
 1

Abstract—location-based social network (LBSN) has grown

exponentially over the past several years. Given its high utility

value, LBSN, however, has raised serious concerns about users’

location privacy. Although users may avoid releasing geo-content

in sensitive locations, this, however, does not necessarily prevent

the adversary from inferring users’ privacy through

spatial-temporal correlations and historical information. In this

paper, we introduce a new location privacy problem:

context-aware location privacy protection (CLPP) problem where

the privacy requirements of users are not constant and isolated.

We propose a novel metric to quantify the privacy risks. Then the

CLPP is formalized as how to accurately and efficiently evaluate

whether the users’ published geo-content meet the user’s privacy

requirement. To achieve online evaluating, we design two novel

algorithms to calculate the correlation between the locations.

Eventually, our experimental results demonstrate the validity and

practicality of the proposed strategy.

Index Terms—location privacy, location-based social network,

inference attack, privacy preserving.

I. INTRODUCTION

he advances in location-acquisition and wireless

communication technologies enable people to release

geo-location content anytime and anywhere, fostering a bunch

of location-based social networking services(LBSN), e.g.,

Foursquare, Twitter, Google Latitude and Flickr, where users

can easily check in, locate friends or share experience via

mobile devices. However, the potential abuse of users’ location

information and relate sensitive information by unauthorized

users (such as application servers, malicious users) is evolving

into a serious concern.

Existing approaches (such as spatial k-anonymity [1, 2]) on

location privacy protection mostly focus on “single shot”

scenario, which, however fall to protect the privacy of LBSN

users when applied to inference attack due to spatio-temporal

correlations between the published geo-location content. In an

example scenario of LBSN applications, a LBSN user may

extremely want to share his geo-location content with his

friends at cafe or store, whereas the user does not want anyone

to know he had been to the hospital. Therefore, as shown in

Figure 1, the user disabled location servers to avoid privacy

leakage when he was at the hospital, whereas he released

geo-location content at the store and cafe. This, however, does

not necessarily prevent an adversary from inferring that the user

visited the hospital through spatial-temporal correlations and

historical information. An adversary knowing most of users

follow path 2 between the cafe and the store may infer the user

probably visited the hospital when the user’s travel time

between cafe and store is beyond the regular interval.

Reachable
region

Cafe
POI

road
segment

Bar

Hospital Store

Path 1

Path 3

Path 2

Path 4

Library sensitive
POI

Fig.1. An example of context-aware location privacy problem

In this paper, we introduce and investigate a new location

privacy problem: Context-aware Location Privacy Protection

(CLPP) problem in LBSN, in which the privacy requirements

of users are not constant and isolated along spatial and temporal

dimensions. We assume that the users’ privacy requirements

are diverse and dynamic, depending on users’ personal

definition of sensitive locations. Notice that even the same user,

his privacy requirement for different locations may be different

and change overtime. Here, Location privacy is redefined as

“the ability to prevent other parties from learning one’s current

or past hidden sensitive locations”. In LBSN, on the one hand,

the users want to release as much geo-location content as

possible to get better services; on the other hand, the users are

concern about their privacy, especially the privacy leakage

caused by the context of published geo-location content. To

tackle the problem, we need to answer the question: when and

where can the user release geo-location content to LBSN?

To answer the question, we present a CLPP server

framework. The goal of the framework is to let user publish as

much geo-location content as possible while avoiding privacy

risk. We propose a novel metric to quantify the privacy risks.

Then, the CLPP is formalized as how to accurately and

efficiently evaluate whether the users’ published geo-content

meet the user’s privacy requirement. To achieve online

evaluating, we further present two mining algorithms (basic

algorithm, Collaborative Filtering based heuristic algorithm) to

calculate the correlation between the locations.

 In summary, the paper makes the following contributions:

(1) We introduce a new location privacy problem:

Context-aware Location Privacy Protection (CLPP) where the

privacy requirements of users are not constant and isolated

along spatial and temporal dimensions.

