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Abstract—Intrusion detection plays a critical role in security 
of people’s possessions. Approaches such as video-based, 
infrared-based, RFID, UWB, etc. can provide satisfying detection 
accuracy. However, they all require specialized hardware 
deployment and strict using conditions which hinder their wide 
deployment. Beyond communication, WLANs can also act as 
generalized sensor networks and there are several researches 
working on motion detection via WLAN due to its advantages in 
deployment flexibility, coverage, and cost efficiency. Nevertheless, 
they are unsuitable for intrusion detection as none of them can 
accurately detect human motion when the moving speed is very 
slow. This paper proposes SIED as an accurate method for Speed 
Independent device-free Entity Detection which is suitable for 
intrusion detection even when the entity’s moving speed is very 
slow. The influence becomes much smaller when the entity is 
moving with a very slow speed. Previous methods have the 
limitations in that their performance downgrades sharply when 
the entity’s moving speed is very slow. Recently, it has been 
shown that Channel State Information (CSI) at PHY layer of 
wireless network has the potential to detect moving entities more 
accurately. In this paper we leverage CSI of 802.11n wireless 
network and probability technique to detect entities of different 
moving speeds. SIED captures the variance of variances of 
amplitudes of each CSI subcarrier, and combines Hidden 
Markov Model (HMM) to make entity detection a probability 
problem. We implement SIED using commercial WiFi devices 
and evaluate our method using two typical testbeds and show 
that SIED can achieve an average detection accuracy of greater 
than 98% under different entity moving speed. 

Keywords—device-free passive; intrusion detection; physical 
layer information; dynamic speed 

I. INTRODUCTION 

There has been an increasing interest recently in device-
free detection techniques to confirm whether there exists any 
human movement in the area of interest without any devices 
attached to them [1]. Especially, the detection techniques 
which take advantage of the already installed wireless 
infrastructure, e.g. WLANs, which make entity detection more 
ubiquitous. Device-free detection can be used in intrusion 
detection [2], border protection, elderly healthcare [3, 4] and 
smart homes [5, 6], etc. In such applications, users are 
apparently not expected to wear any devices to participate 
actively in detection process. To make detection system 
applicable, we need device-free detection techniques. 
Especially for intrusion detection systems, device-free entity 

detection is the fundamental technique. Especially in intrusion 
detection systems, it is expected that the systems should make 
the false positive and false negative rates as low as possible 
under different moving speed. However, the impact of human 
motion becomes quite small when the moving speed is very 
slow. That makes it challenging for previous works to achieve 
a high accuracy under this condition. We consider entity and 
human as similar and they are used interchangeably in the 
paper. 

Recently, wireless LANs (WLANs) become very popular 
throughout the world for ease of installation and open access 
[2]. Beyond communication, WLANs can also act as 
generalized sensor networks and it opens up a chance for 
device-free entity detection research. At the same time, there 
are many challenges. The rationale of WLAN device-free 
entity detection is that human movement has an effect on the 
signal strength [7]. A typical WLAN entity detection system 
usually contains APs as transmitters and WiFi enabled devices 
as receivers or monitoring points (MPs), and an application 
server that processes the signal collected by MPs to determine 
whether there exist any entities. Received Signal Strength 
Indicator (RSSI) has been widely used in WLAN device-free 
entity detection systems due to its handy accessibility [8-11]. 
Most of the systems exploit variations in RSS measurements to 
determine human existence. Although it has been extensively 
researched, RSS-based schemes still suffer from coarse 
granularity and are unstable to background noise because of 
the multipath effect. Consequently, false detection often occurs 
in RSS-based detection systems which makes it unfeasible.  

