Introduction to Artificial Intelligence CSCI 3202: The Perceptron Algorithm

Greg Grudic

Questions?

Binary Classification

- A binary classifier is a mapping from a set of *d* inputs to a single output which can take on one of TWO values
- In the most general setting

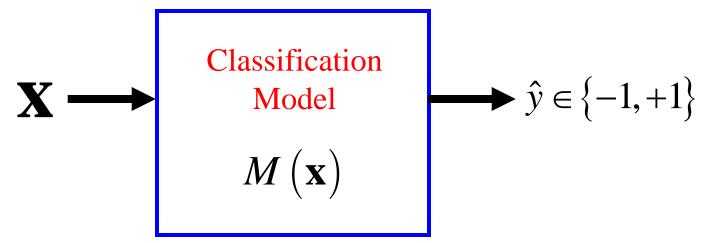
```
inputs: \mathbf{x} \in \mathbb{R}^d output: y \in \{-1, +1\}
```

- Specifying the output classes as -1 and +1 is arbitrary!
 - Often done as a mathematical convenience

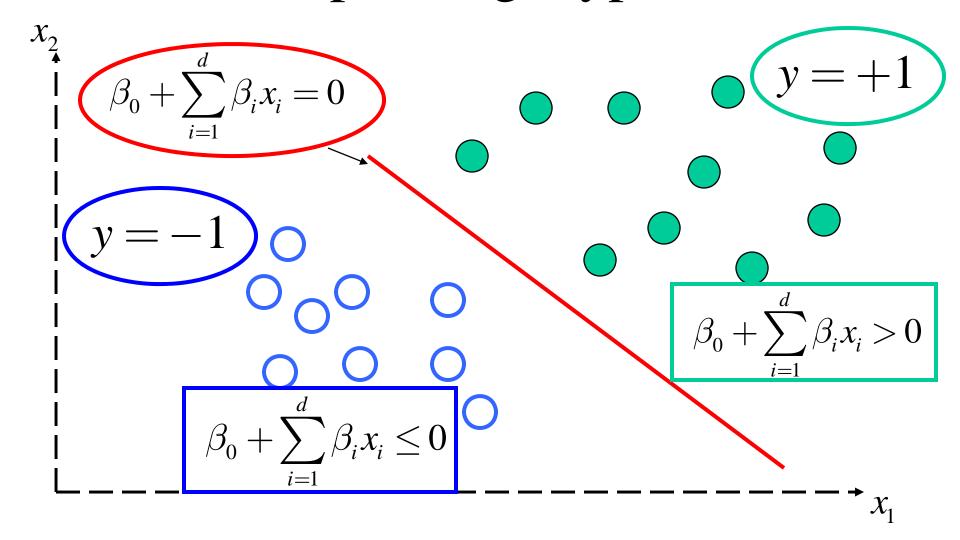
A Binary Classifier

Given learning data: $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$

A model is constructed:



Linear Separating Hyper-Planes



Greg Grudic

Intro AI

Linear Separating Hyper-Planes

• The Model:

$$\hat{y} = M(\mathbf{x}) = \operatorname{sgn}\left[\hat{\beta}_0 + (\hat{\beta}_1, ..., \hat{\beta}_d)\mathbf{x}^T\right]$$

• Where:

$$\operatorname{sgn}[A] = \begin{cases} 1 & \text{if } A > 0 \\ -1 & \text{otherwise} \end{cases}$$

• The decision boundary:

$$\hat{\beta}_0 + (\hat{\beta}_1, ..., \hat{\beta}_d) \mathbf{x}^T = 0$$

Linear Separating Hyper-Planes

• The model parameters are:

$$(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d)$$

- The *hat* on the betas means that they are estimated from the data
- Many different learning algorithms have been proposed for determining $(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d)$

Rosenblatt's Preceptron Learning Algorithm

- Dates back to the 1950's and is the motivation behind Neural Networks
- The algorithm:
 - Start with a random hyperplane $(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d)$
 - Incrementally modify the hyperplane such that points that are misclassified move closer to the correct side of the boundary
 - Stop when all learning examples are correctly classified

