
An Effective Access Control Scheme for Preventing
Permission Leak in Android

Longfei Wu
1

, Xiaojiang Du
1

, and Hongli Zhang
2

1

Department of Computer and Information Science, Temple University, Philadelphia, PA, USA, 19122
2

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China, 150001

Email:
1{longfei.wu, dux}@temple.edu,

2

zhanghongli@hit.edu.cn

Abstract—In the Android system, each application runs in its
own sandbox, and the permission mechanism is used to enforce
access control to the system APIs and applications. However, per-
mission leak could happen when an application without certain
permission illegally gain access to protected resources through
other privileged applications. We propose SPAC, a component-
level system permission based access control scheme that can
help developers better secure the public components of their
applications. In the SPAC scheme, obscure custom permissions
are replaced by explicit system permissions. We extend current
permission checking mechanism so that multiple permissions
are supported on component level. SPAC has been implemented
on a Nexus 4 smartphone, and our evaluation demonstrates its
effectiveness in mitigating permission leak vulnerabilities.

Keywords—Permission leak; access control; smartphone secu-
rity

I. INTRODUCTION

Android is a privilege-separated operating system built
upon a customized linux kernel. The Android system assigns
each application a unique user ID (Uid) for identification
purpose, and applications are running in separated processes as
a way of isolating them from each other and from the system.
By default, applications cannot interact with each other and
have limited access to the system resources.

Android enforces permission-based mechanisms to provide
a fine-grained access control to system resources and third-
party applications. Specifically, sensitive system APIs are
protected by system permissions, and third-party applications
can make use of these APIs by first requesting the corre-
sponding permissions in its manifest file. At the beginning
of installation process, all requested permissions are presented
to the user. If the user agrees to complete the installation, all
those requested permissions are to be granted. Applications
may also define and enforce their own permissions, which
is called custom permissions. All custom permissions can
specify one of the four protection levels: normal, dangerous,
signature, signatureOrSystem (detailed in Section II-B). The
custom permissions, as well as system permissions, can be
used to protect third-party applications. An application can
specify a certain permission that client applications must have
for interaction, by setting the android:permission attribute of
the application element (for all components) or of a particular
component in the manifest file. It is also possible for an
application to check caller’s permissions during runtime, which
is embedded in its source code.

Components are the essential building blocks of an Android

application. Each component is encapsulated as its own entity,
and performs a specific function. There are four different
types of components: activity, service, content provider and
broadcast receiver. Components can communicate to each
other (inter-components communication) through an message
passing mechanism called Intent. A component can be spec-
ified as either public or private by setting the exported prop-
erty in the manifest file. Private components can only be
accessed by components within the same application, while
public components are accessible by other applications. Public
components can be protected either statically, by declaring
permision requirement in the manifest file, or dynamically, by
performing permission checking during runtime.

In this paper, we first present the weakness of custom per-
missions regarding permission leak attacks. Then we propose
system permission based access control (SPAC) scheme, which
provides straightforward and fine-grained permission enforce-
ment on component level. SPAC can mitigate permission
leak vulnerabilities by utilizing system permissions instead of
obscure custom permissions, which establishes accurate one-
to-one matching between each permission and corresponding
sensitive system API. The custom permission is adopted in
SPAC only when its protection level is signature for restriction
of access to applications signed with the same signature. Be-
sides, SPAC can also detect potential permission leaks among
applications sharing the same user ID. Such collaborative per-
mission augmentation is prevented by enforcing the required
permissions on each of the associated applications. Compared
to policy-based access control schemes, SPAC is lightweight
as it only extends the permission checking module to enable
multiple permissions to be enforced. We have implemented
SPAC on a Nexus 4 smartphone running Android 4.2 OS, and
conducted experiments to evaluate its performance. Our results
show that SPAC is very effective in protecting APIs against
permission leak.

The rest of the paper is organized as follows. Section II
introduces the motivation of our work. Section III presents the
design of SPAC scheme. Section IV shows the implementation
of SPAC and the proposed permission checking algorithms.
Section V presents the performance evaluation. Section VI
discusses related works. Section VII concludes the paper.

II. MOTIVATION

A. Permission Leak

Permission leak vulnerability has been studied in many
previous works. The particular attack specified to exploit per-

2015 International Conference on Computing, Networking and Communications, Communications and Information Security
Symposium

978-1-4799-6959-3/15/$31.00 ©2015 IEEE 57

Fig. 1. The Permission Leak Model

mission leak vulnerability can be called a permission escalation
attack [1] or permission re-delegation attack [2]. The motive of
these attacks is obvious: an application with no/few sensitive
permissions is unlikely to be suspected. The attack model can
be stated as:

A non-privileged caller application without required per-
missions illegally gains access to protected resources.

