
Network Security Analyzing and Modeling based on 

Petri net and Attack tree for SDN 

Linyuan Yao1, Ping Dong*1, Tao Zheng1, Hongke Zhang1, Xiaojiang Du2 and Mohsen Guizani3 

 1School of Electronic Information and Engineering, Beijing Jiao Tong University, P. R. China 
2Department of Computer and Information Sciences, Temple University, USA 

3 Electrical and Computer Engineering Department, University of Idaho, ID, USA 

Email: {11111020, pdong, zhengtao, hkzhang}@bjtu.edu.cn, xjdu@temple.edu, mguizani@ieee.org 

 

 
Abstract—Due to the widespread research on Software 

Defined Networks (SDNs), its security has received much 

attention recently. But most of those attempts consider SDN 

security from the OpenFlow perspective. To the best of our 

knowledge, none so far has paid attention to the security analysis 

and modeling of Forwarding and Control planes Separation 

Network Structure (FCSNS) in SDN. Therefore, this paper 

provides a different approach to network security based on Petri 

net and Attack tree models. Our objective is to analyze the 

FCSNS security via the combination of model and state. This 

method represents the network structure and state transferring 

by way of Petri net. In addition, it introduces the security 

analysis method of STRIDE to build up the Attack tree model. 

Finally, we analyze FCSNS via the combination of Petri net and 

Attack tree model and present the results. Our results are very 

promising in using such models to achieve such security 

objectives. 

Keywords—Control; Forward; Separation; Petri net; Attack 

tree; OpenFlow; SDN 

I.  INTRODUCTION 

With the rapidly increasing development of the Internet 
and the boom of network users, traditional IP Internet 
architectures are facing various inevitable problems. Despite 
their widespread adoption, IP networks are complex and hard 
to manage [1]. It is difficult to update the configuration of  the 
network devices according to predefined policies to respond to 
delay, load, and changes. To make matters even more difficult, 
current networks are also vertically integrated: the control and 
data planes are bundled together [2]. Along with the aim to 
solve the long-term problems, the proposals are discussed 
heatedly, among which the separation of control plane and 
forwarding plane is widely popular. The most obvious 
phenomenon is Software Defined Network (SDN) [3][4], 
which brings growing concerns and higher expectations.  

Fast expansion of the Internet moves personal privacy, 
confidential documents of the government, and account details 
of the financial institutes from offline to online. The security 
of the Internet has become the highest priority of current IT 
developments. OpenFlow, as a representative protocol of SDN, 
receives much attention in terms of security. Several security 

approaches based on OpenFlow have been  provided. A new 
security application development framework, FRESCO, was 
introduced in [5]. It provided a Click-inspired programming 
framework for security researchers to implement, share, and 
compose together. In [6], OpenFlow Random Host Mutation 
(OFRHM) was presented. Because of IP mutation being 
transparent to end-hosts and virtual IP, OFRHM can defend 
against scanning-based attacks. In [7], Guang Yao et al. 
proposed an OpenFlow-based mechanism named VAVE, 
which can improve the SAVI solutions by solving source 
address validation problems. 

Methods to detect DDoS using OpenFlow have also been 
proposed in recent years. In [8], a lightweight method based 
on traffic flow features was presented for detecting DDoS 
attacks. Suh et al. [9] proposed a content-oriented networking 
architecture, which reacted to resource exhaustive attacks like 
DDoS. Chu,YuHunag et al. [10] proposed a new research idea 
utilizing OpenFlow and LISP technologies. They implemented 
a DDoS defender on an OpenFlow-enabled switch to realize 
an autonomic self-defense concept. 

There is some research in other aspects of OpenFlow 
security as well. Porras et al. introduced FortNOX, which 
provided role-based authorization and security constraint 
enforcement for the NOX OpenFlow controller in [11]. In [12], 
OpenSAFE was proposed to enable the arbitrary direction of 
traffic to monitor applications at line rates. In [13], the authors 
performed a security analysis of OpenFlow by using STRIDE 
[14] and Attack tree modeling. All of these research attempts 
consider the security of SDN only from the perspective 
of OpenFlow. 