CLPP: Context-aware Location Privacy

Protection for Location-based Social Network

Hongli Zhang
1
, Zhikai Xu

1
, Zhigang Zhou

1
, Jiantao Shi

1
 and Xiaojiang Du

2

1
School of Computer Science Engineering, Harbin Institute of Technology, Harbin, 150001, China

Email: {zhanghongli, xuzhikai, zhouzhigang, shijiantao}@pact518.hit.edu.cn
2
Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

Email: dux@temple.edu

T

IEEE ICC 2015 SAC - Social Networking

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 1164

 2

(2)We present a novel evaluation strategy to answer the

question: when and where can the user release geo-location

content to LBSN?

(3)We present two novel mining algorithms (basic algorithm,

Collaborative Filtering based heuristic algorithm) to accurately

and efficiently calculate the correlation between the locations.

The remainder of the paper is organized as follows. Section

II introduces the system framework, threat model, and formally

defines the secure metrics. Our proposed mining algorithm and

evaluate algorithm are presented in Section III. Section IV

presents the experiment results confirming the effectiveness of

the proposed algorithms. Section V discusses related work on

location privacy protection, followed by the concluding

remarks in Section VI.

II. PROBLEM DEFINITIONS

In this section, we will introduce the motivation of the CLPP

problem and then describe the system framework and threat

model. Finally, we will formally define the secure metrics.

A. Motivation

Most existing approaches [1, 2, 7-9] on location privacy

protection focus on “single shot” scenario, and usually assume

that the privacy requirements of users are constant and isolated

in spatial and temporal dimensions. However, the assumption

may not be true in location-based social network (LBSN),

especially for the real-name social network. For example, in the

spatial dimension, Alice may be happy to release her location to

LBSN to locate her nearby friends at stores or cafes, and she

does not consider these locations as privacy. But Alice does not

want anyone to know she had been to the hospital by not using

the server locators at all. In the temporal dimension, Alice may

require higher privacy protection for workplace at weekend.

Moreover, when combining the spatial dimension and the

temporal dimension, the locations are not isolated. For example,

as shown in Figure 1, an adversary may learn that most users

follow path 2 between the cafe and the store. Then, even if Alice

did not release any geo-location content at hospital, the

adversary may still infer that Alice probably visited the hospital

when she released her location at the cafe and the store.

Therefore, in this paper, we investigate a new location

privacy problem Context-aware Location Privacy Protection

(CLPP) and redefine location privacy as the ability to prevent

other parties from learning one’s current or past hidden

sensitive locations. In this paper, we will propose a server

framework to formally represent different users’ personal

privacy requirements, and explore novel approaches to meet the

requirements of users.

B. CLPP Server Framework

The CLPP server framework is illustrated in Figure 2, which

involves three critical components: users, trust third party

server (TTP), and location-based social network (LBSN).

Following are details about the three components.

(1)Users: Users in the system are equipped with GPS smart

phones or tablets which are capable of communicating with

LBSN. In order to get services from LBSN, the mobile user

sends his current location ploc, timestamp t, privacy requirement

PR and encrypted query content qc to the TTP through secure

connections. The server request is represented as (user, ploc, t,

PR, qc).

(2)Trust third party: TTP is fully trusted by other entities in

the system. It has a collection of users’ historical information

and the precise locations of the POIs (map information). When

the TTP gets the request message, it will evaluate whether the

user’s privacy requirement would be satisfied, if the current

location was released to the LBSN. (The details are given in

Section III). If there is no leakage of the privacy problem, the

user’s server request (uk, ploc, t, PR, qc) will be forwarded to the

LBSN automatically; if otherwise, TTP will return the probable

leaked POIs, together with the leakage probabilities, to the

users. Then the user will decide whether to release or not to

release the current server request. Note that we consider that

TTP should avoid interfering with the users frequently. It

should run automatically most of the time.