The attack model is described in Figure 1. As it shows,
the application programming interface (API) protected by
permission P1 could either belong to the Target App or the
system. The Caller App is not granted with P1 so it cannot
access the API directly by itself. However, the Deputy App
owns the permission P1, and the target API is accessible by
all its components. In this scenario, if component D of the
Deputy App is public and not guarded by any permission, then
the Caller App is able to call the target API indirectly through
that component D even though without permission P1.

The Caller App can successfully launch the permission
escalation attack since the Deputy App delegates its request,
intentionally or inadvertently. In this paper, we focus on mit-
igating permission leaks in inter-components communication.
Specifically, we are concerned about helping Android devel-
opers better protect the public components, so that permission
leak is prevented in the inter-components communication with
caller applications.

B. Custom Permission

Misconfigured deputy is a major cause of permission leak
problem. However, the definition of “misconfiguration” is quite
obscure in previous works. In [2], they parse the manifest file
to identify at-risk applications before performing IPC inspec-
tion. And their policy takes all public components protected
by permissions as safe. Similarly, components in the absence
of declarative or dynamic permission checking that can be
invoked by other applications (with different Uid) are regarded
as misconfigured in [3]. DroidChecker [4] targets at applica-
tions use at least one permission while contain unprotected
components that are publicly visible. Zhou et al. [5] study
the passive content leaks and pollution in content provider.
The candidate applications they select include those guarded
by custom permissions at normal level since the system will
automatically grant permissions at this level without user’s
explicit approval. But in fact, the unreliability of custom-
defined permissions is only partially revealed.

There are four types of protection levels. Since we focus
on third-party deputy applications, the custom permissions we
deal with are at normal, dangerous and signature protection
level. Apart from normal level, we continue digging into

the other two protection levels, and identify the weakness of
custom permissions.

A dangerous level permission is considered safer as it
needs user’s explicit approval if requested. During installation,
the custom permissions are presented to the user all along
with other system permissions requested. However, the user
may not well understand the name and description of custom
permissions since they are not explicitly mapped to system
services or device resources as system permissions do. Also
the user could ignore the custom permissions even if he/she is
confused, since all permissions are required to be granted to
install an application.

A signature level permission is believed to completely
eliminate the possibility of permission leak beccause only
applications signed with the same certificate can conduct inter-
components communication. A signature is owned by each
developer and will not leak to others. However, collusion
attacks could happen among applications packaged by the
same attacker (using the same signature). Therefore, although
permission at signature protection level can be used to prevent
the access of other developers’ applications, it cannot guaran-
tee the absence of permission or data leakage.

Besides, custom permissions can obscure the capability of
an application. System permissions are well-regulated: detailed
information on the meaning and functionality of each permis-
sion is publicly available. By contrast, custom permissions can-
not be matched correspondingly to system actions or resources,
and may be used to cover the actual capability and intention
of malicious applications. Hence, due to the huge gap between
custom permissions and system permissions, applications using
custom permissions are still under the risk of permission leak.

III. THE SPAC SCHEME

A. Our Design

We propose SPAC, a system permission based access
control scheme to mitigate permission leak vulnerabilities in
Android inter-components communication. For each public
component, developers are asked to replace the custom-defined
permissions in their applications (if any) with correspond-
ing system permissions. In the transition, the corresponding
system permissions include, on one hand, the permissions
required to access protected system APIs by this particular
component; on the other hand, if it can communicate with
other intra-application components, permissions needed by
other components are also included. Generally, we can group
the (commonly requested) protected system APIs into three
categories: privileged actions, sensitive data and system no-
tifications (broadcasts). Figure 2 gives an illustration of the
permission transition in SPAC scheme.

In Figure 2, Deputy App has three components: private
Component 1, public Component 2 and private Component 3.
The five system APIs are protected by permission P1, P2, P3,
P4 and P5, respectively. Component 1 can invoke the privileged
operation Action 1; Component 2 is able to receive system
Broadcast 1, access to sensitive Data 1 and invoke Action 2;
Component 3 can access to sensitive Data 2. Originally, no
permission is enforced on Component 1 and 3 since they are
private and not accessible by other applications, while public

2015 International Conference on Computing, Networking and Communications, Communications and Information Security
Symposium

58

Fig. 2. Illustration of the Permission Transition in SPAC Scheme

Component 2 is solely protected by a custom permission CP1.
Note that Component 2 can also access the intra-application
components Component 1 and 3.

