
ig data takes many forms, including messages in
social networks, data collected from various sensors,
captured videos, and so on. Big data applications
aim to collect and analyze large amounts of data,

and efficiently extract valuable information from the data. A
recent report shows that the amount of data on the Internet is
about 500 billion GB. With the fast increase of mobile devices
that can perform sensing and access the Internet, large
amounts of data are generated daily. In general, big data has
three features: large volume, high velocity and large variety
[1]. The International Data Corporation (IDC) predicted that
the total amount of data generated in 2020 globally will be
about 35 ZB. Facebook needs to process about 1.3 million TB
of data each month. Many new data are generated at high
velocity. For example, more than 2 million emails are sent
over the Internet every second. 

Mobility services such as Google Maps and Navigation Ser-
vice provide benefits and convenience to people. These appli-
cations are big data applications because the data set size is
big and the data update rate is fast [2]. Large amounts of
fresh mobility-related data are generated every day, for
instance, video surveillance data collected by high-definition
cameras at roadsides and junctions. Typically, the rapidly gen-
erated big data are not uploaded to a data center at once.
Instead, the fresh big data is quickly stored in local servers
temporarily. Previous research works on big data mainly study
efficient processing techniques and analytical methods for big
data in a clustered environment, and do not consider a geo-
dispersed big data scenario. The above transportation service
based on fresh and historical big data belongs to a geo-dis-

persed big data scenario. In this situation, it is a challenge to
efficiently handle a request for geo-dispersed big data applica-
tion. In addition, different service targets require different
complexities of operations on big data. In general, operations
on big data can be divided into two categories: simple opera-
tions and complex operations. For example, retrieval belongs
to simple operations, while analysis of video content (based
on data mining) is a complex operation. A framework for effi-
ciently processing geo-dispersed big data should support both
simple and complex operations. 

Mobile cloud computing [3–5] is an emerging cloud service
model based on mobile computing and cloud computing. As
the computing capability of mobile devices increases, mobile
cloud computing can organize and utilize computation
resources of distributed mobile devices. A new model for
mobile cloud computing is called the cloudlet-based mobile
cloud model. The cloudlets [6, 7] are deployed near Wi-Fi
access points (APs) and cellular base stations to provide cloud
services efficiently, and decrease the network cost between
mobile users and a central cloud. In the mobile cloud archi-
tecture, there are some scenarios where large fresh data sets
(as part of big data) are generated rapidly and quickly stored
in cloudlets, and the fresh data are migrated to the central
cloud periodically. In this situation, if some requests for big
data applications come in, the conventional method of upload-
ing a large amount of fresh data to the data center is not effi-
cient in terms of communication overhead and response time.
Most previous research works on mobile cloud computing dis-
cuss how to efficiently offload tasks from mobile devices to a
cloudlet or a central cloud in order to save mobile device
energy and reduce task completion time. However, few works
study how to utilize mobile cloud computing to process geo-
dispersed big data and optimize response time to mobile
users. To efficiently process geo-dispersed big data using
mobile cloud computing, collaboration among nodes is impor-
tant.  

In this article, we propose a novel and flexible framework
based on MapReduce to support simple as well as complex
operations on geo-dispersed big data. The proposed frame-

B

24 IEEE Network • September/October 2015

Abstract
Big data has emerged as a new era of information generation and processing. Big
data applications are expected to provide a lot of benefits and convenience to our
lives. Cloud computing is a popular infrastructure that has the resources for big
data processing. As the number of mobile devices is fast increasing, mobile cloud
computing is becoming an important part of many big data applications. In this
article, we propose a novel MapReduce-based framework to process geo-dispersed
big data in mobile cloud architecture. The proposed framework supports simple as
well as complex operations on geo-dispersed big data, and uses various data
aggregation schemes to satisfy different application requirements.

Processing Geo-Dispersed Big Data in an
Advanced MapReduce Framework

Hongli Zhang, Qiang Zhang, Zhigang Zhou, Xiaojiang Du, Wei Yu, and Mohsen Guizani

B

0890-8044/15/$25.00 © 2015 IEEE

Hongli Zhang, Qiang Zhang, and Zhigang Zhou are with Harbin Institute
of Technology.