(3)LBSN: when receiving the user’s server request, the

LBSN will provide appropriate services for the users, such as

locating nearby friends, or distributing the coupons around

user’s current location.
TTP

User

Curre
nt l

oca
tio

n,e
ncr

yp
te

d q
uery

Priv
ac

y r
equire

m
ent

encr
yp

te
d re

su
lt

lis
t

Current location, encrypted query

LBSN

Check-in

locating-friends

encrypted result list

 Fig.2. CLPP Server framework

C. Threat Model

We make a widely acceptable assumption that the LBSN

provides “honest but curious” services. LBSN acts in an honest

fashion and correctly follows the designated protocol

specification. However, it is interesting in analyzing users’

geo-location content so as to infer each user’s sensitive

information. However, this common mechanism repeatedly

encounters the same issue: how to provide privacy-preserving

against the newly introduced entity? To this end, our

framework disassociates privacy evaluate operation from the

query business logic. Here, the TTP is just responsible for

evaluate the location privacy of users without knowing the

query content and the relationship among users in LBSN, while

the LBSN provider just processes queries from users without

learning the hidden sensitive locations.

D. Secure Metrics

As mentioned, a request for LBSN service consists of five

factors: user, location, time, privacy requirement and encrypted

query (such as check-in, locating friends and social gaming). In

this paper, we take check-in as an example for all the

discussions and illustrations. However, it can be easily

extended to other applications. The following are the

definitions used in the article.

IEEE ICC 2015 SAC - Social Networking

1165

 3

Definition 1: Check-in Sequence: Given a user uk, his

check-in sequence is a set of POIs ordered by check-in time S (k)

= < (p1, t1),… , (pi, ti),… , (pm, tm)>, where ti denotes his

check-in time at POI pi. We define a sub-check-in sequence as

user’s check-in sequence in one day.

Definition 2: s-Confidence Privacy: Let C (k) = (c1, c2,… ,

cn) denotes the hidden sensitive POIs set of uk. We say the

system provide s-confidence privacy for uk, if for each ci in C,

no adversary can use S (k) to identify the probability that uk had

visited ci is bigger than s.

Definition 3: User’s Privacy Requirement: Given a user uk,

his privacy requirement is represented as PR (k) = < (c1, s1),… ,

(ci, si),… , (cn, sn)>, where ci denotes the sensitive POI of uk and

si denotes si -confidence privacy at POI ci. Note that different

users may have personal hidden sensitive POIs set, and the

privacy requirement for different POIs may be different.

III. OUR SOLUTIONS: CLPP ALGORITHMS

In this section, we will describe the details of our solutions.

On the one hand, TTP calculates the correlation between the

POIs through historical check-in sequences and geographical

information (offline training phase). We first give a basic

mining approach, and then we introduce a collaborative

Filtering based heuristic approach. On the other hand, when the

TTP gets the server request, it will evaluate whether the user’s

privacy requirement would be satisfied, if the current location

was released to the LBSN (online predicting phase).

A. Basic Mining Approach

Users’ behaviors usually follow certain mobility patterns in

specific region [3]. Thus, a basic approach is to make use of

majority users’ historical check-in sequences to capture users’

frequent patterns.

A frequent pattern is pattern that occurs frequently in users’

check-in sequences. For example, as shown in Figure 1, if most

users always follow a check-in sequence (Cafe→ Hospital →

Store), then we call the sub-sequence is a frequent pattern. The

confidence of the frequent pattern is computed as

 1

1

1

(, ,)
| ,

(,)

i j i

j i i

i i

support p p p
P p p p

support p p

 (1)

where support (pi, pj, pi+1) denotes the number of sub-check-in

sequences that contains POI pi, POI pj, and POI pi+1 in

sequence.