However and to the best of our knowledge, there is still 
little attention given to the security analysis of Forwarding and 
Control planes Separation Network Structure (FCSNS), as 
well as SDN. Reference [15] and [16] analyze the security of 
SDN architecture. Six vulnerabilities in SDN control 
platforms were listed in [15]. Seven main potential threat 
vectors and related possible solutions were described in [16]. 
Kreutz et al. discussed some mechanisms and techniques that 
can be used on the design of a secure and dependable control 
platform. These two articles only described possible problems 
and corresponding solutions on SDN architecture; they lacked 
further modeling analysis for connection between state and 
vulnerability. 

This work was supported in part by the Fundamental Research Funds for 

the Central Universities under Grant No. 2014JBM004, 2015JBM001, in part 

by Beijing Higher Education Young Elite Teacher Project under Grant No. 

YETP0534, in part by the NSFC under Grant No. 61232017, in part by 

National Science and Technology Major Projects of the Ministry of Science 

and Technology of China No. 2013ZX03006002, in part by the Cooperation 

Projects by Production, Study and Research under Grant No. YB2014060041. 

(Corresponding author: Ping Dong) 

2016 International Conference on Computing, Networking and Communications, Communications and Information Security

978-1-4673-8579-4/16/$31.00 ©2016 IEEE



Therefore, we provide an Approach of network security 
Analyzing and Modeling based on Petri net and Attack tree 
(AAMPA) to analyze the security of FCSNS via the 
combination of model and state. The major contributions are 
summarized as follows. 

 Dividing the FCSNS structure into three parts as user 
access, data transmission, and control command 
distribution, and modeling in Petri net [17] for the three 
partitions to represent network structure and state 
transferring. 

 Building up the Attack tree model [18] for the Place and 
Transition in Petri net by introducing the security 
analysis method of STRIDE. 

 Analyzing the security of FCSNS via Petri net model 
and Attack tree model. 

The rest of the paper is organized as follows: Section II 
gives a more detailed description of AAMPA. We present an 
explanation of AAMPA as SDN as an example in Section III. 
Finally, we conclude this paper in Section IV. 

II. DESCRIPTION OF PROPOSED AAMPA  

This section provides a detailed explanation of AAMPA. 
AAMPA includes a total of four parts from the analysis of the 
network architecture to security analysis. 

A. Design of network topology and Data Flow Diagram 

(DFD) 

The control and data planes are decoupled in FCSNS. First, 
we divide the network topology into two parts on the basis of 
control plane and forwarding plane. The control plane includes 
Administrator (A) and Controlling Device (CD). Terminal (T) 
and Forwarding Device (FD) are assigned to the forwarding 
plane. The topology is shown in Fig.1. 

Forwarding 

Device

Controlling 

Device

Terminal

Administrator

Forwarding 

plane

Control 

plane

 

Fig. 1 Forwarding and Control planes Separation Network Structure 

Next, we lay out the topology as the DFD [14]. 
Considering the scale and complexity of DFD, two FDs are 
appropriate for the analysis, which are each connected with 

one T in Fig.2. According to the features of DFD, Data Flow 
(DF), Transmission Channel (TC), and Trust Boundary (TB) 
are shown. DF1, 2, 3, 4 represent the DFs between A and CD, 
CD and FD, FD and FD, FD and T, respectively. There are 
two TBs, which are determined by three parts that access users, 
network, and administrator. TB1 is located between FD and T. 
TB2 is located between A and CD. 

Forwarding 

Device 1

Forwarding 

Device 2

Controlling 

Device

Terminal 

1

Terminal 

2

Administrator

DF4

DF2

DF1

DF2

DF3

DF4

Transmission 

Path

Trust Boundary 1 Trust Boundary 1

 

Fig. 2 Data Flow Diagram of FCSNS 

B. Petri net modeling 

There are three basic active network states in FCSNS, 
which are user access, data transmission, and control 
command distribution. According to the partitions of TBs and 
states in FCSNS, we regulate Fig.1 into three connection 
modes, such as CD-FD-T, FD-T, A-CD-FD. For a better 
display of the network states, it is necessary to model the 
modes by Petri net. The modes demonstrate the entities, links, 
and states graphically and logically. The details about Petri net 
modeling will be shown in section III. 

C. Security analysis and Attack tree modeling 

In this step, STRIDE (Spoofing, Tampering, Repudiation, 

Information disclosure, Denial of service, Elevation of 

privilege) is quoted to assist in analyzing the vulnerability of 

elements in FCSNS. Depending on the vulnerability, Attack 

tree models are built in combination with Petri net models in 

step B. 