Xiaojiang Du is with Temple University.

Wei Yu is with Towson University.

Mohsen Guizani is with Qatar University.

DU_LAYOUT.qxp_Layout 1  9/23/15  12:38 PM  Page 24



work is referred to as the advanced MapReduce
framework (AMF). For a request with simple
operations, AMF employs cooperative processing
in the mobile cloud and MapReduce to process
geo-dispersed big data. First, the proposed frame-
work automatically divides a big job into several
branch jobs according to the distribution of input
data, and then each branch job is performed
using cooperative processing in the mobile cloud.
For a request with complex operations, AMF
extracts the required multiple inputs from geo-
dispersed big data in parallel, and then aggregate
extracted required multiple inputs from different
cloud nodes. After the aggregated data are pro-
cessed by performing complex operations, AMF
creates the final results and sends them to the user. For com-
plex operations, AMF uses different data aggregation schemes
for different application requirements. For real-time applica-
tions, the goal is to minimize the response time to mobile
users. For non-real-time applications, AMF makes a trade-off
between response time and communication overhead. And
the proposed aggregation schemes are based on collaboration
among cloud nodes. AMF adaptively utilizes MapReduce to
perform simple operations on geo-dispersed big data by dis-
tributed and parallel computing. Moreover, AMF improves
MapReduce to support complex operations on geo-dispersed
big data by aggregation schemes.

When MapReduce Meets Geo-Dispersed
Big Data
MapReduce is a software framework introduced by Google to
perform distributed computation on large data sets. MapRe-
duce [8] is a promising computing model for big data process-
ing. The MapReduce framework has been used widely by
many corporations such as Google, Yahoo, and Amazon to
process big data efficiently. The main idea of the MapReduce
framework is to split a large job into a number of smaller
tasks, including mapping and reducing tasks, and these tasks
are performed independently on different worker nodes.
Before starting map tasks, input data need to be partitioned
into several small data blocks of the same size ranging from
16 to 64 MB. Each data block is then assigned by a master to
a worker along with a map operation. The mapper (i.e., the
worker assigned to a map task) applies a map operation to
compute intermediate key-value pairs. A master is in charge
of assigning map and reduce tasks to workers. A map opera-
tion consists of three functions: map function, sort function,
and combine function. The map function can be obtained
from the specific operation corresponding to a request. The
sort function is responsible for sorting the intermediate values
computed by mappers in order to group key-value pairs corre-
sponding to the same key. The combine function is utilized to
integrate all the intermediate values sharing the same key so
that the size of the intermediate values is reduced. Then the
intermediate values are partitioned into R blocks by a hash
function and stored in local disks. In addition, a reduce opera-
tion includes three functions: shuffle, merge, and reduce. The
shuffle function enables each reducer to pull its intermediate
values from local disks. The merge function groups all inter-
mediate values sharing the same key. The reduce function
implements the requested simple operation on input data.

Typical work environments for MapReduce are clustered
environments in which many machines have stable connectivi-
ty, high bandwidth, and a shared file system. When all of the
big data is stored in a single data center, the MapReduce

framework is simple, flexible, and efficient. However, the
huge amount of distributed real-time information introduces a
new scenario. In the new scenario, fresh data as a part of big
data stored in cloudlets are geographically separated from
data in the central cloud, and migrating a large amount of
fresh data to the central cloud may cause a large delay to
users. Hence, the conventional MapReduce framework for
clustered environments is not suitable for the above scenario
in terms of network delay. Moreover, operations on large data
sets supported by MapReduce are usually simple mathemati-
cal operations such as count, sort, and selection. At present,
MapReduce does not support complex operations (e.g., data
mining and data analysis) on big data very well. Hence, the
issue of efficiently performing complex operations on geo-dis-
persed big data in the mobile cloud model needs to be solved.

