . . + (−1)k+11

To show that this adds up to 1, we recall the Binomial theorem

(a + b)k = ak + Ck,1a
k−1b + Ck,2a

k−2b2 + · · ·+ bk
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Setting a = 1 and b = −1 we have

0 = 1− Ck,1 + Ck,2 − Ck,3 . . .− (−1)k+1

which proves the desired result.

Example 2.45. You pick 7 cards out of deck of 52. What is the probability
that you have a three of a kind, i.e., exactly three cards of some denomination
(e.g., three Kings or three 7’s)?

Let Ai for 1 ≤ i ≤ 13 be the event you have three cards of type i where 1 is
Ace, 11 is Jack, 12 is Queen, and 13 is King. It is impossible for three of these
events to occur so

P (∪13
i=1Ai) = 13P (A1)− C13,2P (A1 ∩A2)

A1 can occur in C4,3C48,4 = 778, 320 ways, A1∩A2 can occur in (C4,3)2 ·44 = 704
ways so the answer is

13 · 778, 320− 78 · 704
C52,7

=
10, 118, 160− 54, 912

133, 784, 560
= 0.075219

Notice that the first term gives most of the answer and the second is only a
small correction to account for the rare event of having two sets of three of a
kind.

Example 2.46. Suppose we roll a die 15 times. What is the probability that
we do not see each of the 6 numbers at least once?

Let Ai be the event that we never see i. P (Ai) = 515/615 since there are 615

outcomes in all but only 515 that contain no i’s. 515/615 = 0.064905, so

6∑
i=1

P (Ai) = 6(0.064905) = 0.389433

Turning to the second term, we note that for any i < j, we have P (Ai ∩Aj) =
415/615 = 0.002284 and there are C6,2 = (6 · 5)/2 = 15 choices for i < j, so∑

i<j

P (Ai ∩Aj) = 15(0.002284) = 0.03426

For the third term, we note that for any i < j < k, we have P (Ai ∩Aj ∩Ak) =
315/615 = 3.05×10−5 and there are C6,3 = (6·5·4)/3! = 20 choices for i < j < k,
so ∑

i<j<k

P (Ai ∩Aj ∩Ak) = 20(3.05× 10−5) = 0.00061

At this point the pattern should be clear:

C6,1(5/6)15 − C6,2(4/6)15 + C6,3(3/6)15 − C6,4(2/6)15 + C6,5(1/6)15
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= 0.389433− 0.03426 + 6.1× 10−4 − 1.045× 10−6 + 1.276× 10−11

= 0.355787

Even better than the inclusion-exclusion formula are the associated

Bonferroni Inequalities.

In brief, if you stop the inclusion-exclusion formula with a + term you get
an upper bound; if you stop with a − term you get a lower bound.

P (∪n
i=1Ai) ≤

n∑
i=1

P (Ai) (2.17)

≥
n∑

i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) (2.18)

≤
n∑

i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak) (2.19)

To explain the usefulness of these inequalities, we note that in the previous
example they imply that the probability of interest is

≤ 0.389433
≥ 0.389433− 0.03426 = 0.355178
≤ 0.389433− 0.03426 + 6.1× 10−4 = 0.355738

so we have a very accurate result after three terms.

Proof. The first inequality is obvious since the right-hand side counts each
outcome in ∪n

i=1Ai at least once. To prove the second, consider an outcome
that is in exactly k sets. If k = 1, the first term will count it once and the
second not at all. If k = 2 the first term counts it 2 times and the second once,
with a net total of 1. If k ≥ 3 the first term counts it k times and the second
Ck,2 = k(k − 1)/2 > k times so the net number of countings is < 0. The third
formula is similar.

