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Abstract—location-based social network (LBSN) has grown 

exponentially over the past several years. Given its high utility 

value, LBSN, however, has raised serious concerns about users’ 

location privacy. Although users may avoid releasing geo-content 

in sensitive locations, this, however, does not necessarily prevent 

the adversary from inferring users’ privacy through 

spatial-temporal correlations and historical information. In this 

paper, we introduce a new location privacy problem: 

context-aware location privacy protection (CLPP) problem where 

the privacy requirements of users are not constant and isolated. 

We propose a novel metric to quantify the privacy risks. Then the 

CLPP is formalized as how to accurately and efficiently evaluate 

whether the users’ published geo-content meet the user’s privacy 

requirement. To achieve online evaluating, we design two novel 

algorithms to calculate the correlation between the locations. 

Eventually, our experimental results demonstrate the validity and 

practicality of the proposed strategy. 

 
Index Terms—location privacy, location-based social network, 

inference attack, privacy preserving. 

I. INTRODUCTION 

he advances in location-acquisition and wireless 

communication technologies enable people to release 

geo-location  content anytime and anywhere, fostering a bunch 

of location-based social networking services(LBSN), e.g., 

Foursquare, Twitter, Google Latitude and Flickr, where users 

can easily check in, locate friends or share experience via 

mobile devices. However, the potential abuse of users’ location 

information and relate sensitive information by unauthorized 

users (such as application servers, malicious users) is evolving 

into a serious concern. 

Existing approaches (such as spatial k-anonymity [1, 2]) on 

location privacy protection mostly focus on “single shot” 

scenario, which, however fall to protect the privacy of LBSN 

users when applied to inference attack due to spatio-temporal 

correlations between the published geo-location content. In an 

example scenario of LBSN applications, a LBSN user may 

extremely want to share his geo-location content with his 

friends at cafe or store, whereas the user does not want anyone 

to know he had been to the hospital. Therefore, as shown in 

Figure 1, the user disabled location servers to avoid privacy 

leakage when he was at the hospital, whereas he released 

geo-location content at the store and cafe. This, however, does 

not necessarily prevent an adversary from inferring that the user 

visited the hospital through spatial-temporal correlations and 

historical information. An adversary knowing most of users 

follow path 2 between the cafe and the store may infer the user 

probably visited the hospital when the user’s travel time 

between cafe and store is beyond the regular interval. 
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Fig.1. An example of context-aware location privacy problem 

In this paper, we introduce and investigate a new location 

privacy problem: Context-aware Location Privacy Protection 

(CLPP) problem in LBSN, in which the privacy requirements 

of users are not constant and isolated along spatial and temporal 

dimensions. We assume that the users’ privacy requirements 

are diverse and dynamic, depending on users’ personal 

definition of sensitive locations. Notice that even the same user, 

his privacy requirement for different locations may be different 

and change overtime. Here, Location privacy is redefined as 

“the ability to prevent other parties from learning one’s current 

or past hidden sensitive locations”. In LBSN, on the one hand, 

the users want to release as much geo-location content as 

possible to get better services; on the other hand, the users are 

concern about their privacy, especially the privacy leakage 

caused by the context of published geo-location content. To 

tackle the problem, we need to answer the question: when and 

where can the user release geo-location content to LBSN? 

To answer the question, we present a CLPP server 

framework. The goal of the framework is to let user publish as 

much geo-location content as possible while avoiding privacy 

risk. We propose a novel metric to quantify the privacy risks. 

Then, the CLPP is formalized as how to accurately and 

efficiently evaluate whether the users’ published geo-content 

meet the user’s privacy requirement. To achieve online 

evaluating, we further present two mining algorithms (basic 

algorithm, Collaborative Filtering based heuristic algorithm) to 

calculate the correlation between the locations. 

  In summary, the paper makes the following contributions: 

(1) We introduce a new location privacy problem: 

Context-aware Location Privacy Protection (CLPP) where the 

privacy requirements of users are not constant and isolated 

along spatial and temporal dimensions.  

CLPP: Context-aware Location Privacy 

Protection for Location-based Social Network 
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(2)We present a novel evaluation strategy to answer the 

question: when and where can the user release geo-location 

content to LBSN? 

(3)We present two novel mining algorithms (basic algorithm, 

Collaborative Filtering based heuristic algorithm) to accurately 

and efficiently calculate the correlation between the locations. 

