Introduction to Artificial Intelligence
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The Perceptron Algorithm
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Questions?
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Binary Classification

* A binary classifier is a mapping from a set of d
Inputs to a single output which can take on one of
TWO values

 In the most general setting
inputs: x € ®°
output: y € {—1,+1}

» Specifying the output classes as -1 and +1 Is
arbitrary!

— Often done as a mathematical convenience
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A Binary Classifier

Given learning data: (Xl, yl) yeeny (XN ' YN )

A model 1s constructed:

Classification )
) e Model - \/ € {—1, +1}

M (x)
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Linear Separating Hyper-Planes
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Linear Separating Hyper-Planes

e The Model:
=M ()= 5gn| By + (B, )X
* Where: 1 1f A>0
sgn[A]:{ _
—1  otherwise

e The decision boundary:

B+ (B By X7 =0
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Linear Separating Hyper-Planes

e The model parameters are:

(B By
e The hat on the betas means that they are
estimated from the data

* Many different learning algorithms have
been proposed for determining (4. 3,,.... 3,
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Rosenblatt’s Preceptron Learning
Algorithm

e Dates back to the 1950’s and is the
motivation behind Neural Networks

e The algorithm:
— Start with a random hyperplane (6. 3,.....3)

— Incrementally modify the hyperplane such that
points that are misclassified move closer to the
correct side of the boundary

— Stop when all learning examples are correctly
classified
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Rosenblatt’s Preceptron Learning
Algorithm

* The algorithm is based on the following property:
— Signed distance of any point X to the boundary is:

(A

ocﬁAoi—(ﬁAl,...,ﬁAd)XT

e Therefore, If M Is the set of misclassified
learning examples, we can push them closer to the
boundary by minimizing the following

O{fu ) =~ + )
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Rosenblatt’s Minimization Function

 This is classic Machine Learning!

e First define a cost function in model
parameter space

(B ) =~ , mi%]

icM

e Then find an algorithm that modifies (5,.4,....5)
such that this cost function is minimized

* One such algorithm is Gradient Descent
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Gradient Descent
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The Gradient Descent Algorithm

aD(BO,él,...,éd)

B, < B, —p aﬂ’\i

Where the learning rate is defined by: p >0
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The Gradient Descent Algorithm for

the Perceptron

(ﬁo 61 ) aD(ﬁo 61 ) Zyl i j:].,...,d

— — yl
850 IEZM aﬁj ieM

Two Versions of the Perceptron Algorithm:

p p ~ ~ _Z Yi
ﬁo 60 Yi B, B, leM
3 3 X 3 3 = Vi%y
6.1 - 6.1 . p y| .X|1 6:1 — 6:1 . ,0 v (|
IS
Update One misclassified Update all misclassified
point at a time (online) points at once (batch)
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The Learning Data

Training Data: (Xl, yl),...,(xN ' YN )
* Matrix Representation of N learning
examples of d dimensional inputs

( ) ( )

Koo Xy Y1
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The Good Theoretical Properties of
the Perceptron Algorithm

o |If a solution exists the algorithm will always
converge in a finite number of steps!

* Question: Does a solution always exist?
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Linearly Separable Data

* Which of these datasets are separable by a
linear boundary?

a) b)
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Linearly Separable Data

* Which of these datasets are separable by a
linear boundary?

+ - +

T T | ° w  Not
- Linearly
a) b) Separable!
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Bad Theoretical Properties of the
Perceptron Algorithm

 |f the data is not linearly separable, algorithm cycles
forever!
— Cannot converge!

— This property “stopped” active research in this area between
1968 and 1984...

» Perceptrons, Minsky and Pappert, 1969
e Even when the data is separable, there are infinitely
many solutions
— Which solution is best?
 When data is linearly separable, the number of steps to

converge can be very large (depends on size of gap
between classes)
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What about Nonlinear Data?

o Data that is not linearly separable is called
nonlinear data

* Nonlinear data can often be mapped into a
nonlinear space where it is linearly
separable
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Nonlinear Models

e The Linear Model:
= M (X) =sgn

ﬁo_l_zﬁlxl
e The Nonllnear (basis functlon) Model:
60 +Zﬁ|¢|

y =M (x) =sgn

=1
« Examples of Nonlinear Basis Functions:

¢1<X):X12 ¢2<X):X22 ¢3<X):X1X2 ¢4<X>:Sin<xss)
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Linear Separating Hyper-Planes In
Nonlinear Basis Function Space
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Kernels as Nonlinear
Transformations

e Polynomial

K(x,x;) = (<Xi’xj>+q)k
e Sigmoid
K(x,x;) = tanh(m<xi,xj>+9)
e (aussian or Radial Basis Fun;tion ({QBF) :
K(x,X;) =exp Hxi_XJH

2
20- )
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The Kernel Model

Training Data: (Xl, yl),---,(XN » YN )

)7= M(X):Sgn éo‘I‘ZBiK(Xi’X)

The number of basis functions equals
the number of training examples!

- Unless some of the beta’s get set to zero...
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Gram (Kernel) Matrix
Training Data: (Xl, yl),...,(xN ' YN )
(K(X, %) - K(X,X%y)
< . . .

K (X, X)) - KXy, Xy)
Properties:
*Positive Definite Matrix
eSymmetric
Positive on diagonal
N by N
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Picking a Model Structure?

 How do you pick the Kernels?
— Kernel parameters

e These are called learning parameters or
hyperparamters

— Two approaches choosing learning paramters
» Bayesian

— Learning parameters must maximize probability of correct
classification on future data based on prior biases

» Frequentist
— Use the training data to learn the model parameters (BO,Bl,...,Bd)
— Use validation data to pick the best hyperparameters.

* More on learning parameter selection later
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Perceptron Algorithm Convergence

e Two problems:

— No convergence when data is not separable in
basis function space

— Gives infinitely many solutions when data Is
separable

o Can we modify the algorithm to fix these
problems?
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