As a result, a finer-grained solution is desired to replace 
RSSI to make device-free entity detection more applicable. 
Fortunately, some researchers find that Channel State 
Information (CSI) at the physical layer of wireless networks is 
more sensitive to human motion while keeping quite stable in 
static environments [12, 13] and it is now available on some 
commodity NICs with minimal firmware modifications [14]. 
CSI is a subcarrier-level channel measurement in the 
framework of OFDM techniques. It is now attracting more and 
more attention, and has the potential to make device-free entity 
detection more accurate. Pilot [15] leverages the correlations 
of CSI over time to find anomalies and locate the entity. FIMD 
[16] leverages the insight that CSI maintains temporal stability 
while exhibits burst patterns when motion takes place to 
accurately detect humans. Omni-PHD [17] introduces the 
concept of omnidirectional passive human detection which 



tunes the coverage into a disk-like range. PADS [18] leverages 
the full information of CSI including amplitudes and phases to 
extract features to shape into sensitive metrics for target 
detection and has the ability to detect humans of dynamic 
moving speeds. FRID [19] explores a fine-grained real-time 
calibration-free device-free passive human motion detection 
system, which is independent of indoor scenarios and needs no 
prior calibration and normal profile. 

In real world environment, people may move at different 
speeds. For instance, intruders in the house may move very 
slow while people under emergency may move much faster. 
However, the researches above have the limitation that none of 
them have a high detection rate when the entity moves very 
slowly. Previous works can get high detection rates when 
entity’s moving speed is fast or slow, but the case that the 
entity is moving with a very slow speed is not in their 
consideration. Unfortunately, it is common for an intruder to 
move very slowly when he breaks into a house potentially to 
commit a crime. When the moving speed is very slow, the 
effect that human motion has on wireless signal is so small that 
previous works cannot accurately detect the human presence. 
As a result, previous works are not suitable for intruder 
detection and it is necessary to find an approach that can detect 
entities when the moving speed is very slow. 

In this paper, we introduce SIED as an accurate scheme for 
Speed Independent device-free Entity Detection which is 
suitable for intrusion detection. It captures the variance of 
variances of amplitudes of each subcarrier at PHY layer level 
as features and uses Hidden Markov Model (HMM) to model 
human motion of different speeds and detect human presence 
slightly influenced by moving speed. Under this scheme, we 
transfer the human detection problem into a probability 
problem. In addition, it reduces the calibration overhead that it 
is independent of indoor scenarios. We evaluate SIED using 
two typical testbeds one of which is rich in multipath effect 
and the other has fewer multipaths. The results show that SIED 
can detect human motion of different speed at a high average 
accuracy of greater than 98% and nearly 97% even when the 
moving speed is very slow, which outperforms existing 
approaches. 

In summary, the main contributions are as follows. 

1) We propose to use the fine-grained PHY layer 
information CSI to detect human motion of different speeds. 
To the best of our knowledge, it is the first approach that is 
suitable for intrusion detection systems even when the entity’s 
moving speed is very slow. 

2) We leverage probability scheme HMM to transfer the 
motion detection problem into a probability problem, which is 
robust to burst noise. As a result, it has a higher accuracy. 

3) We present the design and implementation of SIED in 
commodity WiFi devices. Evaluation results show that it can 
detect human moving at a very high accuracy. 

The rest of the paper is organized as follows. In section II, 
we present a brief introduction of CSI. Section III gives the 
details of design of SIED and experiment settings and results 
are presented in section IV. Finally, we conclude our work in 
section V. 

II. PRELIMIARY 

In this section, we introduce the core background of the 
physical layer information that constitutes our approach. 

The RSSI from MAC layer is used to be the primary 
indicator of wireless signal property, but it is a superposition of 
multipath signals which suffers from harsh multipath effect in 
indoor environments. Consequently, RSSI can only act as a 
coarse-grained measurement in entity detection. To resolve this 
problem, some pioneer research works have explored PHY 
layer Channel State Information (CSI). With off-the-shelf 
commodity Intel 5300 NIC and a slightly modified Linux 
kernel driver, we can obtain a group of sampled version of 
Channel Frequency Responses (CFRs) for 30N    subcarriers 
within WiFi bandwidth in the format of CSI.  

 1 2[ ( ), ( ),..., ( )]NH H f H f H f   (1) 

Each CSI depicts the amplitude and phase of a subcarrier: 

 sin( )( ) ( ) j H
k kH f H f e   (2) 

where ( )kH f  is the CSI at the subcarrier with central 

frequency of kf , and H  denotes its phase. Hence a group of 

CSIs ( ), (k 1,...,K)kH f  , reveals K sampled CFRs at the 
granularity of subcarrier level [20]. 