Mobile Cloud Architecture for Geo-Dispersed
Big Data Applications
Figure 1 shows the mobile cloud architecture that is used to
provide better support for geo-dispersed big data applications.
The architecture consists of several cloudlets and a central
cloud. The central cloud stores part of the big data, and the
cloudlets have large amounts of fresh data (part of the big
data), which are uploaded to the central cloud periodically to
update the data set. The central cloud has sufficient computa-
tion resources to process all of the big data. However, migrat-
ing large amounts of fresh data from cloudlets to the central
cloud may cause long delays. On the other hand, a cloudlet
has less computation resources than the central cloud but very
short communication delays to mobile users. For some geo-
dispersed big data applications that require complex mathe-
matical operations, the corresponding multiple inputs cannot
be partitioned and processed by distributed and parallel com-
puting. Currently, complex mathematical operations are not
well supported by conventional MapReduce [9]. In this situa-
tion, when a request for a geo-dispersed big data application
happens, migration of a large amount of data is not efficient
in terms of response time. Hence, the cloudlets should be uti-
lized to assist in performing complex operations on geo-dis-
persed big data and reduce response time. 

In the mobile cloud environment, mobile devices play a key
role in generating big data and requesting big data applica-
tions. Mobile devices discussed in this article include vehicles
and small smart mobile terminals, including tablets, smart-
phones, and so on. For vehicles, there are some cases in which
data collection rates can outperform the Internet, such as
video surveillance in buses. At present, many buses have
installed high-definition camera systems to monitor in-bus
conditions. Traditionally, every bus needs a very large-volume
hard drive to store video content for a few days. Then the
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Figure 1. Mobile cloud architecture.
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video content is checked in an offline manner [5]. In mobile
cloud architecture, cloudlets can be used to store the rapidly
generated video surveillance content to implement timely
video content processing and save the high cost of large-vol-
ume hard drives. In this case, preprocessing using cloudlets
can reduce the communication delay for delivering a large
amount of data to a central cloud for complex operations. In
addition, for simple operations, distributed and parallel com-
puting using cloudlets and a central cloud can decrease the
response time of a request. 

This mobile cloud architecture is flexible and advantageous
in supporting geo-dispersed big data applications for mobile
users. First, the architecture contains two layers of clouds that
are in different locations. The central cloud is usually distant
from mobile users. Cloudlets are deployed near mobile users
to provide services quickly. For instance, a mobile user can
collect and upload surrounding real-time information to a
nearby cloudlet, and then other mobile users arriving at the
same or neighboring cloudlet are able to retrieve and down-
load recent data fast. Second, cloudlets reduce the workload
of the central cloud so that tasks in the central cloud can be
performed faster. Third, a seamless connection between
mobile devices and cloudlets can be accomplished by hybrid
wireless communication technologies such as Wi-Fi and cellu-
lar 3G/4G. For example, a mobile device equipped with stan-
dard wireless interface can access to a nearby cloudlet through
Wi-Fi AP or cellular base stations.

Features of Complex Mathematical
Operations on Geo-Dispersed Big Data
Complex mathematical operations on normal data can be
abstracted as a complex algorithm that can process multiple
inputs. We discuss the features of complex mathematical
operations on geo-dispersed big data in the following. First,
finding multiple required inputs is critical for performing
complex mathematical operations efficiently on big data
because many irrelevant data are included in the original
input data. In addition, the original input data that contain
the multiple required inputs are very likely located in differ-
ent clouds due to geo-dispersed big data. Therefore, aggrega-
tion of geo-dispersed multiple inputs needs to be
accomplished in order to obtain the complete inputs. Aggre-
gation in this article means transferring geo-dispersed multi-
ple required inputs to a cloud that can perform the requested

complex algorithm with complete inputs. Second, a cloud per-
forming the complex algorithm on multiple inputs should
guarantee that the entire operating procedure of the complex
algorithm runs correctly. Due to some inherent attributes of
complex mathematical operations, partitioning multiple inputs
or the algorithm into several parts for parallel computing usu-
ally does not work. Hence, given all inputs, a complex algo-
rithm that can process the inputs and create results correctly
should be performed in one machine rather than a cluster of
machines.