k counted
1 1 - 0 + 0 =1
2 2 - 1 + 0 =1
3 3 - 3 + 1 =1

When ≥ 4 the number of countings is

Ck,1 − Ck,2 + Ck,3 > k − k(k − 1)
2

+ (k − 1)(k − 2) ≥ 0

Example 2.47. The Streak. In the summer of 1941, Joe DiMaggio achieved
what many people consider the greatest record in sports, in which he had at
least one hit in each of 56 games. What is the probability of this event?
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A useful trick. Suppose for the moment that we know the probability p that Joe
DiMaggio gets a hit in one game, and that successive games are independent.
Assuming a 154-game season, we could let Ai be the probability that a player
got hits in games i + 1, . . . i + 56 for 0 ≤ i ≤ 98. Using (2.17) it follows that the
probability of the streak is

≤ 99p56

As we will see in a minute this overestimates the actual answer by a factor
of 1/(1 − p). The problem is that if Ai occurs, it becomes much easier for
Ai+1, Ai−1, and other “nearby” events to occur. To avoid this problem, we
will let Bi be the event the player gets no hit in game i but has hits in games
i + 1, i + 2, . . . , i + 56 where 1 ≤ i ≤ 98. Ignoring the probability of having hits
in games 1, 2, . . . 56 The event of interest S = ∪98

i=1Bi, so

P (S) ≤ q ≡ 98p56(1− p)

To compute the second bound we begin by noting Bi ∩Bj = ∅ if i < j ≤ i + 56
since Bi requires a hit in game j while Bj requires no hit. If 56 + i < j ≤ 106
then P (Bi ∩ Bj) = P (Bi)P (Bj). To simplify the arithmetic we note that in
either case P (Bi ∩Bj) ≤ P (Bi)P (Bj), so∑

1≤i<j≤98

P (Bi ∩Bj) ≤ C98,2p
112(1− p)2 ≤ q2

2

This is the number we have to subtract from the upper bound to get the lower
bound, so we have

q ≥ P (S) ≥ q − q2

2
(2.20)

Since q will end up being very small, the ratio of the two bounds is 1−(q/2) ≈ 1.
To compute the probability p that Joe DiMaggio gets a hit in one game,

we will introduce two somewhat questionable assumptions: (i) a player gets
exactly four at bats per game (during the streak, DiMaggio averaged 3.98 at
bats per game) and (ii) the outcomes of different at bats are independent with
the probability of a hit being 0.325, Joe DiMaggio’s lifetime batting average.
From assumptions (i) and (ii) it follows that the probability

p = 1− (0.675)4 = 0.7924

and using (2.20) we have

P (S) ≈ q = 98(0.7924)56(0.2076) = 4.46× 10−5

To interpret our result, note that the probability in (2.20) is roughly 1/22,000,
so even if there were 220 players with 0.325 batting averages, it would take 100
years for this to occur again.

Example 2.48. A less famous streak. Sports Illustrated reports that a
high school football team in Bloomington, Indiana lost 21 straight pre-game
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coin flips before finally winning one. Taking into account the fact that there
are approximately 15,000 high school and college football teams, is this really
surprising?

We will first compute the probability that this happens to one team some
time in the decade 1995–2004 assuming that the team plays 10 games per year.
Taking a lesson from the previous example, we let Bi be the event that the
team won the coin flip in game i but lost it in games i + 1, . . . i + 21. Using the
reasoning that led to (2.20)

P (S) ≈ 79(1/2)22 = 1.883× 10−5

What we have computed is the probability that one particular team will
have this type of bad luck some time in the last decade. The probability that
none of the 15,000 teams will do this is

(1− 79(0.5)22)15,000 = 0.7539

i.e., with probability 0.2461 some team will have this happen to them. As a
check on the last calculation, note that (2.17) gives an upper bound of

15, 000× 1.883× 10−5 = 0.2825
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2.6 Blackjack

In this book we will analyze craps and roulette, casino games where the player
has a substantial disadvantage. In the case of blackjack, a little strategy, which
we will explain in this section, can make the game almost even. To begin we
will describe the rules and the betting.