In the conversion to system permissions set (SPset), the
corresponding permissions of system APIs accessible directly
by Component 2 are first added (P2, P3 and P4). Then,
the required permissions of other reachable APIs via intra-
application components are also added (P1 and P5). Hence, as
described in Figure 2, the custom permission CP1 is replaced
by a combination of system permissions in SPset.

SPset = Permissionsdir
⋃
Permissionsindir

The only exception is when the custom permission is at
signature protection level. In this special case, access to the
component is intended to be restricted to application signed by
the same developer. We need to keep this custom permission
in the final permission set (FPSet) to retain this feature after
the permission transition.

FPset = SPset
⋃
Custom Permissionsig

The API call may be invoked in a call-chain manner which
contains more than just one deputy application. As shown
in Figure 3, Component C in Caller App invokes along the
whole call path (Deputy App 1 to n) to reach a system API.
Following the rule of permission transition, each intermediate
Deputy App between the system API and Calling App has
to enforce the permission protecting the system API on their
public accessible components. The invocations in Figure 3 are
all direct invocations, but there may exist routes to access other
system APIs via intra-application components. So we can have
PermissionAPI ⊆ FPsetDn ⊆ ... ⊆ FPsetD1 ⊆ FPsetC

A broadcasted Intent may be used for instant notification,
or may contain private information that the sender does not
want to be intercepted by unexpected broadcast receivers.
In Android system, a broadcast can enforce permission re-
quirement as well. The permission check must be passed for
the Intent to be delivered to target receivers. Similarly, a
broadcast may leak permission to receivers if it is associated
with sensitive events or data, but is unproperly protected by
custom permission. Hence, SPAC scheme is also applied to
broadcasts.

IV. IMPLEMENTATION

In SPAC scheme, the public accessible components of
third-party applications that are unprotected or solely protected

Fig. 3. The Call Chain Model

by unreliable custom permissions need to perform permis-
sion transition, so that system permissions can effectively
mitigate attacks targeted at permission leak. For each of
such components, the corresponding system permissions set
is composed of all system APIs it can access directly and
via other components in the same application. So it is highly
possible that multiple system permissions are enforced on
the component. A special case is when the protection level
of the original custom permission is signature, both custom
permission and system permissions are required to protect the
component collaboratively. The android:permission attribute
of application element or a component can be set to the
permission that clients must have in order to interact with
the associated object. However, the Android system allows
only one such attribute for the application as well as each
component.

The current Android permission mechanism has to be
extended so that it can support multiple required permissions to
be specified for each component, or the whole application (for
all components). In addition, existing broadcast Intent also can
only handle one optional required permission that a receiver
must have. The intuitive solution is to modify the parsing
policy of the manifest file as well as the internal structure
of each type of components, so that more than one associ-
ated permission requirement can be recognized and enforced.
This method also needs to expand the parameter structure of
system functions to process broadcasts with multiple required
permissions. Obviously, this method is too heavy since the data
structure in all relevant functions are to be changed.

Fig. 4. Permission Parsing in SPAC Scheme

We choose another “clever” way to enable multiple permis-
sion enforcement on components and broadcasts. We want to
keep using the current data structures for permission enforce-
ment, which include the single attribute android:permission in
component elements and the single requiredPermission string
in functions dealing with broadcasts. Instead of creating more
attributes or parameters, all permissions to be enforced can
be specified in the existing single attribute or parameter. A
new format is defined in which permissions can be con-
catenated and later recovered through parsing. The permis-
sion attributes in manifest file only accept letters, numbers,
period and underscore as valid character, and all of them
are commonly used in permission names for identification
purpose (e.g. “android.permission.READ SMS”). So we select
double underscores as the delimiter to seperate consecutive
permissions. All the permissions stay combined together until
the permission checking is performed, where the permission
being checked is first parsed into segments of single system

2015 International Conference on Computing, Networking and Communications, Communications and Information Security
Symposium

59

Algorithm 1 UidPC: Uid-level Permission Checking

Input: Combined Permission P , Target User ID Uid;
Output: Result r;

1: Split the combined permission P into an array of single
permissions Psgl[] with double underscores as delimiter.