Therefore, CSI is a finer-grained measurement compared to 
MAC layer RSSI, and can distinguish multipath components at 
subcarrier level [13]. In addition, only amplitudes are sufficient 
to extract sensitive features to detect moving entities and 
consequently, we choose CSI to detect human motion. 

III. ENTITY DETECTION UNDER DIFFERENT SPEED 

This section describes our probability approach for speed 
independent entity detection. 

A. Feature Extraction 

Fig. 1. Distribution of variance of variances of different subcarriers 



A proper feature plays a critical role in device-free passive 
human detection. According to the modified firmware, the raw 
CSIs constitute a 3-demensional matrix of 30m n  , in which 
m  and n  are the number of antennas of the transmitter and 
receiver end respectively, and 30 is the number of subcarriers 
we can obtain. Multiple antennas can be used to improve the 
performance of human detection, but data from a single 
antenna is enough to achieve high detection precision. 
Therefore, the first step of feature extraction is data fusion or 
antenna selection. We choose the median CFR amplitude from 
the subcarriers of the same frequency as the final CFR. 

After data fusion, we are going to find an appropriate 
feature from these CFRs. We have explored many 
characteristics and find that variance of variances of CFRs of 
different subcarriers distributes differently when the entity’s 
moving speed is different, as shown in Fig. 1. It is clear that 
the variance of statics differs from that of slow and fast, but 
has some overlapping parts with that of very slow. The 
overlapping part may cause some false detection that we need 
a feasible method to handle the overlapping parts which is 
introduced in the next subsection. 

Concretely, we first process continuous CFRs starting from 

kH  over a sliding window of length n, the CSIs can be 
expressed as: 

 [ ]k k+1 k+n-1H ,H ,...,HH   (3) 

where H  is a 30 n  matrix, and the variance of each 
subcarrier over the sliding window will constitute a 30 1  
vector expressed as: 

 T[ ]w 1 2 30v ,v ,...,vV   (4) 

where iv  is the variance of subcarrier i. Next the variance of 
all subcarriers V  can be easily calculated: 

 var( )wV V   (5) 

Therefore, when someone is moving in the area of interest, 
V  is more likely to be larger.  

B. Motion Detection 

Motion detection is the key module of our SIED approach. 
Aiming at handling the overlapping feature values between 
static and very slow and achieving a high detection accuracy, 
we adopt a threshold based scheme assisted by HMM 
classification that transfers the motion detection into a 

probability problem which is more robust to environmental 
changes.  

We propose to use Hidden Markov Model (HMM) to build 
our entity detection system. We assume that whether there is 
someone moving or not are two states as shown in Fig. 2. 
Transitions between the two states may take chance in the area 
of interest. Fortunately, HMM is a suitable tool to build state 
transition models using time-dependent features and there 
always exists the transition from human motion to static or 
from static to human motion. HMM is widely used in many 
pattern recognition problems such as speech recognition and 
handwriting recognition. Similar to speech recognition, HMM 
can also be utilized in intrusion detection which is a special 
case of entity detection as there exist several states with human 
presence. The use of HMM for intrusion detection is based on 
the assumption that the observed feature value, corresponding 
to human motion or static, is generated by a Markov model.  

In this HMM, the feature values can be observed while the 
underlying states that generated those feature values are hidden. 
In other words, the variances can be observed but whether 
there exists any human motion cannot be observed. Fortunately, 
there are some probability relationships between the variances 
and human presence and we can estimate whether there is 
someone moving via the probability. To decide the number of 
observed states, we use a group of thresholds to divide the 
variance values into several levels, in which the thresholds are 
estimated from the training data. SIED iterates through various 
numbers of states with the group of thresholds and selects the 
number that provides the highest accuracy. As a result, we 
divide the feature values into 7 levels as the final feature values 
because HMM can only handle finite states and we assume 
there are 7 states that can be observed. In other words, there 
are 7 observed states and 2 hidden states. 