In the game of blackjack a King, Queen, or Jack counts 10, an Ace counts 1
or 11, and the other cards count the numbers that are shown on them (e.g., a
5 counts 5). The object of the game is to get as close to 21 as you can without
going over. You start with 2 cards and draw cards out of the deck until either
you are happy with your total or you go over 21, in which case you “bust.”

If your initial two cards total 21, this is a blackjack, and if the dealer does not
have one, you win 1.5 times your original bet. If you bust then you immediately
lose your bet. This is the main source of the casino advantage since if the dealer
busts later you have already lost. If you stop with 21 or less and the dealer
busts you win. If you and the dealer both end with 21 or less, then the one with
higher hand wins. In the case of a tie no money changes hands.

In casino blackjack the dealer plays by a simple rule: He draws a card if
his total is ≤ 16, otherwise he stops. The first step in analyzing blackjack is to
compute the probability the dealer’s ending total is k when he has a total of j.
To deal with the complication that an Ace can count as 1 or 11, we introduce
b(j, k) = the probability that the dealer’s ending total is k when he has a total
of j including one Ace that is being counted as 11. Such hands are called
“soft” because even if you draw a 10 you will not bust. We define a(j, k) = the
probability the dealer’s ending total is k when he has a hard total of j, i.e., a
hand in which any Ace is counted as 1.

We start by observing that a(j, j) = b(j, j) = 1 when j ≥ 17 and then start
with 16 and work down. Let pi = 1/13 for 1 ≤ i < 9 and p10 = 4/13. If
11 ≤ j ≤ 16 then a new Ace must count as 1 so

a(j, k) = p1a(j + 1, k) +
10∑

m=2

pma(j + m, k)

When 2 ≤ j ≤ 10 a new Ace counts as 11 and produces a soft hand:

a(j, k) = p1b(j + 11, k) +
10∑

m=2

pma(j + m, k)

For soft hands, an Ace counts as 11, so there are no soft hands with totals of
less than 12. If the card we draw takes us over 21 then we have to change the
Ace from counting 11 to counting 1, producing a hard hand, so

b(j, k) = p1b(j + 1, k) +
21−j∑
m=2

pmb(j + m, k) +
10∑

m=22−j

pma(j + m− 10, k)

When j = 11 the second sum runs from 11 to 10 and is considered to be 0.
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The last three formulas are too complicated to work with by hand but are
easy to manipulate using a computer. The next table gives the probabilities of
the various results for the dealer conditional on the value of his first card. We
have broken things down this way because when blackjack is played in a casino,
we can see one of the dealer’s two cards.

17 18 19 20 21 bust
2 .13981 .13491 .12966 .12403 .11799 .35361
3 .13503 .13048 .12558 .12033 .11470 .37387
4 .13049 .12594 .12139 .11648 .11123 .39447
5 .12225 .12225 .11770 .11315 .10825 .41640
6 .16544 .10627 .10627 .10171 .09716 .42315

7 .36857 .13780 .07863 .07863 .07407 .26231
8 .12857 .35934 .12857 .06939 .06939 .24474
9 .12000 .12000 .35076 .12000 .06082 .22843
10 .11142 .11142 .11142 .34219 .11142 .21211
ace .13079 .13079 .13079 .13079 .36156 .11529

You should note that when the dealer’s upcard is 2, 3, 4, 5, or 6, her most likely
outcome is to bust, but when her first card is k = 7, 8, 9, 10, or Ace = 11, her
most likely total is 10 + k. To make this clear we have given the most likely
probabilities in boldface.

The analysis of the player’s options is even more complicated than that of
the dealer’s so we will not attempt it here. The first analysis was performed
in the mid-’50s (see Baldwin et al. in J. Amer. Stat. Assoc. 51, 429–439) and
has been redone by a number of other people since that time. To describe the
optimal strategy in a few words we use “stand on n” as short for “take a card
if your total is < n but not if it is ≥ n.”