D. Relation and Summary 

We consider the Attack tree model and the Petri net model 
together to analyze the security of FCSNS. The purpose of this 
step is to make the connection between the attack source and 
the vulnerability source of elements from the perspective of 
the overall network structure, and provide the references for 
the security study. 

III. DETAILS ABOUT AAMPA BASED ON SDN 

As a typical example of FCSNS, SDN has received much 
attention in recent years. SDN is defined with four pillars as 
described in [2]. 1) The control and data planes are decoupled; 



2) Forwarding decision is based on the flow, instead of the 
destination; 3) Control logic is removed from a traditional 
router to an external entity, SDN controller, or NOS;  and 4) 
The software applications running on top of the SDN 
controller are able to program the network. In consideration 
of the above four pillars, SDN is chosen to be used to specify 
AAMPA in this section. 

A. Design of network topology and DFD 

Fig.1 shows the generalization of FCSNS. In actual 
discussion, we replace CD and FD with Controller (C) and 
Switch (S), respectively. The number of C and S is set to 1 and 
2. 

B. Petri net modeling 

(b)

(a)

Controller

P25

P26

T9

T10Switch 2P20

P24

P23

Switch 1P19

P21

P22<ter>
<OF,<ter>>

<OF,<ter>>

<OF'> <OF'>

<OF'>

P22

P19

P21Switch 1 T9 P25

Controller

P26P23 T10

<ter>

<OF,<ter>> <OF,<ter>>

<OF,<ter>>

<OF'>

<OF'> <OF'>

<OF'>

P: Place

T: Transition

Place of Switch

Place of Controller

<OF,<ter>>

 

Fig. 3 User access 

As described in step B of Section II, Fig.2 is divided into 
three connection modes, dependent on user access, data 
transmission, and control command distribution in Fig.3, Fig.4, 
and Fig.5. There are 2 diagrams within Fig.3, Fig.4, and Fig.5, 
which are represented by way of Petri net in order to make a 
more vivid state. Diagram (a) presents a top-level architecture 
composition, while diagram (b) is a more detailed state of (a). 
For further attack analysis in the next step, some specific 
abbreviations of the key aspects are given in the diagram. 
OpenFlow is the reference of the information as the instruction 
as shown in TABLE I. TABLE II shows the descriptions about 
Place and Transition which are two basic elements required in 
Petri net [17]. 

Fig.3 shows the Petri net model of user access. User access 
is the message-forwarding process of entities during a new 
Terminal accessing the network. If the Terminal is connected 
to the network by Switch 1 for the first time (<ter> sent from 
P19 to Switch 1), Switch 1 will report the network change 
(<OF,<ter>>) to the Controller (through T9). After receiving 
the message from Switch 1, the Controller will make a 
decision about certification for Terminal and send the control 
message (<OF'>) to Switch 1, 2 (through T10). This process 
includes 3 entities, Terminal, Switch and Controller. 

(a)

Switch 1

P3

P4

Terminal 1P0

P1

P2
T2

T1

P6P5

Switch 2

P9

P10

Terminal 2P00

P11

T6

T5

T3 T4

P8P7

P12

<mes1> <mes1>

<mes1> <mes1>

<mes2> <mes2>

<mes2> <mes2><cmd1>

<cmd2>

<mes1>

<mes1> <mes2>

<mes2>

P0

P1

Terminal 1

T1 P3

P11

T5

P00

P2

P4
Switch 1

T2

P5

P9

T3
P8

Switch 2

T4

P10

P7

P12
T6

<cmd1> <mes1> <mes1> <mes1> <mes1>

<mes1>

Terminal 2

<cmd2> <mes2> <mes2> <mes2>

<mes2>

<mes1><mes1>

<mes2><mes2><mes2>

<mes2>
<mes2>

<mes2>

<mes1>

<mes1>

<mes1>

<mes1>

(b)

P: Place

T: Transition

<mes2>
P6

Place of Switch

Place of Terminal
 

Fig. 4 Data transmission 

The data transmission shows the state of data 
transmissions between two Terminals in Fig.4. The state is 
based on Terminal 1, 2 getting the certifications from the 
Controller successfully. When a user of Terminal 1 or 2 wants 
to get some information from Terminal 2 or 1, the user will 
send a command to Terminal 1 or 2 (<cmd1 or 2> by P0 or 
P00). Because Switch 1, 2 know how to forward the message 
from Terminal 1, 2 (<mes1/2>), Switch 1, 2 will receive and 
forward the message to the next Switch 2, 1 (through T3, 4) or 
Terminal 1, 2 (through T1, 2, 5, 6). The Terminal and Switch 
should exist in this part. 