TABLE I

CHECK-IN SEQUENCES OF USERS
User Sub-check-in sequences

u1 < (p1,ti), (p2,ti+1), (p4,ti+2)>

u2 < (p1,ti), (p2,ti+1), (p3,ti+2), (p4,ti+3)>

u3 < ((p4,ti), (p3,ti+1), (p2,ti+2), (p1,ti+3)>

u4 < (p1,ti), (p3,ti+1), (p4,ti+2)>

u5 < (p1,ti), (p2,ti+1), (p4,ti+2)>

u5 < (p1,tj), (p2,tj+1), (p5,tj+2)>

To fully leverage the historical information, we use

Frequent-Pattern Tree [4] to search and store all the frequent

patterns in the sub-check-in sequences. The build process is

illustrated by using the sample data shown in Table I. We

construct the tree as follows: Firstly, we will scan all the

sub-check-in sequences and get a list of start nodes< (p1: 5), (p4:

1)>, (the number after “:” indicate the support). Only the start

nodes that satisfy the minimal support (here, the requirement

for the minimal support is 1) will be preserved. Secondly, we

will create the root node of the tree, and label it with “NULL”.

Note that the check-in sequences is directional, we will insert

the node in sequence. Then, as shown in Figure 3-(a), we will

scan the first sub-check-in sequence to construct the first

branch of tree < (p1: 1), (p2: 1), (p4: 1)>. For the second

sequence, as shown in Figure 3-(b), since < p1, p2, p3, p4>shares

a common prefix < p1, p2> with the existing branch< p1, p2, p4>,

thus, we will increment the count of each node along the

common prefix by one, and then create new nodes (p3: 1) (p4: 1)

and add them as child nodes of (p2: 2). Step by step, after

scanning all the sequences in Table I, finally, we get a frequent

pattern tree as shown in Figure 3-(c).

p4:1

Null

p1:1

p2:1

Null

p1:2

p2:2

p4:1 p3:1

p4:1

Null

p1:5

p2:4

p3:1

p4:1

p4:2

p5:1 p4:1

p3:1

p4:1

p3:1

p2:1

p1:1

(a) (b) (c)

p1

p2

p3

p4

p5

...

...

Fig.3. The search and store of the frequent pattern

To facilitate the traversal of the tree, we further build a node

header table where each node points to its occurrences in the

tree via a node-pointer, and we link nodes with the same names

via such node-pointers in sequence.

Then, we will use the tree to calculate the confidence of the

frequent pattern. Take P (p2| p1, p4) as example, we first find the

positions that node p4 occurs in the tree through the header table

and node pointer. Then for each node p4 in the tree, we will

walk up the tree recursively to search node p1, once p1 is the

ancestor node of p4, support (p1, p4) will be incremented by the

count of the node p4. In the same way, we obtain the value of

support (p1, p2, p4). Then we calculate P (p2| p1, p4) use (1). The

time complexity of the calculate process is O (m*h), where m

denotes the number of nodes p4 that occurs in the tree and h

denotes the average height of the tree.

B. Collaborative Filtering based Heuristic Approach

The basic approach gives no considerations to the users’

individualized characteristics. In real life, people actually like

to visit certain POIs that fit their own personal interest. For

example, as shown in Figure 1, suppose that most people will

visit the bar when driving along path 3, however, those who

often went to the book stores tend to visit the library instead of

the bar. It’s obviously that the basic approach will not deal with

the above situation. Therefore, we present a collaborative

filtering (CF) based heuristic algorithm to provide users with

personalized privacy evaluation.

Definition 4: User’s Rating Array: Given a user uk , his

personal characteristic is represented as an rating array

R(k)=<rk1,… , rki,… , rkn>, where rki denotes uk’s rating of POI

pi and it reflects how much the user uk like POI pi. A

straightforward solution to calculate rki is to use the

IEEE ICC 2015 SAC - Social Networking

1166

 4

number of repeat visits to POI pi from uk, but the method is

insufficient. For example, uk check-in 10 times at Carrefour

hypermarket where plenty of people check-in whereas uk

check-in 10 times at the Science Museum where only a few

people check-in. It’s apparently that the Science Museum is

more important when reflecting user’s personal preference.

Inspired by the TF-IDF scheme in information retrieval system,

we treat a check-in record as “a term”, and treat the user’s

check-in sequence as “a document”. Formally, user’s rating rki

is computed as

()

. | |
* log

. |{ | . 1, }|
j

k i

ki

k j i

p S k

u l U
r

u l u u l u U

 (2)

where U denotes the collection of all the users and li denotes

number of repeat visits to POI pi from uk. The first part of (2) is

the TF value of POI pi in the check-in sequence of uk, and the

second part denotes the IDF value of POI pi.