Hard Hands
Stand on 17 if the dealer shows 7, 8, 9, 10, or A
Stand on 12 if the dealer shows 2, 3, 4, 5, or 6
Exception: Draw to 12 if the dealer shows 2 or 3

Soft Hands
Stand on 18
Exception: Draw to 18 if the dealer has 9 or 10

To help remember the rules for hard hands, observe that with two exceptions
the strategy there is a combination of “mimic the dealer” and “never bust” (that
is, “only take a card if you have 11 or less”), and it is exactly what we would
do if the dealer’s down card was a 10. If her up card is 7, 8, 9, 10, or A, then
we must get to 17 to have a chance of winning. If her upcard is 2, 3, 4, 5, or 6
then we don’t draw and hope that she busts.

Using these rules, the probability you will win is about 0.49, close enough to
even if you are only looking for an evening’s entertainment. You can reduce the
house edge even further by learning about “doubling down” and splitting pairs.
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Doubling Down. In this move you turn up your two cards, double your bet,
and ask for one card to be dealt down to you. You are not allowed to ask for a
second card if you don’t like the first one. Double down

• if your total is 11

• if your total is 10 and the dealer’s up card is 9 or less

• if your total is 9 and the dealer’s up card is 3 through 6

• if you have A and 2 through 7 and the dealer’s up card is 4, 5, or 6

Again the doubling down rules can be explained by assuming that we are going
to get a 10. Some Nevada casinos only allow doubling down on 11 or 10.

Splitting Pairs. If you have a pair you can split them, an extra card is dealt
to each one, you place another bet on the table so there is one on each hand,
and then play two hands separately.

• Always split A’s or 8’s

• Never split 4’s, 5’s, or 10’s

• Split 2’s, 3’s, 6’s, and 7’s when the dealer’s up card is 3 through 7.

• Split 9’s when the dealer’s up card is 2 through 9, but not 7.

The reason for splitting aces should be obvious. It is such a good play that it
has on occasion been forbidden. Some casino rules do not allow further drawing
after aces are split and if a 10 lands on the ace it is not a blackjack. To see
why 8’s are singled out for splitting, note that 8+8 = 16 which wins only if the
dealer busts, while an 8 paired with a 10 produces an 18.

Counting cards. Edward Thorp’s book Beat the Dealer, which astonished
the world in 1962 by demonstrating that by “counting cards” (i.e., by keeping
track of the difference between the numbers of cards you have seen that count 10
and those that count 2 through 6) and by adjusting your betting you can make
money from blackjack. Before the reader plans a trip to Las Vegas or Atlantic
City, we would like to point out that playing this strategy requires hard work,
that making money with it requires a lot of capital, and that casinos are allowed
to ask you to leave if they think you are playing it. The book Bringing Down
the House gives an entertaining account of MIT students using the strategy to
win money at balckjack.
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2.7 Exercises

Permutations and Combinations

1. How many possible batting orders are there for nine baseball players?

2. A tire manufacturer wants to test four different types of tires on three different
types of roads at five different speeds. How many tests are required?

3. 16 horses race in the Kentucky Derby. How many possible results are there
for win, place, and show (first, second, and third)?

4. A school gives awards in five subjects to a class of 30 students but no one is
allowed to win more than one award. How many outcomes are possible?

5. A tourist wants to visit six of America’s ten largest cities. In how many ways
can she do this if the order of her visits is (a) important, (b) not important?

6. Five businessmen meet at a convention. How many handshakes are exchanged
if each shakes hands with all the others?

7. A commercial for Glade Plug-ins says that by inserting two of a choice of 11
scents into the device, you can make more than 50 combinations. If we exclude
the boring choice of two of the same scent how many possibilities are there?

8. In a class of 19 students, 7 will get A’s. In how many ways can this set of
students be chosen?

9. (a) How many license plates are possible if the first three places are occupied
by letters and the last three by numbers? (b) Assuming all combinations are
equally likely, what is the probability the three letters and the three numbers
are different?

10. How many four-letter “words” can you make if no letter is used twice and
each word must contain at least one vowel (A, E, I, O or U)?