(b)

(a)

P13

P000

P14

Controller

T8

T7

P18

P15

P17

P16

Switch 1
Switch 2

<ctl>

<ctl-mes1/2>

<ctl-mes1/2><ctl-mes2>

<ctl-mes1>
<ctl-mes1>

<ctl-mes2>

<rsp-mes1>

<rsp-mes2>

<rsp-mes1>

<rsp-mes2>

<rsp-mes1/2>

<rsp-mes1/2>

T8

 Controller
P000

P14

P13

Switch 1

Switch 2

P17

P18

P16

P15

T7

<ctl> <ctl-mes1/2> <ctl-mes1>

<ctl-mes2>

<rsp-mes1>

<rsp-mes2><rsp-mes1/2>

P: Place

T: Transition

Place of Switch

Place of Controller

Administr

ator

T0
<ctl>

PA

T0

<ctl><ctl>
PA

 

Fig. 5 Control command distribution 



Control command distribution in Fig.5 is used to 
demonstrate that if Administrator operates Controller (<ctl> 
by P000), Controller will send the command to Switch or 
inform Switch to update the version of software, and so on 
(<ctl-mes1/2> through T8). The response (<rsp-mes1/2>) will 
be sent to Controller (through T7) after Switch 1, 2 process the 
message. The whole process is completed between 
Administrator, Controller and Switch, therefore there is no 
Terminal in Fig.5. 

TABLE I. VARIABLES IN FIG.3,4,5 

Variable Description 

ter Terminal information 

OF OpenFlow head message 

OF' OpenFlow actions 

cmd1/2 User command 1 and 2 

mes1/2 Terminal 1 message and Terminal 2 message 

ctl Control command 

ctl-mes1/2 Control message 1 and 2 

rsp-mes1/2 Response message 1 and 2 

TABLE II. LEGENDS FOR FIG. 3, 4, 5 

Place Description Place Description 

P0 
User 1 command 

message 
P15 Response message 1 

P00 
User 2 command 

message 
P16 Control message 1 

P000 
Administrator control 

message 
P17 Control message 2 

P1, P3, P9, 

P11, P5, P7 
Terminal 1 message P18 Response message 2 

P2, P4, 

P10, P6, 

P8, P12 

Terminal 2 message P19 
Terminal 1 access 

request 

P13 
Response message 

1 and 2 
P21, P25 

Terminal 1 access request 

with OpenFlow head 

message 

P14 
Control message 1 

and 2 

P22, P23, 

P26 

OpenFlow decision to 

Terminal 1 access request 

Transi

tion 
 

Transi 

tion 
 

T1, T3, 

T5 

Transmit <mes1> to 

Switch 1, Switch 2, 

Terminal 2 

T8 
Transmit <rsp-mes1/2> 

to Controller 

T2, T4, 

T6 

Transmit <mes2> to 

Switch 2, Switch 1, 

Terminal 1 

T9 
Transmit <OF, <ter>> 

to Controller 

T7 
Transmit <ctl-mes1> 

and 2 to Switch 1 and 2 
T10 

Transmit <OF'> to 

Switch 1 and 2 

C. Security analysis and Attack tree modeling 

In this step, STRIDE method is quoted to be combined 
with the three connection modes in the second step to create 
Attack tree model based on SDN. Before using STRIDE, we 
need to extract the four elements from the research system, 
namely data flow, entity, data storage and process, and then 
make an analysis for the six security threats centered on the 
elements. The security and process of data storage are mostly 
influenced by the design of the software itself, instead of 
network structure, in most systems. However, the 
vulnerabilities related to the architecture are the entity and 
data flow among all the factors. As far as the main purpose of 
FCSNS in this paper, the analysis will be oriented as the entity 
and data flow.  

TABLE III lists the details of each element and the 
potential relative attacks. 