2: Initialize result r as GRANTED.
3: for each permission Psgl[i] do
4: Check the presence of Psgl[i] in the target Uid;
5: if Psgl[i] is absent then
6: Set result r to DENIED;
7: Return r;

and custom permissions as shown in Figure 4. Then all these
permissions are checked individually for a given Uid. The
absence of any specific permission will result in the denial of
access. The Uid-level permission checking algorithm (UidPC)
is described in Algorithm 1. Note that it is unnecessary to
declare the “combined” permission since it is not intended to
take effect in access control. But the seperated signature level
custom permission (if any) has to be declared.

Meanwhile, since Android is built on a user-based per-
mission model in which permissions are associated with Uid,
the default permission enforcement mechanism only checks
whether a given permission has been assigned to the appli-
cation’s associated Uid instead of the application itself. This
will make a difference when multiple applications share the
same Uid by setting android:sharedUserId attribute to the
same value. The potential threat is that user may be tempted
to install malicious (collusive) applications that share the
same Uid, by which the capabilities of these applications are
mutually augmented and become the union set of permissions
granted to each one of them. To prevent permission leak
among applications with the same Uid, we need to enhance
the permission checking such that each of these applications
should have requested all permissions they need. We further
propose application-level permission checking algorithm (App-
PC) as in Algorithm 2. The sharing of Uid is very common
among stock applications, so we first pick out the harmless
stock applications that are installed under the “\system\app”
directory. For the rest of the third-party applications, we check
if there are multiple applications associated with the target
Uid. If not, it is equivalent to Uid-level permission checking;
Otherwise, we need to ensure every associated application
owns all required permissions.

We implement SPAC scheme on a Google Nexus 4 smart-
phone running Android 4.2 operating system. We modify the
source code of Android permission checking mechanism so
that it is able to support SPAC with minimal impact to the
original Android system.

V. CASE STUDIES AND EVALUATION

To demonstrate the effectiveness of SPAC scheme, we
conduct case studies to evaluate the effectiveness of the two
proposed permission checking schemes, respectively.

A. Custom Permission

My Tracks [6] is a health and fitness application developed
by Google. It can record user’s moving path, speed, distance,
elevation and location information while doing outdoor

Algorithm 2 AppPC: Application-level Permission Checking

Input: Combined Permission P , Target User ID Uid;
Output: Result r;

1: Obtain the names of all applications that are associated
with Uid, and store in array App name[].

2: if The source directory of the first application
App name[0] is not in “/system/app/” then

3: Set counter to 0;
4: Split the combined permission P into an array of single

permissions Psgl[] with double underscores as delimiter.
5: for each permission Psgl[i] do
6: for each application App name[i] do
7: Check the presence of Psgl[i] in App name[i];
8: if Psgl[i] is granted then
9: counter++;

10: if counter = App name.length× Psgl.length then
11: Set result r to GRANTED.
12: else
13: Set result r to DENIED.
14: Return r;

sports. Meanwhile, My Tracks application provides APIs
which allow third-party Android applications to access
its data and start/stop a recording. The three public APIs
are protected by custom permissions detailed in Table I.
We take the Mytracks content provider as an example to
illustrate the permission leak in My Tracks. We develop
an application MyTracksApiCaller which only owns the
“com.google.android.apps.mytracks.READ TRACK DATA”
permission to access the content provider. The label and
description of this custom permission are both “read Google
My Tracks data”, which fails to give any direct hint
on the potential leakage of location information. But in
fact, MyTracksApiCaller can successfully obtain the GPS
coordinates from My Tracks even though it does not have
any location-related permissions. Figure 5(a) is the screenshot
of My Tracks recording panel where we can see the GPS
coordinates (39.97108, -75.15777). As shown in Figure 5(b),
MyTracksApiCaller is able to get the coordinates through the
content provider API.

(a) My Tracks (b) MyTracksApiCaller

Fig. 5. Illustration of Permission Leak in My Tracks

To mitigate the leak of location permissions, My Tracks
could follow SPAC scheme and use multiple system permis-
sions to restrict the access of its APIs. In this case, the danger-
ous-level custom permissions are to be replaced by correspond-
ing system permissions shown in Figure 6. After that, unless
the caller application has both ACCESS FINE LOCATION
and ACCESS COARSE LOCATION permissions, the access
to content provider would be denied.