11. Assuming all phone numbers are equally likely, what is the probability that
all the numbers in a seven-digit phone number are different?

12. A domino is an ordered pair (m,n) with 0 ≤ m ≤ n ≤ 6. How many
dominoes are in a set if there is only one of each?

13. A person has 12 friends and will invite 7 to a party. (a) How many choices
are possible if Al and Bob are feuding and will not both go to the party? (b)
How many choices are possible if Al and Betty insist that they both go or neither
one goes?

14. A basketball team has 5 players over six feet tall and 6 who are under six
feet. How many ways can they have their picture taken if the 5 taller players
stand in a row behind the 6 shorter players who are sitting on a row of chairs?

15. The Duke basketball team has 10 women who can play guard and 12 tall
women who can play the other three positions. At the start of the game, the
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coach gives the referee a starting line-up that lists who will play left guard, right
guard, left forward, center, and right forward. In how many ways can this be
done?

16. Six students, three boys and three girls, lineup in a random order for a
photograph. What is the probability that the boys and girls alternate?

17. Seven people sit at a round table. How many ways can this be done if Mr.
Jones and Miss Smith (a) must sit next to each other, (b) must not sit next to
each other? (Two seating patterns that differ only by a rotation of the table
are considered the same).

18. How many ways can four rooks be put on a chess board so that no rook
can capture any other rook? Or, what is the same: How many ways can eight
markers be placed on an 8 × 8 grid of squares so that there is at most one in
each row or column?

19. A BINGO card is a 5 by 5 grid. The center square is a free space and has
no number. The first column is filled with five distinct numbers from 1 to 15,
the second with five from from 16 to 30, the middle column with four numbers
from 31 to 45, the fourth with five numbers from 46 to 60, and the fifth with
five numbers from 61 to 75. Since the object of the game is to get five in a row
horizontally, vertically or diagonally the order is important. How many BINGO
cards are there?

20. Continuing with the set-up from the previous problem, in BINGO numbers
are drawn from 1 to 75 without replacement. When a number is called you put
a marker on that square. If you have five in a row horizontally, vertically or
diagonally, you have a BINGO. What is the probability you will have a BINGO
after (a) four numbers are called? (b) after five?

Multinomial Counting Problems

21. How many different ways can the letters in the following words be arranged:
(a) money, (b) banana, (c) statistics, (d) mississippi?

22. Twelve different toys are to be divided among 3 children so that each one
gets 4 toys. How many ways can this be done?

23. A club with 50 members is going to form two committees, one with 8
members and the other with 7. How many ways can this be done (a) if the
committees must be disjoint? (b) if they can overlap?

24. If seven dice are rolled, what is the probability that each of the six numbers
will appear at least once?

25. How many ways can 5 history books, 3 math books, and 4 novels be arranged
on a shelf if the books of each type must be together?

26. Suppose three runners from team A and three runners from team B have a
race. If all six runners have equal ability, what is the probability that the three
runners from team A will finish first, second, and fourth?
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27. Four men and four women are shipwrecked on a tropical island. How many
ways can they (a) form four male-female couples, (b) get married if we keep
track of the order in which the weddings occur, (c) divide themselves into four
unnumbered pairs, (d) split up into four groups of two to search the North,
East, West, and South shores of the island, (e) walk single-file up the ramp to
the ship when they are rescued, (f) take a picture to remember their ordeal if
all eight stand in a line but each man stands next to his wife?

Binomial and multinomial distributions

28. A die is rolled 8 times. What is the probability we will get exactly two 3’s?

29. Mary knows the answers to 20 of the 25 multiple choice questions on the
Psychology 101 exam, but she has skipped several of the lectures, she must take
random guesses for the other five. Assuming each question has four answers,
what is the probability she will get exactly 3 of the last 5 questions right?

30. In 1997, 10.8% of female smokers smoked cigars. In a sample of size 10
female smokers What is the probability that (a) exactly 2 of the women smoke
cigars? (b) at most 1 smokes cigars.