The Advanced MapReduce Framework
In this article, we propose a novel and flexible framework,
AMF, based on MapReduce to process geo-dispersed big
data. Different from the conventional MapReduce framework
in a clustered environment, AMF focuses on supporting com-
plex mathematical operations and efficiently performing sim-
ple operations on geo-dispersed big data. AMF combines
cooperative processing in a mobile cloud with MapReduce to
efficiently process geo-dispersed big data. In this article, we
mainly consider the case in which partial or complete large
volumes of input data are promptly stored in cloudlets. In
addition, we assume that both cloudlets and the central cloud
have sufficient computation resources to perform simple and
complex operations. The specific method of AMF is laid out
below.

Performing Complex Operations in AMF
AMF mainly utilizes distributed extracting to decrease the size
of data that needs to be aggregated and processed. First, mul-
tiple required inputs need to be extracted from large amounts
of original input data so that the size of input data is reduced.
In other words, extracting multiple required inputs means
refining original input data. Due to the reduced size, the time
to transfer the refined input data is less than that of the origi-
nal input data. AMF employs distributed and parallel comput-
ing to extract multiple required inputs from the original input
data (geo-dispersed big data). Second, the multiple inputs are
aggregated to guarantee the complete inputs. Third, the
requested complex mathematical operations are performed in
a cloud node. 

As shown in Fig. 2, AMF automatically divides the entire
extraction job into several branch jobs by distributed extract-
ing in each cloud. A branch job consists of extract operations
and the original input data. Before starting the extract task,
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Figure 2. Extraction module and aggregation operations in AMF.
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the original input data needs to be partitioned
into several small data blocks of the same size,
and the size of a data block is bigger than the
size of the minimal input unit. Each data block is
then assigned to an extractor along with an
extraction operation. The extractor applies the
extraction function to obtain some of the required
inputs. The extraction function can be obtained
from the specific request for a big data applica-
tion. After the entire extraction job is done, an
aggregation of the multiple required inputs needs
to be performed to create the complete inputs.
Once the aggregation of the geo-dispersed multi-
ple inputs is done in a cloud, the corresponding
cloud starts to perform complex mathematical
operations on the inputs. As shown in Fig. 3, the
complete inputs cannot be partitioned and are
sent to an analyzer directly. The analyzer applies
an analysis function to obtain the final results.
The analysis function is an algorithm with com-
plex mathematical operations.

Performing Simple Operations in AMF
As shown in Fig. 4, the proposed framework
employs cooperative processing in mobile cloud
and MapReduce to perform simple operations on
geo-dispersed big data. First, the proposed frame-
work automatically divides a big job into several branch jobs
according to the distribution of input data, and then each
branch job is performed using cooperative processing in the
mobile cloud. The main idea of cooperative processing is to
leverage a central cloud to accelerate processing and reduce
response time. When a cloud node starts to perform simple
operations on input data, MapReduce is utilized to perform
computing in parallel. We divide simple operations into two
categories. For simple operations in the first category, the dis-
tributed intermediate results do not need to be aggregated for
further processing such as search operation. For the second
category, the distributed intermediate results need to be
aggregated and processed further for instance sort operation.

First, we demonstrate our method of performing simple
operations in the first category. Considering the fact that the
data sizes of the processed results are normally small, the
communication delay for delivering the final results is negligi-
ble compared to the computing time of the large amount of
input data. As the intermediate results in the first category
are part of the final results, the corresponding communication
delay is also negligible. The proposed cooperative processing
makes cloudlets allocate a number of chunks of input data to
the central cloud. In other words, the total tasks are divided
and processed in parallel by cloudlets and the central cloud.
While a cloudlet is transmitting input data to the central
cloud, the cloudlet is also processing the input data except the
data allocated to the central cloud. When both the cloudlets
and the central cloud finish their own processing, the com-
plete final results are created. Our method calculates the
amount of data chunks allocated to the central cloud in order
to reduce the total response time. We give notation definition
in our scheme as follows.