Definition 5: POI Similarity sim (pi, pj): POI similarity

indicates the correlation between POI pi and POI pj in the space

of human behavior. For example, if most people who often

visited the restaurant, also like going to the cinema. Then the

restaurant and the cinema are similar though they are different

in terms of the business categories.

1

2

k

m

.

.

.

.

.

.

1 2 i j N

R

R

R

R

RR

-

...

R

sim(i,j)=?

co-rated users

co-rated usersusers

POIs

co-ra
ted

users

co-rated
 users

Fig.4. The process of similarity computation

The similarity between two POIs is calculated by integrating

the users’ check-in sequences. As shown in Figure 4, the users’

ratings of the POIs are stored as entries of a matrix where the

matrix rows corresponds to the users and the columns

corresponds to the POIs. The basic idea to compute the POI

similarity is to isolate the users who have checked in (rated)

both of the POIs, and to determine the similarity by using the

users’ ratings (collaborative filtering algorithm). In the case, we

consider the two POIs as two vectors in the m-dimensional

user-space and then use the cosine of the angle to compute the

similarity between the two vectors. Formally, sim (pi, pj) is

calculated as

(,) (,)

2 2

(,) (,)

(,) cos(,)
| | | |

ki kj

k co i j k co i j

i j i j

ki kj

k co i j k co i j

r r

sim p p p p
r r

 (3)

where co (i,j) denotes the set of users who have checked in

both POI i and POI j and “ ” denotes the dot-product between

the two vectors. We predict a user’s rating of unvisited POIs by

using the POI similarity and users’ rating array. Intuitively, to

predict the user’s rating of POI pj given the user’s ratings of

POI pi and pi+1, if POI pi is more related to pj beyond pj+1,

then the rating of POI pi is likely to be a better predictor for

POI pj than the rating of POI pi+1 is. Formally, our approach can

be represented as

,

()

()

() * (,)

(,)

ki j i

i S k

kj

i S k

r dev sim i j

r
sim i j

 (4)

(,)

,

()

| (,) |

kj ki

k co i j

j i

r r

dev
co i j

 (5)

where sim (pi, pj) denotes the similarity between POI i and POI

j, and devj,i is calculated by using (5). The ratings have

profound influences over one’s behaviors [3]. Thus, we

redefine the confidence of frequent pattern by introducing

individual’s rating. Formally, the confidence of the frequent

pattern is computed as

1

1

1

(1 *) (, ,)
(| ,)

(1 *) (,)

kj i j i

j i i

k i i

a r support p p p
P p p p

a R support p p

 (6)

where support (pi, pj, pi+1) has no difference from (1), Rk

denotes uk’s average ratings of the POIs geographically located

between pi and pi+1（ the POIs will be given in section C）, and

a is turning parameter ranging within [0, 1].

C. Online Privacy Evaluate

When the TTP gets the server request, it will evaluate

whether the user’s requirement would be satisfied, if the current

location was released to LBSN.

Algorithm 1 Evaluate location privacy

INPUT：PR(k)= <(c1, s1),… , (ci, si), …, (cn, sn)>

 S (k) = <(p1, t1),(p2, t2),… , (pi, ti)>

 pi+1 // user’s current location

 t // current time

OUTPUT: H // probable leaked POIs, H is initialized to an empty set

1. △ t=t- ti

2. if △t dis(pi, pi+1)/ vmax

3. return H

4. else

5. R={pm| dis(pi , pm)+dis(pm , pi+1) Δt * vmax }

6. if R∩C(k)= //C(k):user’s sensitive POIs set

7. return H

8. else

9. for each ci in R∩C(k)