31. A 1994 report revealed that 32.6% of U.S. births were to unmarried women.
A parenting magazine selected 30 women who gave birth in 1994 at random.
(a) What is the probability that exactly 10 of the women were unmarried? (b)
Using your calculator determine the probability that in the sample at most 10
are unmarried.

32. 20% of all students are left-handed. A class of size 20 meets in a room
with 5 left-handed and 18 right-handed chairs. Use your calculator to find the
probability that each student will have a chair to match their needs.

33. David claims to be able to distinguish brand B beer from brand H but
Alice claims that he just guesses. They set up a taste test with 10 small glasses
of beer. David wins if he gets 8 or more right. What is the probability he will
win (a) if he is just guessing? (b) if he gets the right answer with probability
0.9?

34. The following situation comes up the game of Yahtzee. We have three rolls
of five dice and want to get three sixes or more. On each turn we reroll any dice
that are not 6’s. What is the probability we succeed?

35. A baseball pitcher throws a strike with probability 0.5 and a ball with
probability 0.5. He is facing a batter who never swings at a pitch. What is the
probability that he strikes out, i.e., gets three strikes before four balls?

36. A baseball player is said to “hit for the cycle” if he has a single, a double,
a triple, and a home run all in one game. Suppose these four types of hits have
probabilities 1/6, 1/20, 1/120, and 1/24. What is the probability of hitting for
the cycle if he gets to bat (a) four times, (b) five times? (c) Using P (∪iAi) ≤∑

i P (Ai) shows that the answer to (b) is at most 5 times the answer to (a).
What is the ratio of the two answers?
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Poisson approximation

37. Compare the Poisson approximation with the exact binomial probabilities
when (a) n = 10, p = 0.1, (b) n = 20, p = 0.05, (c) n = 40, p = 0.025.

38. Use the Poisson approximation to compute the probability that you will
roll at least one double 6 in 24 trials. How does this compare with the exact
answer?

39. The probability of a three of a kind in poker is approximately 1/50. Use
the Poisson approximation to compute the probability you will get at least one
three of a kind if you play 20 hands of poker.

40. Calls to a toll-free hotline service are made randomly at rate two per minute.
The service has five operators, none of whom is currently. Use the Poisson
distribution to estimate the probability that in the next minute there are < 5
calls.

41. In one of the New York state lottery games, a number is chosen at random
between 0 and 999. Suppose you play this game 250 times. Use the Poisson
approximation to estimate the probability you will never win and compare this
with the exact answer.

42. If you bet $1 on number 13 at roulette (or on any other number) then you
win $35 if that number comes up, an event of probability 1/38, and you lose your
dollar otherwise. Suppose you play 70 times. Use the Poisson approximation
estimate the probability that (a) you have won 0 times and lost $70, and (b) you
have won 1 time and lost $34. (c) if you win 2 times you have won $2. Combine
the results of (a) and (b) to conclude that the probability you will have won
more money than you have lost is larger than 1/2.

43. In a particular Powerball drawing 210,850,582 tickets were sold. The chance
of winning the lottery is 1 in 80,000,000. Use the Poisson approximation to
estimate the probability that there is exactly one winner.

44. Suppose that the probability of a defect in a foot of magnetic tape is 0.002.
Use the Poisson approximation to compute the probability that a 1500 foot roll
will have no defects.

45. Suppose 1% of a certain brand of Christmas lights is defective. Use the
Poisson approximation to compute the probability that in a box of 25 there will
be at most one defective bulb.

46. In February 2000, 2.8% of Colorado’s labor force was unemployed. Calculate
the probability that in a group of 50 workers exactly one is unemployed.

47. An insurance company insures 3000 people, each of whom has a 1/1000
chance of an accident in one year. Use the Poisson approximation to compute
the probability there will be at most 2 accidents.