Let a denote the time to execute the simple operations on
a single chunk of data in a cloudlet, b denote the time to exe-
cute the simple operations on a single chunk of data in the
central cloud, and c denote the time to transfer one single
chunk from a cloudlet to the central cloud. If the total amount
of chunks of input data in a cloudlet is m, and the number of
chunks allocated to central cloud is n, the time to process
(m – n) chunks using the cloudlet is denoted as T1

p
, and the

total time to transmit n chunks through a WAN and process
them using the central cloud is denoted as T2

p
. Thus, for per-

forming simple operations on input data in a cloudlet, the
total response time of cooperative processing is:

Tc = min(max(T1
p
, T2

p
)). (1)

In Eq. 1, T1
p

= (m – n)a and T2
p

= nc + nb. When

the minimal value of max(T1
p
, T2

p
) can be acquired. When big

data is quickly stored in distributed cloudlets, each cloudlet
independently calculates its own Tc and performs simple oper-
ations by cooperative processing. Once some intermediate
results are generated in a node, they are directly transmitted
to mobile users as a part of the final results.

Second, we demonstrate our method to perform simple
operations in the second category. Like the method in the
first category, the proposed cooperative processing makes
cloudlets allocate a number of chunks of input data to the
central cloud to implement parallel computing. When both
the cloudlets and the central cloud finish their own process-
ing, the aggregation of intermediate results is started. Our
method calculates the amount of chunks of data allocated to
the central cloud and the corresponding minimal aggregation
time in order to reduce the total response time. We give nota-
tion definition in our scheme as follows.

Let G1 denote the data size of intermediate results corre-
sponding to (m – n) chunks in the cloudlet, and G2 denote the
data size of intermediate results corresponding to n chunks in
the central cloud. Let T1

a
denote the time to aggregate inter-

mediate results and create the final results in the cloudlet,
and T2

a
denote the time to aggregate intermediate results and

create the final results in the central cloud. For other nota-
tions, we still use the above definition such as a, b, and c.
Considering the fact that the data sizes of the final results are
normally small, the communication delay for delivering the
final results is negligible. Equation 2 demonstrates our

=
+ +

n
ma

a b c
,
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Figure 3. Analysis module in AMF.
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method of calculating the response time in the case where the
complete input data is only stored in a cloudlet. So the corre-
sponding total response time of cooperative processing is

Tc = min(max(T1
p
, T2

p
)) + min(T1

a
, T2

a
). (2)

In Eq. 2, the minimal value of max(T1
p
, T2

p
) can be acquired

as in Eq. 1. Let s denote the size of a chunk. Hence,

and T2
a

can also be obtained. We use a function f(x) to
describe the relationship between the size of the processed
results and the size of the input data, which is denoted as x.
For different applications, the corresponding f(x) is different.
Machine learning can be used to establish the function f(x). In
this article, we do not specifically discuss how to establish f(x),
but give a method to calculate the sizes of the processed
results of input chunks (m – n) in the cloudlet and input
chunk n in the central cloud (i.e., G1 and G2). Therefore,
through the initial values m, s, f(x), and n, we can calculate
the values of G1 and G2. Then, min(T1

a
, T2

a
) can be obtained.

Thus, the total response time Tc of cooperative processing can
be calculated when a request with simple operations happens.
At last, we compare the response time corresponding to only
using the cloudlet ma with the Tc, the processing method cor-
responding to the lower response time is selected and per-
formed. For distributed input data stored in several cloudlets,
we demonstrate our methods to perform simple operations in
the second category as follows.

We consider the case in which the complete input data is
stored in two cloudlets, and the cloudlets have different input
data corresponding to m1 chunks and m2 chunks. Let ai
denote the time to execute the simple operations on a single
chunk of data in cloudlet i, Ti

c the total response time calcu-
lated by Eq. 2 corresponding to cloudlet i, and d denote the
time to transfer one single chunk from one cloudlet to anoth-
er. For other notations, we still use the above definitions such
as b and c. First, each cloudlet independently calculates its
own Ti

c and miai by our above method and determines the
processing method according to the respective response time.
After the first step, intermediate results corresponding to
input data from different cloudlets are created, and they may
be distributed at different nodes due to cooperative process-

ing. Second, according to the distribution of the intermediate
results, calculate the aggregation time in each candidate
aggregation node i which has partial intermediate results or is
the central cloud. The calculation of total response time can
be done in the central cloud or cloudlets. Before the calcula-
tion, the initial values including the function f(x) need to be
shared among these computing nodes. Based on various
aggregation times and processing times in different aggrega-
tion nodes, the respective total response time Ti

b can be
obtained. Taking the case in Fig. 5 as an example, where the
intermediate results f(m1) and f(m2) are created in cloudlets 1
and 2, respectively, using Eq. 2, the total response time corre-
sponding to aggregation node cloudlet 1 is