TABLE III. ELEMENT AND ATTACK 

Element Description Type of attack 

Entity(4) 
Administrator (A), Controller (C), 

Switch (S), Terminal (T) 

Spoofing, 

Repudiation 

Data 

Flow(4) 

Data Flow between A and C (DF1), Data 

Flow between C and S (DF2), Data Flow 

between S and S (DF3), Data Flow 

between S and T (DF4) 

Tampering, 

Information 

disclosure, Denial 

of service 

Tampering 

DF2

Denial of Service 

for DF2

Attack C or S, 

before DF2 sent

Attack in T7,T8,T9,T10

Waste resource of 

T7,T8,T9,T10

Forge DF2

Illegally 

occupy C,S
Spoofing, tampering and 

denial of service for 

process in C,S

Information 

Disclosure of DF2

Set up an agent 

between C and S

Incomplete 

T7,T8.T9.T10

Incomplete message 

algorithm protocol

Spoofing 

C,S

Establish false 

transmission channels 

between C and S

Atomic attack

 Sub-goal

OR

OR

OR

OR

AND

Attack goal

 
Fig. 6 An Attack tree for DF2 

Attack tree model describes attacks towards any system as 
a logical function of atomic attacks. A successful security 
breach due to a cyber attack is called an attack goal. 
Successive subordinate security breaches are called attack sub-
goals. The sub-goals can be broken down further to successive 
events called atomic attacks. The atomic attacks and attack 
sub-goals are connected to the attack goal using “AND/OR” 
nodes. Conventional Attack tree formulation uses “AND/OR” 
nodes to represent attack sub-goals. For lack of space, we 
represent the Attack tree modes for DF2 in Fig.6 and A in 
Fig.7, instead of each element described in TABLE III. 

Fig.6 shows an Attack tree with the „Denial of Service for 
DF2‟ and „Information Disclosure of DF2‟ attack goals 
colored in red. As one of the attacks for DF2, Tampering 
attack, colored in green, is one of the sub-goals in this model. 
The other sub-goal is „Attack in T7, T8, T9, T10‟. From the 
figure, we can find ten kinds of atomic attacks colored in 
black. For DF2, there are three main attack types, Denial of 
service, Tampering, and Information disclosure. Among them, 
Denial of service is the most easily accomplished. Any of the 
nine atomic attacks will lead to Denial of service. Information 
disclosure is much harder than the other ones; the attackers 
will have to accomplish setting up an agent if they want to 
disclose the information. 



The attack goal in Fig.7 is „Repudiation for A‟. Replay 
attack and Spoofing are the major attack sources. For 
Spoofing, we should pay more attention to transmission 
channels and devices, where the legal certification exists. 

Repudiation for A

Repudiation for 

the message

Repudiation for the 

communication

Replay attack Spoofing A

OR

OR

OR

Get the legal 

certification

Get it from 

entities Get it from T7, T8, 

T9, T10

Get it from A Get it from C

OR

OR

Forge the legal 

certification

Guess it

Atomic attack

 Sub-goal

Attack goal

 
Fig. 7 An Attack tree for A 

D. Relation and Summary 

According to the analysis and modeling in steps B and C, 
we transform Fig.3, Fig.4, Fig.5, Fig.6 and Fig.7 into TABLE 
IV. We  observe that the distribution and number of attack 
types for  DF2 and A are given in details. Obviously, the 
security of Controller and Switch is significant for DF2. 
Accordingly, we should improve the integrity on the 
communication and transmission channel between Controller 
and Switch. For A, we should guard against agents.  

TABLE IV. PETRI NET AND ATTACK STYLE 

Attack 

object 
Attack type 

Number 

of type 

S 
Illegally occupy; Spoofing; Spoofing, tampering 

and denial of service for process in C,S 
5 

C 
Illegally occupy; Spoofing; Spoofing, tampering 

and denial of service for process in C,S 
5 

A 

Repudiation (A replay attack; Spoofing A (get the 

certification from A,C,P000; get the certification 

from T7, T8, T9, T10; Guess the certification)) 

4 

T7,T8,

T9,T10 

Incomplete, waste resource, incomplete message 

algorithm protocol, establish false transmission 

channels 

4 

P000 Set up an agent 1 

P13-

P18,P2

1-P26 

Attack before DF2 sent, Illegally occupy, forge, 3 

IV. CONCLUSION 

In this paper, we proposed a new security scheme for SDN 

called AAMPA to analyze the security of FCSNS via the 

combination of model and state. AAMPA divides the FCSNS 

structure into three parts as user access, data transmission, and 

control command distribution, and then builds up the models 

by way of Petri net and Attack tree to represent network 

structure and state transferring. Finally, we analyze the 

security of FCSNS using Petri net model and Attack tree 

model.  