Rosenblatt's Preceptron Learning Algorithm

- The algorithm is based on the following property:
 - Signed distance of any point x to the boundary is:

$$d = \frac{\hat{\beta}_0 + (\hat{\beta}_1, ..., \hat{\beta}_d) \mathbf{x}^T}{\sqrt{\left(\sum_{i=1}^d \hat{\beta}_i^2\right)}} \propto \hat{\beta}_0 + (\hat{\beta}_1, ..., \hat{\beta}_d) \mathbf{x}^T$$

• Therefore, if *M* is the set of misclassified learning examples, we can push them closer to the boundary by minimizing the following

$$D\left(\hat{\beta}_{0}, \hat{\beta}_{1}, ..., \hat{\beta}_{d}\right) = -\sum_{i \in M} y_{i} \left(\hat{\beta}_{0} + \left(\hat{\beta}_{1}, ..., \hat{\beta}_{d}\right) \mathbf{x}_{i}^{T}\right)$$

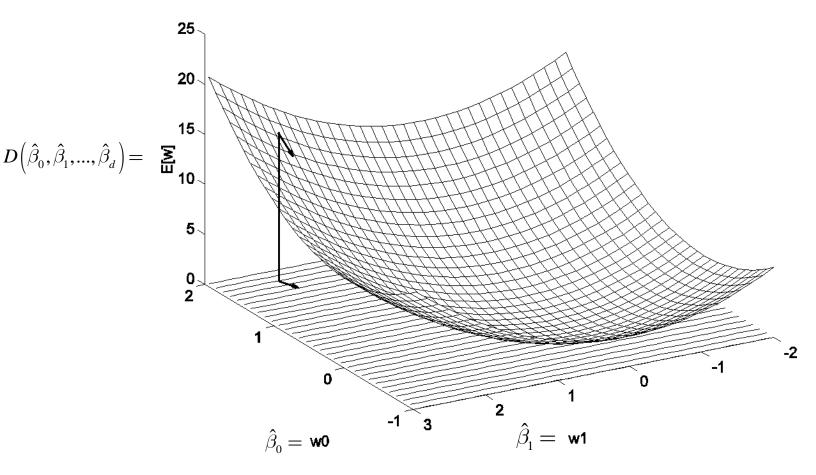
Rosenblatt's Minimization Function

- This is classic Machine Learning!
- First define a cost function in model parameter space

$$D(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d) = -\sum_{i \in M} y_i \left(\hat{\beta}_0 + \sum_{k=1}^d \hat{\beta}_k x_{ik} \right)$$

- Then find an algorithm that modifies $(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d)$ such that this cost function is minimized
- One such algorithm is Gradient Descent

Gradient Descent



Greg Grudic

The Gradient Descent Algorithm

$$\hat{\beta}_{i} \leftarrow \hat{\beta}_{i} - \rho \frac{\partial D\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \dots, \hat{\beta}_{d}\right)}{\partial \hat{\beta}_{i}}$$

Where the learning rate is defined by: $\rho > 0$

The Gradient Descent Algorithm for the Perceptron

$$\frac{\partial D\left(\hat{\beta}_{0},\hat{\beta}_{1},...,\hat{\beta}_{d}\right)}{\partial\hat{\beta}_{0}} = -\sum_{i \in M} y_{i} \qquad \frac{\partial D\left(\hat{\beta}_{0},\hat{\beta}_{1},...,\hat{\beta}_{d}\right)}{\partial\hat{\beta}_{j}} = -\sum_{i \in M} y_{i}x_{ij}, \qquad j = 1,...,d$$

Two Versions of the Perceptron Algorithm:

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_d \end{pmatrix} \leftarrow \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_d \end{pmatrix} - \rho \begin{pmatrix} y_i \\ y_i x_{i1} \\ \vdots \\ y_i x_{id} \end{pmatrix}$$

Update One misclassified point at a time (online)

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_d \end{pmatrix} \leftarrow \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_d \end{pmatrix} - \rho \begin{pmatrix} y_i \\ y_i x_{i1} \\ \vdots \\ y_i x_{id} \end{pmatrix}$$