The remainder of the paper is organized as follows. Section 

II introduces the system framework, threat model, and formally 

defines the secure metrics. Our proposed mining algorithm and 

evaluate algorithm are presented in Section III. Section IV 

presents the experiment results confirming the effectiveness of 

the proposed algorithms. Section V discusses related work on 

location privacy protection, followed by the concluding 

remarks in Section VI.  

II. PROBLEM DEFINITIONS 

In this section, we will introduce the motivation of the CLPP 

problem and then describe the system framework and threat 

model. Finally, we will formally define the secure metrics. 

A. Motivation  

Most existing approaches [1, 2, 7-9] on location privacy 

protection focus on “single shot” scenario, and usually assume 

that the privacy requirements of users are constant and isolated 

in spatial and temporal dimensions. However, the assumption 

may not be true in location-based social network (LBSN), 

especially for the real-name social network. For example, in the 

spatial dimension, Alice may be happy to release her location to 

LBSN to locate her nearby friends at stores or cafes, and she 

does not consider these locations as privacy. But Alice does not 

want anyone to know she had been to the hospital by not using 

the server locators at all.  In the temporal dimension, Alice may 

require higher privacy protection for workplace at weekend. 

Moreover, when combining the spatial dimension and the 

temporal dimension, the locations are not isolated. For example, 

as shown in Figure 1, an adversary may learn that most users 

follow path 2 between the cafe and the store. Then, even if Alice 

did not release any geo-location content at hospital, the 

adversary may still infer that Alice probably visited the hospital 

when she released her location at the cafe and the store.   

Therefore, in this paper, we investigate a new location 

privacy problem Context-aware Location Privacy Protection 

(CLPP) and redefine location privacy as the ability to prevent 

other parties from learning one’s current or past hidden 

sensitive locations. In this paper, we will propose a server 

framework to formally represent different users’ personal 

privacy requirements, and explore novel approaches to meet the 

requirements of users. 

B. CLPP Server Framework 

The CLPP server framework is illustrated in Figure 2, which 

involves three critical components:  users, trust third party 

server (TTP), and location-based social network (LBSN). 

Following are details about the three components. 

(1)Users:  Users in the system are equipped with GPS smart 

phones or tablets which are capable of communicating with 

LBSN. In order to get services from LBSN, the mobile user 

sends his current location ploc, timestamp t, privacy requirement 

PR and encrypted query content qc to the TTP through secure 

connections. The server request is represented as (user, ploc, t, 

PR, qc). 

(2)Trust third party: TTP is fully trusted by other entities in 

the system. It has a collection of users’ historical information 

and the precise locations of the POIs (map information). When 

the TTP gets the request message, it will evaluate whether the 

user’s privacy requirement would be satisfied, if the current 

location was released to the LBSN. (The details are given in 

Section III). If there is no leakage of the privacy problem, the 

user’s server request (uk, ploc, t, PR, qc) will be forwarded to the 

LBSN automatically; if otherwise, TTP will return the probable 

leaked POIs, together with the leakage probabilities, to the 

users. Then the user will decide whether to release or not to 

release the current server request. Note that we consider that 

TTP should avoid interfering with the users frequently. It 

should run automatically most of the time.  

(3)LBSN: when receiving the user’s server request, the 

LBSN will provide appropriate services for the users, such as 

locating nearby friends, or distributing the coupons around 

user’s current location. 
TTP

User

Curre
nt l

oca
tio

n,e
ncr

yp
te

d q
uery

 

Priv
ac

y r
equire

m
ent

encr
yp

te
d re

su
lt 

lis
t

Current location, encrypted query 

LBSN

Check-in

locating-friends

encrypted result list

 
                                Fig.2. CLPP Server framework 

C. Threat Model 

We make a widely acceptable assumption that the LBSN 

provides “honest but curious” services. LBSN acts in an honest 

fashion and correctly follows the designated protocol 

specification. However, it is interesting in analyzing users’ 

geo-location content so as to infer each user’s sensitive 

information. However, this common mechanism repeatedly 

encounters the same issue:  how to provide privacy-preserving 

against the newly introduced entity? To this end, our 

framework disassociates privacy evaluate operation from the 

query business logic. Here, the TTP is just responsible for 

evaluate the location privacy of users without knowing the 

query content and the relationship among users in LBSN, while 

the LBSN provider just processes queries from users without 

learning the hidden sensitive locations. 