To clarify AAMPA, we chose a typical architecture as well 

as SDN to analyze the security of entities A and data flow. In 

our future research agenda on this topic, we plan to continue 

our research on other types of attacks according to the analysis 

given in this paper. We are confident that this work will 

contribute to FCSNS or SDN research for network 

architectures and standards. 

REFERENCES 

[1] T. Benson, A. Akella, and D. Maltz, „„Unraveling the complexity of 

network management,‟‟ in Proc. 6th USENIX Symp. Networked Syst. 

Design Implement., 2009, pp. 335–348. 

[2] D. Kreutz, F.M.V. Ramos, P.E. Verissimo, et al., “Software-defined 

networking: A comprehensive survey,” proceedings of the IEEE, 2015, 

103(1): 14-76. 

[3] N. Mckeown, “How SDN will shape networking,” Mar. 2015. 

Available: http://www.youtube.com/watch?v= c9-K5O_qYgA. 

[4] S. Schenker, “The future of networking, the past of protocols,” Mar. 

2015. Available: http://www.youtube.com/ watch?v=YHeyuD89n1. 

[5] S. Shin, P. Porras, V. Yegneswaran, et al., “FRESCO: Modular 

Composable Security Services for Software-Defined Networks,” NDSS. 

2013. 

[6] J.H. Jafarian, F. Al-Shaer, Q. Duan, “Openflow random host mutation: 

transparent moving target defense using software defined networking,” 

Proceedings of the first workshop on Hot topics in software defined 

networks. ACM, 2012: 127-132. 

[7] G. Yao, J. Bi, P. Xiao, “Source address validation solution with 

OpenFlow/NOX architecture,” Network Protocols (ICNP), 2011 19th 

IEEE International Conference on. IEEE, 2011: 7-12. 

[8] R. Braga, E. Mota, A. Passito, “Lightweight DDoS flooding attack 

detection using NOX/OpenFlow,” Local Computer Networks (LCN), 

2010 IEEE 35th Conference on. IEEE, 2010: 408-415. 

[9] Y. Choi, “Implementation of Content-oriented Networking Architecture 

(CONA): A Focus on DDoS Countermeasure,” Proceedings of 

European NetFPGA developers workshop. 2010. 

[10] Y.H. Chu, M.C. Tseng, Y.T.  Chen, Y.C. Chou, Y.R.  Chen, “A novel 

design for future on-demand service and security,” 2010 IEEE 12th 

International Conference on Communication Technology. 2010: 385-

388. 

[11] P. Porras, S. Shin, V. Yegneswaran, et al., “A security enforcement 

kernel for OpenFlow networks,” Proceedings of the first workshop on 

Hot topics in software defined networks. ACM, 2012: 121-126. 

[12] J.R. Ballard, I. Rae, A. Akella, “Extensible and scalable network 

monitoring using opensafe,” Proc. INM/WREN, 2010. 

[13] R. Klöti, V. Kotronis, P. Smith, “Openflow: A security analysis,” Proc. 

Wkshp on Secure Network Protocols (NPSec). IEEE, 2013. 

[14] H. Shawn, L. Scott, O. Tomasz, S. Adam, “Uncover Security Design 

Flaws Using The STRIDE Approach,” Mar. 2015. Available: 

http://msdn.microsoft.com/en-gb/magazine/cc163519.aspx. 

[15] K. Benton, L.J. Camp, C. Small, “Openflow vulnerability assessment,” 

Proceedings of the second ACM SIGCOMM workshop on Hot topics 

in software defined networking. ACM, 2013: 151-152. 

[16] D. Kreutz, F.M.V. Ramos, P. Verissimo, “Towards secure and 

dependable software-defined networks,” Proceedings of the second 

ACM SIGCOMM workshop on Hot topics in software defined 

networking. ACM, 2013: 55-60. 

[17] L. James, Peterson, Petri net Theory and the Modeling of Systems, 

Englewood cliffs: Prentice-Hall, 1981:7-115. 

[18] B. Schneier, Attack Trees, Dr. Dobb‟s Journal, vol. 24, no.12, pp.21–9, 

1999. 

 