48. Suppose that 1% of people in the population are over 6 feet 3 inches tall.
What is the chance that in a group of 200 people picked at random from the
population at least four people will be over 6 feet 3 inches tall.
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49. In an average year in Mythica there are 8 fires. Last year there were 12
fires. How likely is it to have 12 or more fires just by chance?

50. An airline company sells 160 tickets for a plane with 150 seats, knowing
that the probability a passenger will not show up for the flight is 0.1. Use the
Poisson approximation to compute the probability they will have enough seats
for all the passengers who show up.

51. Books from a certain publisher contain an average of 1 misprint per page.
What is the probability that on at least one page in a 300 page book there are
five misprints?

52.

Urn problems

53. Two red cards and two black cards are lying face down on the table. You
pick two cards and turn them over. What is the probability that the two cards
are different colors?

54. Four people are chosen at random from 5 couples. What is the probability
two men and two women are selected?

55. You pick 5 cards out of a deck of 52. What is the probability you get exactly
2 spades?

56. Seven students are chosen at random from a class with 17 boys and 13 girls.
What is the probability that 4 boys and 3 girls are selected?

57. In a carton of 12 eggs, 2 are rotten. If we pick 4 eggs to make an omelet,
what is the probability we do not get a rotten egg?

58. An electronics store receives a shipment of 30 calculators of which 4 are
defective. Six of these calculators are selected to be sent to a local high school.
What is the probability that exactly one is defective?

59. A scrabble set contains 54 consonants, 44 vowels, and 2 blank tiles. Find
the probability that your initial draw contains 5 consonants and 2 vowels.

60. (a) How many ways can can we pick 4 students from a group of 40 to be
on the math team? (b) Suppose there are 18 boys and 12 girls. What is the
probability the team will have 2 boys and 2 girls.

61. The following probability problem arose in a court case concerning possible
discrimination against black nurses. 26 white nurses and 9 black nurses took an
exam. All the white nurses passed but only 4 of the black nurses did. What
is the probability we would get this outcome if the five nurses who failed were
chosen at random?

62. A closet contains 8 pairs of shoes. You pick out 5. What is the probability
of (a) no pair, (b) exactly one pair, (c) two pairs?

63. A drawer contains 10 black, 8 brown, and 6 blue socks. If we pick two socks
at random, what is the probability they match?
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64. A dance class consists of 12 men and 10 women. Five men and five women
are chosen and paired up to dance. In how many ways can this be done?

65. Suppose we pick 5 cards out of a deck of 52. What is the probability we get
at least one card of each suit?

66. A bridge hand in which there is no card higher than a 9 is called a Yarborough
after the Earl who liked to bet at 1000 to 1 that your bridge hand would have a
card that was 10 or higher. What is the probability of a Yarborough when you
draw 13 cards out of a deck of 52.

67. Two cards are a blackjack if one is an A and the other is a K, Q, J, or
10. (a) If you pick two cards out of a deck, what is the probability you will get
a blackjack? (b) Suppose you are playing blackjack against the dealer with a
freshly shuffled deck. What is the probability that you or the dealer will get a
blackjack?

68. A student studies 12 problems from which the professor will randomly
choose 6 for a test. If the student can solve 9 of the problems, what is the
probability she can solve at least 5 of the problems on the test?

69. A football team has 16 seniors, 12 juniors, 8 sophomores, and 4 freshmen.
If we pick 5 players at random, what is the probability we will get 2 seniors and
1 from each of the other 3 classes?

70. In a kindergarten class of 20 students, one child is picked each day to help
serve the morning snack. What is the probability that in one week five different
children are chosen?

71. An investor picks 3 stocks out of 10 recommended by his broker. Of these,
six will show a profit in the next year. What is the probability the investor will
pick (a) 3 (b) 2 (c) 1 (d) 0 profitable stocks?

72. Four red cards (i.e., hearts and diamonds) and four black cards are face
down on the table. A psychic who claims to be able to locate the four black
cards turns over 4 cards and gets 3 black cards and 1 red card. What is the
probability he would do this if he were guessing?