10. if P (ci |pi , pi+1,R)> si

11. H= H < ci, P (ci |pi , pi+1,R)>

12. return H

Take user uk as an example, suppose that uk has checked in

POI pi at ti. Given in a new check-in request (uk, pi+1, t, PR (k),

qc), Firstly, TTP will calculate the interval △t between two

check-ins: △t= (t-ti). Since the map information and the

maximum velocity of the road segments vmax are publicly

observed, TTP will evaluate whether uk has visited other POIs

from the above observation. If Δt (dis(pi, pi+1)/ vmax), TTP can

infer that uk definitely does not have time to visit any other POIs

between the two check-ins (dis(pi,pi+1) denotes the

Manhattan Distance between pi and pi+1). Then the check-in

request will be forwarded to the LBSN. Otherwise, as shown in

Figure 1, the TTP will calculate the reachable POIs set R= {pm|

dis (pi, pm) +dis (pm, pi+1) + Δt * vmax}. Then the privacy

evaluate question is formalized as a posterior probability P (pj|

IEEE ICC 2015 SAC - Social Networking

1167

 5

pi, pi+1, R). We use Bayesian reasoning to derive the posterior

probability. Formally,

1 1

1

1 1

(, ,) (| ,)
(| , ,)

(, ,) (| ,)

i j i j i i

j i i

i i i i

p R

P p p p P p p p
P p p p R

P p R p P p p p

 (7)

where P (pi, pj, pi+1) is calculated by using (1) or (6). Then, for

each ci in R∩C (k), TTP will use P (ci | pi, pi+1, R) to evaluate

whether the user’s privacy requirement would be satisfied. If

there is no leakage of the privacy problem, the user’s check-in

request will be forwarded to the LBSN; if otherwise, TTP will

return the probable leaked POIs, together with their leakage

probabilities, to the users. Then the user will decide whether to

release or not to release the check-in request. The detail of this

algorithm is shown in Algorithm 1.

IV. EXPERIMENTS

In this section, we evaluated our system using real-world

Foursquare dataset, made available by Gao [5]. It contains the

check-in history of 18107 users ranging from March 2010 to

January 2011. For each user, we have his previous check-in

locations and the corresponding check-in time. We first

evaluate the accuracy of CLPP algorithms and then explore the

tradeoff between privacy and utility. Both algorithms are

implemented in C++.

A. Accuracy Metrics

In our dataset, the real sensitive locations are hidden by users,

thus we generate two sensitive location sets for each user

artificially in our experiment. Given a user uk, the first hidden

location set A is generated by randomly marking off a portion of

POIs that he has checked in, and the second hidden location set

B is generated by adding POIs which are geographically located

between the POIs that he has checked in.

0.72
0.68 0.66

0.58

0.81

0.74 0.73
0.69

(1) (3) (5) (10)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
s
it
iv

e

Number of marked off POIs

 Basic approach

 CF based approach

Fig.5. Performance evaluation on true positive

0.31

0.23
0.18

0.14
0.2

0.16
0.13 0.11

(5) (10) (15) (20)

0.0

0.2

0.4

0.6

0.8

1.0

F
la

s
e
 p

o
s
it
iv

e

Number of added POIs

 Basic approach

 CF-based approach

Fig.6. Performance evaluation on false positive

We then use two performance metrics to evaluate the

accuracy of our system: (1) Average confidence of hidden

location set A, represented as true positive. (2) Average

confidence of hidden location set B, represented as false

positive. For each approach, we randomly select 1,000 users

and choose pi and pj in each user’s check-in sequence (the

interval Δt between pi and pj should exceed the average

check-in interval). For each user, we random mark off 1, 3, 5,

and 10 visited POIs between pi and pj as hidden location set A,

and add 5, 10, 15, and 20 (different interval Δt between pi and pj)

un-checked-in POIs that geographically located between pi and

pj as hidden location set B.