To estimate the state transition matrix and confusion matrix 
for the HMM, SIED uses the well-known Baum-Welch 
algorithm. A rough guess of these probabilities are needed for 
Baum-Welch algorithm to start with. We first make a statistic 
of the feature values of all the sliding windows of CSI 
sequences, and the numbers of each feature value are divided 
by the total number of the sequence as the initial probabilities 
of the confusion matrix. The initial probabilities of transition 
matrix are assigned intuitively. In addition, we have tested 
many times of different parameters over different 
environments and evaluated the models to ensure that the 
models do not overfit on samples from specific scenarios. 
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Fig. 2. HMM for SIED  



After the transition matrix and confusion matrix are 
obtained, the Viterbi algorithm is utilized to estimate hidden 
states from observed CSI sequences which is to decide whether 
there is someone moving in the area of interest. 

IV. EXPERIMENT AND EVALUATION 

A. Experiment Setup 

To evaluate the performance of SIED, we conduct real 
experiments in two typical testbeds, one of which is an office 
and the other is a meeting room as shown in Fig. 3. Each 
testbed is occupied with desks, chairs and other furniture 
creating different multipath effects. Specifically, we use the 
FAST FW150RW wireless router with a single antenna as the 
AP and a Lenovo laptop equipped with a three-antenna Intel 
WiFi Link 5300 (iwl 5300) NIC running Ubuntu 10.04 LTS 
OS as the MP. The firmware is modified to extract CSIs from 
data packets using the CSI tools. The transmitter and receiver 
are placed 0.7m to 1.2m above the floor and 4m to 6m away 
from each other. 

During data collection period, the AP is configured to send 
ICMP packets at the rate of 20Hz. An entity is walking back 
and forth in the rooms with the speed of fast, slow, and very 
slow respectively without anyone else nearby for several 
cycles and each cycle contains 2000 packets. The speed of fast, 
slow, and very slow is about 1.5m/s, 0.7m/s and 0.2m/s, 
respectively. 

There are three evaluation metrics used in this paper which 
are false negative, false positive and precision. 

 False Negative (FN): the fraction that the system fails 
to detect human motion within the area of interest. 

 False Positive (FP): the fraction that the system 
mistakenly announces human motion when there is 
nobody within the area of interest. 

 Precision: the probability that the system correctly 
recognizes human motion and static. 

B. Performance Evaluation 

First, we depict the precision of SIED working over 
different scenarios of the same sliding window size. Fig. 4 
presents precision of SIED in the meeting room and office 
respectively with the window size of 50 under different 
moving speeds. The unit of window size we used in this paper 
is data packet, and the size of 50 is equal to 2.5s as the 
sampling rate in this paper is 20 Hz. The precision in both the 
meeting room and office achieved greater than 99% when 
moving fast and slow. Although it decreases a little when 
moving very slow, the precision can be also as high as 96.2%.  

Furthermore, we present the precision of SEID in different 
window sizes. Fig. 5 shows the result under different moving 
speeds in the meeting room. Sliding window size has only an 
insignificant effect on the precision of SIED, and it even 
reaches 100% precision under all moving speeds when the 
window size is 100, which is 5s. 
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Fig. 4. Precision of detection in different scenarios 

 
Fig. 6. FN of SIED vs. other approaches with different window sizes 

 
Fig. 5. Precision of detection of different sliding window sizes 
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Fig. 7. FP of SIED vs. other approaches with different window sizes 



In addition, to study the advancement of SIED, we also 
present the performance compared with FIMD and PADS 
under various conditions. It is worth mentioning that during the 
test SIED keeps the same parameters in both the meeting room 
and office, but FIMD and PADS have to change parameters 
when the environment changes. So SIED is more robust to 
environmental changes than the other two. 

The FN comparison among the three approaches with 
different window sizes tested in the meeting room when the 
moving speed is very slow is shown in Fig. 6. We chose the 
comparison under very slow moving speeds because it is most 
difficult for the detection systems to have a good performance. 
The approaches’ FN rates get lower as a whole as the window 
size gets larger, and SIED outperforms the other two 
approaches. SIED has the lowest FN rate among the three for 
all window sizes. Especially when the window size is 100, it 
detects all human presence and gets 0% FN rate.  

