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Abstract—Location-based social networks (LBSNs) make it
possible for people to record their location histories, mine their
life patterns, and infer individual preferences. As an important
component of LBSNs, recommender systems gained popularity
in recent years. Recommender systems can automatically list
candidate locations for users according to their preference; this is
different from traditional search methods, which finds locations
that users may prefer. However, making effective recommenda-
tions suffers from data sparsity. To relieve this problem and
achieve high effectiveness, we take context information into
consideration and present a personalized location recommender
system considering both user preference and local features in this
paper. To be specific, we apply Labeled-LDA in user preference
learning and local features inference processes, which are denoted
as UL-LDA model and CL-LDA model, respectively. Because of
this, we can make recommendations even on the condition that
users are in a new city and have little information about the
city. We evaluate our approach with extensive experiments on a
large-scale Foursquare dataset. The experimental results clearly
validate the effectiveness of our approach.

I. INTRODUCTION

Location-based social networks (LBSNs), like Foursquare,
as one kind of online social networks (OSNs), allows users
to share their location by check-in via a smartphone or SMS
accompanied with location-acquisition technologies. Advances
in broadband wireless networks and location sensing tech-
nologies, which allow ubiquitous access to the web through
smart mobile phones, tablets and so on, lead to the wide
spread of LBSN. As of December 2013, Foursquare had 45
million registered users. Additionally, the company recorded
382 million check-ins from its 7 million members in 2010.
Huge amount of records of who visited where in which city
imply extensive knowledge about an individual’s preference.
By taking into account the places that users visit and the
things they have told the service provider that they like, we
can provide recommendations of locations for users, which
improves satisfaction and reduces the time and energy costs.

Recommending locations is necessary and valuable for
both users and service providers. On one hand, reasonable
recommendations provide suitable locations or other services
for targeted users, which reduces the time and energy that is
required for searching user locations. It is especially important
when users travel to unfamiliar areas. For example, a user liv-
ing in Manhattan may go to Brooklyn for the first time, which
means no location in Brooklyn has been visited by the user.
Recommending proper locations can help them save energy

and enjoy their stay. On the other hand, recommendation helps
to increase benefits of the service provider.

Since location recommendation is so useful in LBSN, how
can we achieve high quality recommendations that satisfy the
targeted user’s preference, especially in sparse data situations?
Traditional item-based and user-based collaborative filtering
[1], [2], [3] perform poorly in sparse data situations. [4],
[5], [6] exploit trust relations in recommendation algorithms.
Moreover, experiments of these schemes demonstrate that
trust-based recommendation increases recommendation accu-
racy and can effectively deal with the cold-start user problem.
Bao et al. [7] presented a location-based and preference-aware
recommender system that offered a particular user a set of
locations within a geospatial range with the consideration
of user personal preferences and social opinions. They use
weighted category hierarchy to model personal preference
and then learn the expertise of each user in a city, which
is later used to find local experts. Finally, by combining the
opinions of local experts and personal preferences, personal-
ized recommendations are generated. In our scheme, we take
local features and location category into account. Location
context plays an important role in recommendation; this has
been investigated in [8]. Interests of people in different cities
vary largely. Interest localization can be vividly suggested
from the report A Peek into Netflix Queue in New York
Times. To achieve local feature aware personalized location
recommendations, we need to first of all solve three major
challenges: 1) how can we infer user preference? 2) how
can we infer local features? 3) how can we combine user
preference and local features in an effective way?