The experimental results in Figure 5 and Figure 6 show that

increasing the number of marked off or added POIs does not

much affect the true confidence and false confidence. The

result further denotes that simply suppresses sensitive location

does not protect user’s location privacy. In Figure 5, the higher

true positive rate is, the better the approach is while false

positive rate in Figure 6 represents the opposite. It can be seen

that the CF-based approach always exhibits the best

performance in terms of true positive rate and false positive rate

under all values. This is because some users’ check-in

sequences are personal and unpopular, making it hard for the

basic approach to evaluate whether the user has visited the

hidden locations through majority users’ historical check-in

sequences.

B. Privacy-Utility Tradeoff

What’s the price in terms of utility that we have to pay for a

formal privacy guarantee? Since the users want to publish as

much geo-location content as possible to get better service. A

performance metric called utility ratio is put forward to

evaluate system utility. It is calculated by dividing the number

of POIs that user wants to check-in by the number of POIs that

user can check-in while ensuring location privacy.

0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

u
ti
lit

y
 r

a
ti
o

confidence s

 CF-based approach

 Basic approach

Fig.7. Utility ratio (the ratio of sensitive POIs is 5 percent)

0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

u
ti
lit

y
 r

a
ti
o

confidenc s

 CF-based approach

 Basic approach

Fig.8. Utility ratio (the ratio of sensitive POIs is 10 percent)

For each user, we randomly select a part of POIs (5 percent

and 10 percent separately) in the dataset and add them as

sensitive locations. For simplicity, we assume that the user’s

requirement for different POIs is the same, but our system

allows the users to define personal privacy requirement for

different POIs.

IEEE ICC 2015 SAC - Social Networking

1168

 6

We vary user’s privacy requirement by varying the value of

confidence s. For both sets of experiments, as shown in Figure

7 and Figure 8, the performance degradation of our system

utility is small. This is because the false positive of our

approach is very low (especially for the CF-based algorithm)

and only the POIs that very relevant (which is calculated by (7))

to the sensitive POIs will be suppressed by our system. The

result implies that our system can afford strong privacy

guarantees (by choosing a smaller value of confidence s)

without sacrificing too much utility.

V. RELATED WORK

Protecting location privacy of mobile users has been widely

studied in recent years. Depending on the different methods to

distort the users’ queries before the queries reach the location

based server (LBS), we roughly classify the existing work into

the following categories:

Obfuscation based approaches: Obfuscation approaches

try to preserve location privacy by adding uncertainty to users’

location. Spatial Location cloaking is one of the most

representative approaches [2, 6-7]. It typically blurs users’ real

location into spatial regions to meet anonymity constraints

(such as k-anonymity) and reports the spatial region to LBS

server. However, this approach may lead to the degradation of

the quality of service. Another representative approach is

dummy location [8, 9], which refers to the technique that

reports multiple false locations together with the real location to

confuse the adversary about the real location. However, it does

not apply to the social network that emphasizes content

authenticity.

Anonymity based approaches: The anonymity based

approaches remove users’ real names or replace users’

identities with pseudonyms [10-13]. The mere anonymity is not

sufficient to ensure user’s location privacy [10]. Barkhuus et al.

[10] proposed to frequently change pseudonyms over time, and

further introduced the concept of mix zone. Palanisamy et al.

[11] considered the mix-zone geometry and road characteristics

against timing attack and transition attack. Combing with social

network, Zhao et al. [12] proposed a location privacy

preserving framework based on Searchable Encryption. Li et al.

[13] proposed fine grained privacy preserving location query

protocol based on Homomorphic Encryption. However, the

cryptographic computations are costly to the mobile users.

Moreover, Existing techniques mostly focus on “single shot”

scenario, which, however fall to protect privacy of LBSN users

when applied to inference attack due to spatio-temporal

correlation between published contents. There has been some

work to protect against adversaries aware of some

spatial-temporal correlations. Shokri et al. [14] quantified

location privacy in the scenario of sporadic location exposure.

Cheng et al. [15] discussed the linkage attacks based on the

knowledge about maximum velocity of uses. The work is

improved by Ghinita et al. [16] and Wang et al. [7] using spatial

cloaking and introducing delays. However, the work by [7,

14-16] does not provably protect privacy against adversary

aware of context correlation beyond the max velocity.