The FP comparison among the three approaches with 
different window sizes tested in the meeting room when the 
moving speed is very slow is shown in Fig. 7. As can be seen, 
SIED and FIMD both get an FP rate below 3% which is 
satisfactory and SIED even gets 0% FP rate for all window 
sizes which means it makes no false alarms. But PADS gets a 
much higher FP rate of 10.2% when the window size is 50. 
FIMD and PADS get a little higher FP rate when the window 
size is 50 rather than decreasing as the window size increases.  

The precision comparison among the three approaches with 
different window sizes tested in our meeting room when the 

moving speed is very slow is shown in Fig. 8. The precision is 
integrated by FN and FP that is calculated as follows: 

 1 100%
FN FP

Precision
L


     (6) 

where L is the number of sliding windows. So the precision 
can be seen as an overall performance of detection systems. It 
can be verified that the precision of the three approaches all 
increase as the window size gets larger and they all have a 
precision of greater than 90%, among which SIED’s precision 
is greater than 95% and the precision of SIED reaches 100% 
when the window size is 100 in our test. In consideration of the 
balance between precision and time delay, it is appropriate to 
set the window size to 50. 

According to the experiments above, the FN comparison 
among the three approaches under different speeds tested in 
the meeting room when the window size is 50 is shown in Fig. 
9. It can be seen that SIED can recognize all the human 
presence when the entity’s moving speed is fast and slow. 
When entity’s moving speed is very slow, the FN rate has a 
6.4% increase which is acceptable. SIED has the lowest FN 
rate for all the moving speed among the three approaches. 

The FP comparison among the three approaches under 
different speeds tested in our meeting room is shown in Fig. 10. 
As can be seen, all the three approaches perform steadily, and 
SIED and FIMD both make satisfactory FP rate, especially 
SIED has 0% FP rate under all the three moving speed. 
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Fig. 10. FP of SIED vs. other approaches with different moving speed 

 
Fig. 9. FN of SIED vs. other approaches with different moving speed 
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However, although PADS uses a more complicate feature, it 
gets a much higher FP rate of about 10%, which makes more 
false alarms during entity detection when there is actually no 
one in the area of interest at all. 

The Precision comparison among the three approaches 
under different speeds tested in our meeting room is shown in 
Fig. 11. As it is indicated, the precision reflects the overall 
performance of the detection systems. Our SIED has a 100% 
precision when the entity’s moving speed is fast and slow, and 
drops slightly to 97.6% when the moving speed is very slow. 
SIED has a higher precision than the other two approaches 
under different moving speeds. In other words, SIED is more 
sensitive to entities with very slow speeds than the other two 
approaches. 

We have also compared the three approaches in the office, 
and the results show that SIED has a better performance of FN 
and FP as well compared to the other two in that environment 
without changing any parameter. However, FIMD and PADS 
both need a recalibration to get a relative good performance in 
another environment. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we propose a device-free passive human 
motion detection approach SIED that the entity’s moving 
speed has a smaller impact on the performance. It is more 
suitable for intrusion detection as it has a high precision even 
when the entity’s moving speed is very slow. It uses existing 
WLAN infrastructure and is based on fine-grained CSI from 
PHY layer of wireless network. We first extract the variance of 
variances of amplitudes of each CSI subcarrier and divide the 
variance into 7 levels as the feature. And then utilize the HMM 
as the classifier in motion detection. SIED leverages 
probability techniques to provide a more accurate estimation of 
dynamic or static.  

We have implemented SIED with a commercial 802.11n 
NIC and conducted extensive experiments from several aspects 
compared with FIMD and PADS, and the evaluation results 
show that SIED is a simple but effective approach. Its overall 
precision can achieve greater than 98% for all moving speeds 
which corresponds to about 6% improvement over previous 
works.  

In the next stages, we plan to improve its robustness to 
environmental changes and extend SIED to distinguish 
different moving speeds. 
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