An improved Latent Dirichlet Allocation model Labeled-
LDA is introduced. To be specific, we build a User-based
Labeled-LDA (UL-LDA) model to mine an individual’s prefer-
ence using user profiles. In this model, topics are restricted to
location categories in user profiles. Similar to user preference
mining, we construct a City-based Labeled-LDA (CL-LDA)
model to infer local features based on location profiles. Topics
in CL-LDA are restricted to location categories in city profiles.
By capturing local folk-customs, recommendations are more
convincing. At last, the tradeoff between user preferences and
local features is balanced by adding proper weights to these
two factors. On one hand, user preference is a necessary com-
ponent that we need to fully considered in the recommender
system, because the system is aimed to provide locations
that satisfy personal taste. On the other hand, local features
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cannot be ignored in location recommendations, especially on
the condition that little user information is available. We use
Relative Standard Deviation (RSD) to learn the weights of the
two factors. In summary, we propose a location recommender
system that offers a particular user a set of locations within
a certain city with local feature awareness in this paper. Our
contributions are listed as follows:

• We adopt UL-LDA and CL-LDA models to learn user
preference and local feature, respectively. UL-LDA and
CL-LDA models can mimic human decision making on
locations.

• We use Relative Standard Deviation to learn the weights
of user preference and local feature based on their impor-
tance learned from dataset. Differing from the arithmetic
mean, the weighted mean is more accurate.

• We evaluate our recommendation system using a real-
world dataset collected from Foursquare. The experiment
shows that our system is effective.

The rest of this paper is organized as follows: Section II lists
related work. Section III presents the overview of our system.
Section IV describe our scheme in detail. Section V performs
experiments. Finally, Section VI concludes the paper.

II. RELATED WORK

In this section, we present existing literature on location
recommendation, ranging from generic location recommenda-
tions to personalized location recommendation and traditional
collaborative filtering recommendation algorithms to the state-
of-the-art recommendation algorithms.

A generic location recommendation system generates the
most popular locations to users without considering their
personal preferences. Zheng et al. [9] performed generic
recommendations that provided users with the top interesting
locations and travel sequences. In the scheme, they first used
TBHG to model users’ histories and then adopted an HITS-
based model to infer hot locations and experts.

Personalized recommendation has been widely studied. C-
ityVoyager [10] had been designed to recommend shops based
on users’ past location data history by using an item-based
collaborative filtering algorithm. Zheng et al. [11] proposed
a scheme that used a collaborative filtering (CF) model
to conduct a personalized location recommendations. To be
specific, in order to make recommendation, they used the
similarity between each pair of users, which offered locations
matching an individual’s preferences. Additionally, Zheng et
al. [12] proposed a solution to mine interesting locations and
classical travel sequences in a given geospatial region based
on multiple users’ GPS trajectories. The key insight is that
users’ travel experiences and location interests have a mutual
reinforcement relationship. In the paper, they took into account
both the sequence property of people’s movement behaviors
and the hierarchy property of geographic spaces. A framework,
referred to as hierarchical-graph-based similarity measurement
(HGSM), was proposed for geographic information systems
to consistently model each individual’s location history and
effectively measure the similarity among users. Zheng et al. [9]
also proposed a personalized recommendation system. They

applied an HITS-based model to learn popular spots from
experienced users and then adopt a user-based collaborative
filtering algorithm to make recommendations.

However, pure collaborative filtering approaches [1], [2],
[3] are challenged with data sparsity and the cold-start prob-
lem. To overcome the problem, different methods have been
proposed. Ma et al. [13] came up with a probability matrix
factorization framework, which fused users’ tastes and their
friends’ favors, to produce recommendations. LARS* [14] is
a location-aware recommender system that uses location-based
ratings to produce recommendations. Bao et al. [7] presented
a recommender system that offered a particular user a set of
locations (such as restaurants and shopping malls) within a
geospatial range taking the user’s personal preferences and
social opinions into consideration. This recommender system
can facilitate people to travel not only near their living areas
but also to a city that is new to them.

III. SYSTEM OVERVIEW

In this section, we first present basic concepts that we use in
our scheme, and then take a glance at the overall architecture
of the proposed location recommender system.