73. A town council considers the question of closing down an “adult” theatre.
The five men on the council all vote against this and the three women vote
in favor. What is the probability we would get this result (a) if the council
members determined their votes by flipping a coin? (b) if we assigned the five
“no” votes to council members chosen at random?

74. An urn contains white balls numbered 1 to 15 and black balls also numbered
1 to 15. Suppose you draw 4 balls. What is the probability that (a) no two have
the same number? (b) you get exactly one pair with the same number? (c) you
get two pair with the same numbers?

75. A town has four TV repairmen. In the first week of September four TV sets
break and their owners call repairmen chosen at random. Find the probability
that the number of repairmen who have jobs is 1, 2, 3, 4.
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76. Compute the probabilities of the following poker hands when we roll five
six sided dice.

(a) five of a kind 0.000771
(b) four of a kind, 0.019290
(c) a full house, 0.038580
(d) three of a kind 0.154320
(e) two pair 0.231481
(f) one pair 0.462962
(g) no pair 0.092592

77. In seven-card stud you receive seven cards and use them to make the
best poker hand you can. Ignoring the possibility of a straight or a flush the
probability that the best hand you can make with your cards is

seven cards five cards
(a) four of a kind, 0.001680 0.000240
(b) a full house, 0.025968 0.001441
(c) three of a kind 0.049254 0.021128
(d) two pair 0.240113 0.047539
(e) one pair 0.472839 0.422569
(f) no pair 0.210150 0.507082

Verify the probabilities for seven card stud. Hint: For full house you need to
consider hand patterns: 3-3-1 and 3-2-2 in addition to the more likely 3-2-1-1.
For two pair you also have to consider the possibility of three pair.

Probabilities of unions

78. Six high school teams play each other in the Southern Tier division. Each
team plays all of the other teams once. What is the probability some team has
a perfect 5− 0 season?

79. Suppose you draw seven cards out of a deck of 52. What is the probability
you will have (a) exactly five cards of one suit? (b) at least five cards of one
suit?

80. In a certain city 60% of the people subscribe to newspaper A, 50% to B,
40% to C, 30% to A and B, 20% to B and C, and 10% to A and C, but no one
subscribes to all three. What percentage subscribe to (a) at least one newspaper,
(b) exactly one newspaper?

81. Santa Claus has 45 drums, 50 cars, and 55 baseball bats in his sled. 15 boys
will get a drum and a car, 20 a drum and a bat, 25 a bat and a car, and 5 will
get three presents. (a) How many boys will receive presents? (b) How many
boys will get just a drum?

82. Use the inclusion-exclusion formula to compute the probability that a ran-
domly chosen number between 0000 and 9999 contains at least one 1. Check
this by computing the probability there is no 1.
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83. Ten people call an electrician and ask him to come to their houses on
randomly chosen days of the work week (Monday through Friday). What is the
probability of A = “he has at least one day with no jobs”?

84. We pick a number between 0 and 999, then a computer picks one at random
from that range. Use (2.15) to compute the probability at least two of our digits
will match the computer’s number. (Note: We include any leading zeros, so 017
and 057 have two matching digits.)

85. You pick 13 cards out of a deck of 52. What is the probability that you will
not get a card from every suit?

86. You pick 13 cards out of a deck of 52. Let A = “you have exactly six cards in
at least one suit” and B = “you have exactly six spades.” The first Bonferroni
inequality says that P (A) ≤ 4P (B). Compute P (A) and P (A)/P (B).

87. Use the first two Bonferroni inequalities to compute an upper and a lower
bound on the probability that in a group of 60 people, at least 3 were born on
the same day.

88. Suppose we roll two dice 6 times. Use the first three Bonferroni inequalities
to compute bounds on the probability of A = “we get at least one double 6.”
Compare the bounds with the exact answer 1− (35/36)6.

89. Suppose we try 20 times for an event with probability 0.01. Use the first
three Bonferroni inequalities to compute bounds on the probability of one suc-
cess.