T1
b = max(T2

c
+ f(m2)d, T1

c
) + (f(m1) + f(m2))a1

For brevity, the total response times, T2
b

and T3
b
, corre-

sponding to aggregation node cloudlet 2 and the central
cloud, respectively, are not demonstrated in detail. At last, the
processing method and the aggregation node corresponding to
the response time min(T1

b, T2
b
, T3

b
) are performed and select-

ed. For other cases where distributed input data is stored in
several cloudlets, the computing method is the same, and the
processing method corresponding to the lower response time
can be determined when a request with simple operations in
the second category happens. Next, we consider the case in
which both cloudlets and the central cloud have a part of
large volumes of input data. We assume that the complete
input data is stored in two cloudlets and the central cloud,
and the data size is m1, m2, and m3, respectively. First, each
cloudlet independently calculates its own Ti

c and miai by Eq. 2
and determines the processing method according to the
respective response time. Because the input data m3 is pro-
cessed by the central cloud, the corresponding processing time
is m3b. Second, according to the distribution of the intermedi-
ate results, calculate the total response time Ti

b in each candi-
date aggregation node i that has partial intermediate results
or is the central cloud. At last, the processing method and the
aggregation node corresponding to the minimal response time
are performed and selected.

Efficient Aggregation Schemes
The aggregation operation is a key step in performing com-
plex mathematical operations because the required multiple
inputs are geo-dispersed. Aggregating large amounts of multi-
ple inputs may cause long delay for users. If the size of aggre-
gated multiple inputs is big, the transmission time and cost
can be reduced by an efficient aggregation scheme, which can
improve the performance of AMF. We propose two types of
aggregation scheme to support real-time and non-real-time
geo-dispersed big data applications, respectively. Since real-
time applications require smaller response time, the corre-
sponding aggregation scheme is referred to as a dynamic
aggregation scheme, which aims to reduce response time. On
the other hand, for non-real-time applications, our proposed
aggregation schemes aim to finish the requested tasks in a rel-
atively longer time but with low cost, and the corresponding
aggregation scheme is referred to as planned aggregation. 

In the dynamic aggregation scheme, whenever a cloud node
finishes extraction operation, it transfers the extracted multi-
ple inputs and the corresponding size to other cloud nodes
involved in the entire job. When all required multiple inputs
are aggregated in a cloud node, the cloud node starts to per-
form analysis operation. After a cloud node finishes an analy-
sis operation in the shortest time, it informs other cloud nodes
with a state message including the original user request and
final results. When a cloud node receives a state message, if it
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Figure 5. Response time using cooperative processing.
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is working on the same user request with the received state
message, the cloud node ends all the operations caused by the
same user request immediately. Due to the different comput-
ing capability of each cloud node, the respective time to
extract required multiple inputs from a large amount of data
is different. The dynamic aggregation scheme reactively car-
ries the next task when the extraction of required multiple
inputs in a cloud node is finished. Hence, the minimal aggre-
gation time can be achieved by the dynamic aggregation
scheme. The state message can save some communication and
computation cost when the final results are obtained in the
shortest time. 

In the planned aggregation scheme, when all cloud nodes
involved in a big job finish their own extraction operation,
they start the planned aggregation scheme. In other words,
after the slowest extraction operation is finished, the aggrega-
tion scheme starts. First, each cloud node transfers the data
size of the extracted multiple inputs to other cloud nodes.
Second, each cloud node finds the maximal size of extracted
multiple inputs among all cloud nodes, and the cloud node
that contains the maximal-size extracted multiple inputs is
selected as the aggregation node. Third, each cloud node
excluding the aggregation node transfers extracted inputs to
the aggregation node. The planned aggregation scheme per-
forms aggregation operation with minimal communication
overhead. For non-real-time geo-dispersed big data applica-
tions, we assume that the analysis time and extraction time at
each cloud node are acceptable to users. 