A. Preliminary

In a location-based social network (take Foursquare, for
example) registered users use check-ins to mark locations that
they visited with some comments. Each location is labeled
with its category and a pair of coordinates inferring its
geographical position. In Foursquare, locations are divided
into ten coarse-grained categories C={Arts & Entertainment,
College & University, Event, Food, Nightlife Spot, Outdoor &
Recreation, Professional & Other places, Residence, Shop &
Service, Travel & Transport}

TABLE I
SEGMENT OF ONE USER PROFILE

User ID Location City Location Category
2 Pasadena City College Pasadena College & University
2 Westfield Santa Anita Arcadia Shop & Service
2 Garden of the Dragon Las Vegas Food

Definition 1. (User Profile) The profile of user u con-
tains all records of the user and each record is a tuple
(u, v, lv, cv), meaning that a user u visited a location v
in the city lv and the location v belongs to category cv,
where u ∈ U = {u1, , . . . , uN}, v ∈ V = {v1, , . . . , vP },
l ∈ L = {l1, , . . . , lM} and c ∈ C. Note that a location may
correspond to more than one category. For example, a park
generally belongs to Outdoor&Recreation category while
sometimes events are held there. A segment of one user’
profile is shown in Table I.

TABLE II
SEGMENT OF ONE CITY PROFILE

City User ID Location Location Category
New York 1 Exit Art Arts & Entertainment
New York 5 Rattle N Hum Nightlife Spot
New York 13 Bowery Ballroom Arts & Entertainment
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Definition 2. (City Profile) A city profile is a simple
transformation of the user profile. The city profile contains
all locations that different users visited in the city. Similar
to a user profile, each record in a location profile is a tuple
(l, u, v, cv) inferring that in location l, a user u visited a
location v belonging to category cv, as shown in Table II,
where u ∈ U = {u1, , . . . , uN}, v ∈ V = {v1, , . . . , vP },
l ∈ L = {l1, , . . . , lM} and c ∈ C.

Definition 3. (Labeled-LDA) Labeled-LDA [15] is a prob-
abilistic generative model, which was originally constructed
to describe the process of generating a labeled document
collection. Besides modeling each profile as a mixture of
underlying topics and generating each location from one topic,
Labeled-LDA incorporates supervision by constraining topics
to a location category label set.

B. System Architecture

Our system mainly consists of three parts: user preference
mining, local feature inference, and top-k recommendation, as
shown in Fig.1.
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Fig. 1. System Architecture.

User Preference Mining. Given user profiles, we apply the
UL-LDA model to infer an individual’s preference. Then, we
calculate ranking scores corresponding to users’ preferences
for locations, and then store the top-k locations in a list.

Local Feature Inference. For the local feature inference
component, we model the features of a city, which is the
common preference of people living in this area, using CL-
LDA. Then, we calculate the top-k locations in this area and
store them in order in a list.

Top-k Recommendation. After learning an individual’s pref-
erences and local features of a city, the top-k recommendation
algorithm offers a list of locations in a particular city for a
certain user. We take both user preferences and local features
into account and add different weights to the two factors during
recommendation. Weight represents the importance of the two
factors when a user u makes a decision on which location to
select. We use the Relative Standard Deviation algorithm to
compute these weights. Then, we construct an unified equation
to estimate the rating that the user would give to an unvisited
candidate location. Later, the top-k locations with relatively
high prediction ratings are returned as recommendations.

IV. SYSTEM INTRODUCTION

User preference mining and local feature inference can be
conducted offline. The user preference mining part learns a
user’s preferences and the local feature inference part evaluates
a city’s feature. Top-k recommendation is carried online after

the user preference mining and local feature inference stages.
We define the main notations used in this part in Table III for
the ease of understanding and afterward presentation.

TABLE III
NOTATIONS USED IN MODELS

NOTATIONS DESCRIPTION
UL-LDA LL-LDA

α α′ Dirichlet topic prior
β β′ Dirichlet location prior
ϕ ϕ′ label prior for topic
Λ Λ′ binary topic presence/absence indica-

tors
θ θ′ parameters of the multinomial distribu-

tion corresponding to topics
φ φ′ parameters of the multinomial distri-

bution corresponding to locations (the
former) and cities (the latter)

A. User Preference Mining

We deploy the UL-LDA model to infer a user’s preference.
At first, we define a list of binary topic presence/absence
indicators Λ(u) = {s1, s2, . . . , sK}, where K is the total
number of unique labels in the corpus. We assume the number
of topics in UL-LDA to be the number of unique categories
of locations in users profiles. The preference of a user u for
certain location v is sampled from the UL-LDA model, which
is formulated as Equation 1:

P (v|θ, φ) =
∑
z

P (v|z, φz)P
(
z|α(u)

)
(1)

where α(u) are the restricted parameters of the Dirichlet
topic prior. The generative process is shown in Algorithm 1.
The procedure contains four phases, and its graphical model
is shown in Fig. 2.

u
P

v

Fig. 2. Graphical model of UL-LDA.