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_d \end{pmatrix} \leftarrow \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_d \end{pmatrix} - \rho \begin{pmatrix} -\sum_{i \in M} y_i \\ -\sum_{i \in M} y_i x_{i1} \\ \vdots \\ -\sum_{i \in M} y_i x_{id} \end{pmatrix}$$

Update all misclassified points at once (batch)

The Learning Data

Training Data:
$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$$

• Matrix Representation of *N* learning examples of *d* dimensional inputs

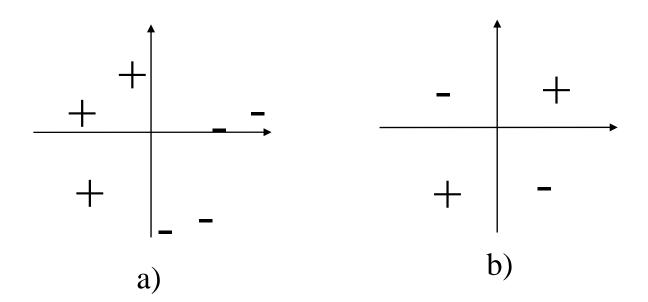
$$X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{Nd} \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$$

The Good Theoretical Properties of the Perceptron Algorithm

- If a solution exists the algorithm will always converge in a finite number of steps!
- Question: Does a solution always exist?

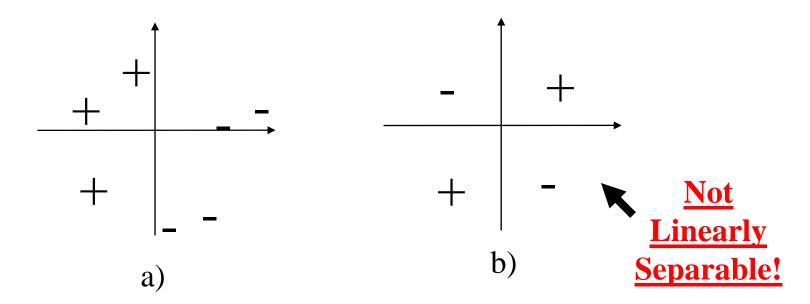
Linearly Separable Data

• Which of these datasets are separable by a linear boundary?



Linearly Separable Data

• Which of these datasets are separable by a linear boundary?



Bad Theoretical Properties of the Perceptron Algorithm

- If the data is not linearly separable, algorithm cycles forever!
 - Cannot converge!
 - This property "stopped" active research in this area between 1968 and 1984...
 - *Perceptrons*, Minsky and Pappert, 1969
- Even when the data is separable, there are infinitely many solutions
 - Which solution is best?
- When data is linearly separable, the number of steps to converge can be very large (depends on size of gap between classes)

What about Nonlinear Data?

 Data that is not linearly separable is called nonlinear data

 Nonlinear data can often be mapped into a nonlinear space where it is linearly separable

Nonlinear Models

• The Linear Model:

$$\hat{y} = M(\mathbf{x}) = \operatorname{sgn}\left[\hat{\beta}_0 + \sum_{i=1}^d \hat{\beta}_i x_i\right]$$

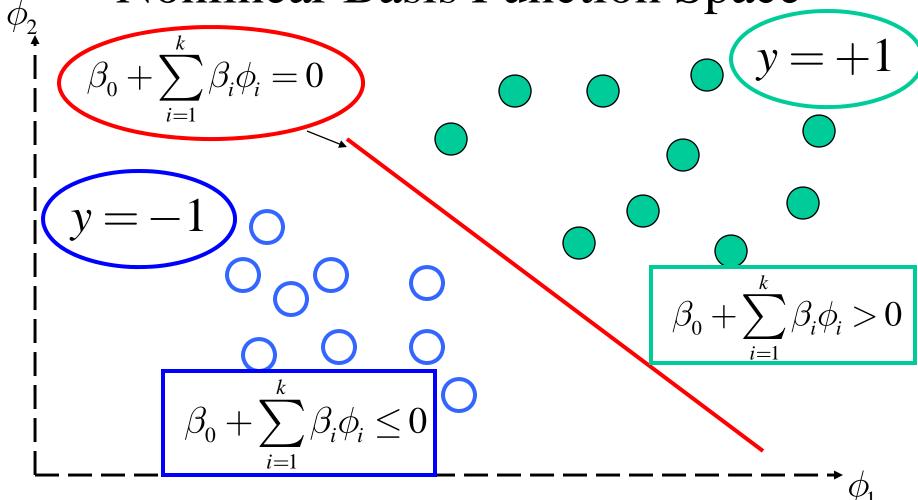
• The Nonlinear (basis function) Model:

$$\hat{y} = M(\mathbf{x}) = \operatorname{sgn}\left[\hat{\beta}_0 + \sum_{i=1}^k \hat{\beta}_i \phi_i(\mathbf{x})\right]$$

• Examples of Nonlinear Basis Functions:

$$\phi_1(\mathbf{x}) = x_1^2 \quad \phi_2(\mathbf{x}) = x_2^2 \quad \phi_3(\mathbf{x}) = x_1 x_2 \quad \phi_4(\mathbf{x}) = \sin(x_{55})$$

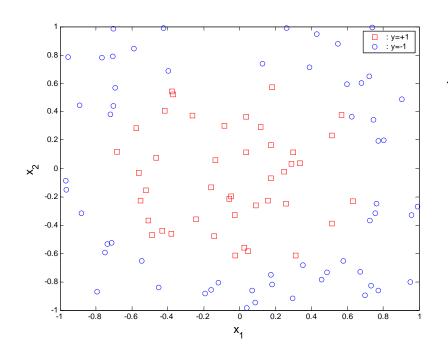
Linear Separating Hyper-Planes In Nonlinear Basis Function Space

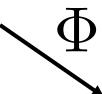


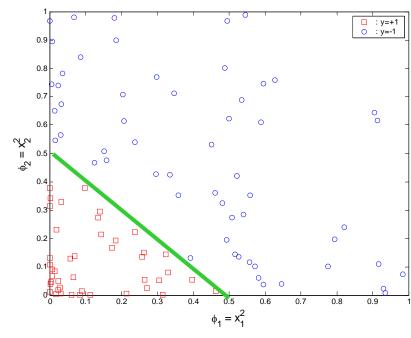
Greg Grudic

Intro AI

An Example







Kernels as Nonlinear Transformations

Polynomial

$$K(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + q)^k$$

• Sigmoid

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \tanh(\kappa \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle + \theta)$$

• Gaussian or Radial Basis Function (RBF)

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left[-\frac{1}{2\sigma^2} \|\mathbf{x}_i - \mathbf{x}_j\|^2\right]$$

The Kernel Model

Training Data:
$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$$

$$\hat{y} = M(\mathbf{x}) = \operatorname{sgn}\left[\hat{\beta}_0 + \sum_{i=1}^N \hat{\beta}_i K(\mathbf{x}_i, \mathbf{x})\right]$$

The number of basis functions equals the number of training examples!

- Unless some of the beta's get set to zero...

Gram (Kernel) Matrix

Training Data:
$$(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$$

$$K = \begin{pmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ K(\mathbf{x}_N, \mathbf{x}_1) & \dots & K(\mathbf{x}_N, \mathbf{x}_N) \end{pmatrix}$$

Properties:

- Positive Definite Matrix
 - •Symmetric
 - Positive on diagonal
- •N by N

Picking a Model Structure?

- How do you pick the Kernels?
 - Kernel parameters
- These are called <u>learning parameters</u> or <u>hyperparamters</u>
 - Two approaches choosing learning paramters
 - Bayesian
 - Learning parameters must maximize probability of correct classification on future data based on prior biases
 - Frequentist
 - Use the training data to learn the model parameters $(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d)$
 - Use validation data to pick the best hyperparameters.
- More on learning parameter selection later

Perceptron Algorithm Convergence

- Two problems:
 - No convergence when data is not separable in basis function space
 - Gives infinitely many solutions when data is separable
- Can we modify the algorithm to fix these problems?