We use NS-2 for simulation. Input data is distributed in
two cloudlets and a central cloud. For evaluating perfor-
mance of our aggregation schemes, we simulate two cases
where the size of total extracted input data is 150 MB and
300 MB, respectively. In each case, we consider two types of
distribution of extracted input data. For the first distribu-
tion of case 1, cloud1et 1 finishes its extract operations in
15 s, and the extracted input data is 25 MB. Cloud1et 2 fin-
ishes its extract operations in 25 s, and the extracted input
data is 50 MB. The central cloud finishes its extract opera-
tions in 35 s, and the extracted input data is 75 MB. For the
second distribution of case 1, the time to extract input data
is the same with the first distribution. The extracted input
data in cloudlet 1, cloudlet 2, and the central cloud is 75
MB, 50 MB, and 25 MB, respectively. In case 2, the time to
extract input data is the same as in case 1. For the first dis-
tribution of case 2, the extracted input data in cloudlet 1,

cloudlet 2, and the central cloud is 50 MB, 100 MB, and 150
MB, respectively. For the second distribution of case 2, the
extracted input data in cloudlet 1, cloudlet 2, and the cen-
tral cloud is 150 MB, 100 MB, and 50 MB, respectively. The
link speed between cloudlets is 10 Mb/s corresponding to a
LAN. The upstream link speed (i.e., the link from each
cloudlet to the central cloud) is in the range of [1.3, 3.8]
Mb/s, and the downstream link speed is in the range of [3.0,
4.1] Mb/s. We calculate aggregation time using the differ-
ence between the time when all extracted input data is
aggregated in a node and the time when a request with
complex operations happens. Figure 6 compares the aggre-
gation time and communication overhead for three aggrega-
tion schemes (dynamic aggregation, planned aggregation,
and random aggregation). The random aggregation scheme
randomly selects a cloud node as the aggregation node
when a request with complex operations arrives. In the ran-
dom aggregation scheme, when a cloud node finishes its
extract operations, it starts to transfer extracted input data
to the selected aggregation node. The horizontal axis of Fig.
6 represents the size of the total extracted input data. The
simulation results show that the dynamic aggregation
scheme achieves the shortest aggregation time of the three
schemes, and the planned aggregation scheme incurs less
communication overhead than the others.

A Geo-Dispersed Big Data Application
Based on the Proposed Framework
In this section, we consider a geo-dispersed big data applica-
tion for analyzing vehicles to support an intelligent transporta-
tion system. The corresponding input data is a large amount
of video surveillance data. The application is able to analyze
traffic and identify a specific vehicle according to its color and
license number. The video surveillance data is collected by
high-definition cameras at roadsides and junctions. When a
request happens, first AMF extracts the pictures from the
original video surveillance data stored in several cloudlets
according to the specified color of the request. Then AMF
extracts the images from the extracted vehicle pictures accord-
ing to the specified license number. At last, the extracted
license images and the corresponding position information are
aggregated and analyzed to identify the corresponding travel
trajectory.
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Figure 6. Simulation results of aggregation schemes: a) aggregation time; b) communication overhead.
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Conclusions
In this article, first we discuss the challenge in utilizing the
mobile cloud to process geo-dispersed big data. Then we pro-
pose a novel and flexible framework based on MapReduce to
support complex as well as simple operations on geo-dis-
persed big data. The proposed framework, AMF, employs the
idea of parallel computing in MapReduce to extract multiple
inputs for complex operations while being able to appropri-
ately aggregate and analyze geo-dispersed big data. For simple
operations, AMF adaptively utilizes collaboration among
cloud nodes and MapReduce to efficiently process geo-dis-
persed big data. For complex operations on geo-dispersed big
data, AMF uses different aggregation schemes to meet vari-
ous application requirements. For real-time applications, min-
imizing response time to mobile users is achieved. For
non-real-time applications, AMF makes a trade-off between
response time and communication cost. 
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