1) β → φ: drawing the multinomial topic distributions over
locations φ for each topic k from a Dirichlet prior β,
where kinK.

2) α → θu: drawing a multinomial mixture distribution θ(u)
over restricted topics for each user profile from a Dirichlet
prior α. The topic assignments are limited to the user
profile’s labels.

The procedure [15] to restrict θu to be defined only
over the topics that correspond to its labels Λ(u) is
described in the following:
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Algorithm 1 : Generative process for UL-LDA
1: for each topic k ∈ {1, . . . ,K} do
2: draw φk ∼ Dir (·|β);
3: end for
4: for each user profile pu do
5: for each topic k ∈ {1, . . . ,K} do
6: generate Λu ∈ {0, 1} ∼ Bernoulli (·|ϕk);
7: end for
8: generate α(u) = L(u) × α;
9: generate θ(u) ∼ Dir

(
·|α(u)

)
;

10: for each i in {1, . . . ,N} do
11: draw zi ∈

{
λ
(u)
1 , λ

(u)
2 , . . . , λ

(u)
Ru

}
∼ Multi

(
·|θ(u)

)
;

12: draw vi ∈ V ∼ Multi (·|φzi);
13: end for
14: end for

• generate the user profile’s labels Λ(u) using a Bernolli
coin toss for each topic k, with a labeling prior
probability ϕk. Suppose there are six category labels.
For each Bernoulli test, the result is zero or one, that is,
sk = 0 or sk = 1. We take Λ(u) = {s1, s2, . . . , s6} =
{0, 0, 1, 0, 1, 1} for example.

• define the vector of user profile’s labels to be λ(u) ={
k|Λ(u)

k

}
= {3, 5, 6}.

• define a user profile-specific label projection matrix
L(u) whose size is Ru × K for each user profile as
follows, where Ru =

∣∣λ(u)
∣∣.

L
(u)
ij =

{
1 if λ

(u)
i = j

0 otherwise

Then the L(u) would be

L(u) =

 0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


• project the parameter vector of the Dirichlet topic prior
α = (α1, α2, . . . , αK)

T to a lower dimensional vector
α(u) using the L(u) as follows: α(u) = L(u) × α =(
α
λ
(u)
1

, α
λ
(u)
2

, . . . , α
λ
(u)
Ru

)T

. In the example,

α(u) =

 0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




α1

α2

α3

α4

α5

α6

 =

 α3

α5

α6



• draw θ(u) from a Dirichlet distribution with parameters
α(u).

3) θu → z: generating the topic z from a multinomial
mixture distribution θu.

4) φ → v: generating location v from the multinomial
distribution φ.

Following the studies [16], we use collapsed Gibbs sampling
to obtain samples of the hidden variable assignments P (z|v).
In the sampling procedure, we begin with the joint probability

P (z, v) of all user profiles in our dataset. The posterior
distribution of P (θu|z¬i, v¬i) and P (φk|z¬i, v¬i) is.