2015 International Conference on Computing, Networking and Communications, Communications and Information Security
Symposium

60

TABLE I. PROTECTION OF APIS IN My Tracks

API Custom Permission Enforced Description/Label Protection Level

MyTracks Content Provider
com.google.android.apps.mytracks.READ TRACK DATA read Google My Tracks data dangerous
com.google.android.apps.mytracks.WRITE TRACK DATA write data to Google My Tracks

MyTracks Service com.google.android.apps.mytracks.WRITE TRACK DATA start/stop Google My Tracks recording dangerous
MyTracks Notifications com.google.android.apps.mytracks.TRACK NOTIFICATIONS receive Google My Tracks notifications dangerous

Fig. 6. Permission Transition of My Tracks

B. Sharing User ID

To evaluate the effectiveness of the application-level per-
mission checking, we develop two applications App1 and Ap-
p2 that are signed by the same certificate and declare to share
the same Uid. App1 has READ CONTACTS permission and
App2 has SEND SMS permission. Since the two applications
run under the same user ID, their granted permissions both
appear to be the union of permissions they own individually.
As a consequence, App1 can take use of App2’s permission
to send SMS while App2 can borrow App1’s permission to
access contacts. However, as shown in Figure 7, application-
level permission checking can defend against such kind of
permission leak by checking the permissions requested by each
of the associated application.

Fig. 7. Illustration of Application-level Permission Checking

VI. RELATED WORK

Permission leak vulnerabilities on Android platform has
been studied in previous works. Based on the way to solve the
problem, we can categorize them into the following three cat-
egories: runtime monitoring [2][7], policy enforcement [8][9],
and information flow tracking [4][10][11].

While most previous works adopt various techniques to
detect and block permission leak, SPAC mainly focuses on
providing more effective and fine-grained access control for
application developers to protect their APIs. Saint [8] solves
the issue with s similar idea as its policies can be enforced
on component level. But Saint constructs a separated policy
enforcement mechanism which requires substantial changes to
the system including modifiying application installer and pars-
er, placing hooks to the four types of components, embedding
additional AppPolicy Provider and FrameworkPolicyManager,
etc. By contrast, SPAC is much more lightweight since it just
extends the existing permission checking mechanism. There is
no need for extra manifest file, source files or changes to SDK.

Besides, we propose to replace the obscure custom permissions
with explicit system permissions, while policy based defending
approaches are even more confusing as developers need to
follow the complicated policies.

VII. CONCLUSION

To mitigate the permission leak vulnerabilities, we propose
a component-level system permission based access control
(SPAC) scheme, in which explicit and fine-grained system
permissions are utilized to protect public APIs of third-party
applications. SPAC is lightweight as we extend the existing
permission parsing and checking mechanism with minimum
modification to the system. We implement SPAC scheme on
real device and the performance evaluation proves that it’s
effective to defend against permission leak attacks.

ACKNOWLEDGEMENT

This research was supported in part by the US National
Science Foundation (NSF) under grant 1065444, and by the
US Army Research Office under grant WF911NF-14-1-0518.

REFERENCES

[1] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in Proceedings of the 13th International
Conference on Information Security, 2011.

[2] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permis-
sion re-delegation: Attacks and defenses,” in Proceedings of the 20th
USENIX Conference on Security, 2011.

[3] D. Sbirlea, M. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar, “Auto-
matic detection of inter-application permission leaks in android appli-
cations,” IBM Journal of Research and Development, Nov 2013.

[4] P. P. Chan, L. C. Hui, and S. M. Yiu, “Droidchecker: Analyzing android
applications for capability leak,” in Proceedings of the Fifth ACM
Conference on Security and Privacy in Wireless and Mobile Networks
(WISEC), 2012.

[5] Y. Zhou and X. Jiang, “Detecting passive content leaks and pollution
in android applications,” in Proceedings of the 20th Network and
Distributed System Security Symposium (NDSS 2013), Feb 2013.

[6] My Tracks, https://play.google.com/store/apps/details?id=com.google.
android.maps.mytracks.

[7] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on android,”
in 19th Annual Network & Distributed System Security Symposium
(NDSS), Feb. 2012.

[8] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
rich application-centric security in android,” in Computer Security
Applications Conference (ACSAC), Dec 2009.

[9] S. Smalley and R. Craig, “Security enhanced (se) android: Bringing
flexible mac to android.” in 20th Annual Network and Distributed
System Security Symposium, NDSS, Feb. 2013.

[10] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings
of the ACM Conference on Computer and Communications Security
(CCS), 2012.

[11] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock android smartphones,” in 19th Annual Network
and Distributed System Security Symposium, NDSS, Feb. 2012.

2015 International Conference on Computing, Networking and Communications, Communications and Information Security
Symposium

61

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