VI. CONCLUSION

In this paper, observing that the privacy requirements of

users are not constant and isolate in LBSN, we formalize this as

Context-aware Location Privacy Protection (CLPP) problem.

To this end, we use s-confidence to evaluate users’ location

privacy. We further use Bayesian inference to derive the

probability of the visited POIs, and on this basis we present a

CLPP server framework to securely release user’s geo-location

content. To achieve online evaluating, we propose two novel

algorithms to calculate the correlation between the locations

offline. The Basic algorithm makes use of majority users’

behavioral patterns. The CF-based algorithm further considers

users’ own personal characteristic. Extensive experiments

demonstrate the validity and practicality of the proposed

strategy.

VII. ACKNOWLEDGMENTS

This research was partially supported by the National Basic

Research Program of China (973 Program) under grant No.

2011CB302605, the National High Technology Research and

Development Program of China (863 Program) under grant No.

2011AA010705, the National Science Foundation of China

(NSF) under grants No.61100188, No.61173144, No.61402137,

and No. 61402149.

REFERENCES

[1] M. Gruteser and D. Grunwald. Anonymous usage of location-based

services through spatial and temporal cloaking. In Proc. of ACM MobiSys,

2003.

[2] B. Gedik and L. Liu. Location privacy in mobile systems: A personalized
anonymization model. In Proc. of IEEE ICDCS, 2005.

[3] A. Noulas, S. Scellato, C. Mascolo, et al. An Empirical Study of

Geographic User Activity Patterns in Foursquare. In Proc. of ICWSM,
2011.

[4] J. Han, J. Pei, Y. Yin, et al. Mining frequent patterns without candidate

generation: A frequent-pattern tree approach. Data mining and knowledge
discovery, 1: 53-87, August 2004.

[5] H. Gao, J. Tang, and H. Liu. Exploring Social-Historical Ties on

Location-Based Social Networks. In Proc, of the Sixth International AAAI
Conference on Weblogs and Social Media, 2012.

[6] H.P. Li, H. Hu, J. Xu. Nearby friend alert: location anonymity in mobile

geosocial networks. Pervasive Computing, 4: 62-70, December, 2013.
[7] Y. Wang, D. Xu, X. He, et al. L2P2: Location-aware location privacy

protection for location-based services. In Proc. of IEEE INFOCOM, 2012.

[8] B. Niu, Q. Li, X. Zhu, et al. Achieving k-anonymity in privacy-aware
location-based services. In Proc. of IEEE INFOCOM, 2014.

[9] B. Niu, Q. Li, X. Zhu,et al. Enhancing privacy through caching in

location-based services, in Proc. of IEEE INFOCOM, 2015.
[10] L. Barkhuus, A. Dey, Location-based services for mobile telephony:a

study of users’ privacy concerns. In Proc. of the 9th International

Conference on Human-Computer interaction, 2003.
[11] B. Palanisamy, L. Liu. Attack-resilient mix-zones over road networks.

Architecture and algorithms, 2013.

[12] X. Zhao, L. Li, G. Xue. Checking in without worries: Location privacy in
location based social networks. In Proc. of IEEE INFOCOM, 2013.

[13] X. Li, T. Jung. Search Me If You Can: Privacy-preserving Location

Query Service, In Proc. of IEEE INFOCOM, 2013.
[14] R. Shokri, G. Theodorakopoulos, G. Danezis, et al. Quantifying location

privacy: the case of sporadic location exposure. Privacy Enhancing

Technologies. Springer Berlin Heidelberg, 57-76, 2011.
[15] R. Cheng, Y. Zhang, E. Bertino, et al. Preserving User Location Privacy

in Mobile Data Management Infrastructures. In Proc. of Privacy

Enhancing Technologies (PET), 2006.
[16] G. Ghinita, M.L. Gabriel, et al. preventing velocity-based linkage attacks

in location-aware applications. In Proc. of ACM SIGSPATIAL, 2009.

IEEE ICC 2015 SAC - Social Networking

1169