P (θu|z¬i, v¬i) = Dir
(
θu|nu,¬i + α(u)

)
(2)

P (φk|z¬i, v¬i) = Dir (φk|nk,¬i + β) (3)

Then, the inference of Gibbs sampling function is:

P (zi = k|z¬i, v) ∝ P (zi = k, vi = v|z¬i, v¬i)
=

∫
p (zi = k, θu|z¬i, v¬i)p (vi = v, φk|z¬i, v¬i) dθudφk

= E (θuk)E (φkv)

= θ̂uk · φ̂kv

After a sufficient number of sampling iterations, we can
estimate the parameters θuk and φkv:

θ̂uk =
n
(k)
u,¬i + α

(u)
k

Ru∑
k=1

(
n
(k)
u,¬i + α

(u)
k

) (4)

φ̂kv =
n
(v)
k,¬i + βv

|V |∑
v=1

(
n
(v)
k,¬i + βv

) (5)

Where n
(k)
u,¬i is the count of topic k sampled from user u’s

profile, that excludes the current assignment zi. n
(v)
k,¬i is the

count of location v sampled from the topic k, that excludes
the current assignment zi.

B. Local Feature Inference

The local feature inference process is similar to that of the
user’s preferences. Here, we omit the details and directly give
the graphical model of CL-LDA, which is shown in Fig. 3.
Then, the preference of a city l for location v is sampled from
the model CL-LDA, which is formulated as Equation 6. Its
generative process is described in Algorithm 2.

P (v|θ′l, φ′) =
∑
z

P (v|z, φ′
z)P (z|θ′l) (6)

l
P

v

Fig. 3. Graphical model of CL-LDA

Based on city profiles, we use collapsed Gibbs sampling to
obtain the hidden variable assignment P (zi = k|z¬i, v) and to
estimate parameters θ′ and φ′. The detail computation process
is similar to that of UL-LDA. Then, we present the results as
follows:
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θ̂′lk =
n
(k)
l,¬i + α

′(l)
k

Rl∑
k=1

(
n
(k)
l,¬i + α

′(l)
k

) (7)

φ̂′
kv =

n
(v)
k,¬i + β′

v

|V |∑
v=1

(
n
(v)
k,¬i + β′

v

) (8)

P (zi = k|z¬i, v) ∝ θ̂′lk · φ̂′
kv (9)

Algorithm 2 : Generative process for CL-LDA
1: for each topic k ∈ {1, . . . ,K} do
2: draw φ′

k ∼ Dir (·|β′);
3: end for
4: for each location profile pl do
5: for each topic k ∈ {1, . . . ,K} do
6: generate Λu ∈ {0, 1} ∼ Bernoulli (·|ϕ′

k);
7: end for
8: generate α

′(l) = L(l) × α;
9: generate θ

′(l) ∼ Dir
(
·|α′(l)

)
;

10: for each i in {1, . . . ,M} do
11: draw zi ∈

{
λ
(l)
1 , λ

(l)
2 , . . . , λ

(l)
Rl

}
∼ Multi

(
·|θ′(l)

)
;

12: draw vi ∈ V ∼ Multi
(
·|φ′

zi

)
;

13: end for
14: end for

C. Top-k Recommendation

The top-k recommendation can calculate the preferences of
a user u for a certain location v, equipped with parameters θ,
θ′, φ and φ′ evaluated from UL-LDA and CL-LDA models
in the offline learning part. The ranking score of user u for a
location v is computed as:

fuv = θ̂uzφ̂zv

The ranking score of the common attitude in the city l for
a location v are computed separately as follows:

f ′
lv = θ̂′lzφ̂

′
zv

After obtaining fuv and f ′
lv , we then compute the weight

of each factor. In our work, we consider user preferences and
local features unequally and add weights to the two factors
separately. To be specific, we use the Relative Standard De-
viation to evaluate the importance that individual preferences
and local features plays in a user u’s decision-making process.
Let ωu denote the weight of user preferences and ωl denote
the weight of local features.

ωu =
1

|Vpu | − 1

√ ∑
v∈Vpu

∑
z∈Zpu

(
θ̂uzφ̂zv − f

)2

1
|Vpu |

∑
v∈Vpu

∑
z∈Zpu

θ̂uzφ̂zv

(10)

ωl =
1

|Vpl
| − 1

√ ∑
v∈Vpl

∑
z∈Zpl

(
θ̂′lzφ̂

′
zv − f ′

)2

1

|Vpl |
∑

v∈Vpl

∑
z∈Zpl

θ̂′lzφ̂
′
zv

(11)

Where Vpu means locations contained in the user u’s profile
pu and Vpl

means locations contained in the city l’s profile
pl. After computing the weights of user preferences and local
features, we can then normalize them as Equation 12. Thus,
the prediction score of a candidate location that the user u
gives is evaluated in Equation 13.

λu =
ωu

ωu + ωl
, λl =

ωl

ωu + ωl
(12)

R (u, v) = λufuv + λlf
′
lv (13)

where λu + λl = 1. Later, the top-k locations with relative
high predict ratings are returned as recommendations.

V. EXPERIMENT EVALUATION

This section contains two subsections: the first one is about
experiment settings-dataset, baselines, and measurements;
the other is experiment result, showing effectiveness of our
scheme.

A. Experiment Setting

Dataset We use a publicly available dataset of a location-
based social network, Foursquare, in our experiment [17].
The dataset contains 4163 users and 483709 records. The
following information is recorded when collecting the data:
user, location, location category, city the location in. Figure 4
presents demographic statics on the dataset.

17%
                                                        

                                                
                                50<user record<=100

100<user record <=500 

30%

27%

10<user record<=50

4%

 user record
                    <10             

                           22% other cities 68%

 San Diego 6%

West Sacramento 3%

Los Angeles   11%

San Francisco      13%

User Profile Location Profile

Fig. 4. Demographic statistics of our dataset. The left illustrates an analysis
of user profiles and the right depicts an analysis of city profiles.

Baselines We compare our method with the following three
baseline approaches.

• Location-based and preference-aware recommendation
(LPA) This scheme offers location recommendations for
a particular user considering both user preferences and
social opinions [7].

• User preference aware rcommendation (UPAR) As one
part of our recommendation scheme, user preference
aware recommendation only considers personal interests.

• Local feature aware recommendation (LFAR) As the other
part of our recommendation scheme, local feature aware
recommendation takes folk-custom into consideration in-
stead of individual preference.
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Measurements To evaluate the effectiveness of our system,
we divide a user’s location history into two parts: 1) we select
the location history generated in a querying city as a test set;
2) we use the rest of the user’s location history as the training
set.

We regard the locations that a user has visited in a queried
city as the ground truths and match the recommended locations
against them. The more recommended locations visited by a
user in the test city, the more effective the recommendation
method is. Based on the ground truth and recommendations,
we are able to compute two kinds of measurements: precision
and recall, which is shown in the following. The higher the
precision is, the better the recommendation scheme is. It is the
same to recall.

recall =
number of recovered ground truths

total number of ground truths

precision =
number of recovered ground truths

total number of recommendations

B. Experiment result
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(a) Recall varies with the number
of recommendations.
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Fig. 5. Precision and Recall Comparison of different methods.

Figure 5(a) and Figure 5(b) illustrate the average recall and
precision of different methods varying with the number of
recommendations. The figures show that both the precision and
recall measurements are higher than that of LPA, suggesting
that the performance of our method is superior to LPA. At the
same time, our method and LPA outperform LFAR and UPAR,
which demonstrates the importance of individual preferences
and local features, respectively. Another observation is that
UPAR outperforms LFAR in our setting, which verifies the
benefit brought by personalized recommendation.

Figure 6 shows that the performance of our method is stable
in sparse data situation. UPAR is greatly influenced by the
data density. When the data density is very low, the average
precision of UPAR drops sharply. In contrast, the average
precision of LFAR remains stable, suggesting the importance
of local features in recommendations when the data is sparse.
To summarize, the experiment results validate the effectiveness
of our scheme.
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Fig. 6. Precision varies with data density.

VI. CONCLUSION

In this paper, we proposed a location-preference-aware rec-
ommender system to provide locations for users. It considers
both user preferences and local features to make recommen-
dations. Moreover, by considering category labels tagged to
locations, we can alleviate the data sparsity and improve
the precision of recommendations. The recommender system
works when you are in an unfamiliar area. We evaluated
our system using real-world dataset and the results show the
effectiveness of our scheme.
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