D. Secure Metrics 

As mentioned, a request for LBSN service consists of five 

factors: user, location, time, privacy requirement and encrypted 

query (such as check-in, locating friends and social gaming). In 

this paper, we take check-in as an example for all the 

discussions and illustrations. However, it can be easily 

extended to other applications. The following are the 

definitions used in the article. 
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Definition 1: Check-in Sequence: Given a user uk, his 

check-in sequence is a set of POIs ordered by check-in time S (k) 

= < (p1, t1),… , (pi, ti),… , (pm, tm)>, where ti  denotes his 

check-in time at POI pi. We define a sub-check-in sequence as 

user’s check-in sequence in one day. 

Definition 2: s-Confidence Privacy:  Let C (k) = (c1, c2,… , 

cn) denotes the hidden sensitive POIs set of uk. We say the 

system provide s-confidence privacy for uk, if for each ci in C, 

no adversary can use S (k) to identify the probability that uk had 

visited ci is bigger than s. 

Definition 3: User’s Privacy Requirement: Given a user uk, 

his privacy requirement is represented as PR (k) = < (c1, s1),… , 

(ci, si),… , (cn, sn)>, where ci denotes the sensitive POI of uk and 

si denotes si -confidence privacy at POI ci. Note that different 

users may have personal hidden sensitive POIs set, and the 

privacy requirement for different POIs may be different.  

III. OUR SOLUTIONS:  CLPP ALGORITHMS 

In this section, we will describe the details of our solutions. 

On the one hand, TTP calculates the correlation between the 

POIs through historical check-in sequences and geographical 

information (offline training phase).  We first give a basic 

mining approach, and then we introduce a collaborative 

Filtering based heuristic approach. On the other hand, when the 

TTP gets the server request, it will evaluate whether the user’s 

privacy requirement would be satisfied, if the current location 

was released to the LBSN (online predicting phase). 

A. Basic Mining Approach 

Users’ behaviors usually follow certain mobility patterns in 

specific region [3]. Thus, a basic approach is to make use of 

majority users’ historical check-in sequences to capture users’ 

frequent patterns. 

A frequent pattern is pattern that occurs frequently in users’ 

check-in sequences. For example, as shown in Figure 1, if most 

users always follow a check-in sequence (Cafe→ Hospital → 

Store), then we call the sub-sequence is a frequent pattern.  The 

confidence of the frequent pattern is computed as 
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                  (1) 

where support (pi, pj, pi+1) denotes the number of sub-check-in 

sequences that contains POI pi, POI pj, and POI pi+1 in 

sequence.  

TABLE I  

CHECK-IN SEQUENCES OF USERS 
User Sub-check-in  sequences 

u1 < (p1,ti), (p2,ti+1), (p4,ti+2)> 

u2 < (p1,ti), (p2,ti+1), (p3,ti+2), (p4,ti+3)> 

u3 < ((p4,ti), (p3,ti+1), (p2,ti+2), (p1,ti+3)> 

u4 < (p1,ti), (p3,ti+1), (p4,ti+2)> 

u5 < (p1,ti), (p2,ti+1), (p4,ti+2)> 

u5 < (p1,tj), (p2,tj+1), (p5,tj+2)> 

To fully leverage the historical information, we use 

Frequent-Pattern Tree [4] to search and store all the frequent 

patterns in the sub-check-in sequences. The build process is 

illustrated by using the sample data shown in Table I. We 

construct the tree as follows:  Firstly, we will scan all the 

sub-check-in sequences and get a list of start nodes< (p1: 5), (p4: 

1)>, (the number after “:” indicate the support). Only the start 

nodes that satisfy the minimal support (here, the requirement 

for the minimal support is 1) will be preserved. Secondly, we 

will create the root node of the tree, and label it with “NULL”. 

Note that the check-in sequences is directional, we will insert 

the node in sequence. Then, as shown in Figure 3-(a), we will 

scan the first sub-check-in sequence to construct the first 

branch of tree < (p1: 1), (p2: 1), (p4: 1)>. For the second 

sequence, as shown in Figure 3-(b), since < p1, p2, p3, p4>shares 

a common prefix < p1, p2> with the existing branch< p1, p2, p4>, 

thus, we will increment the count of each node along the 

common prefix by one, and then create new nodes (p3: 1) (p4: 1) 

and add them as child nodes of (p2: 2). Step by step, after 

scanning all the sequences in Table I,  finally, we get a frequent 

pattern tree as shown in Figure 3-(c). 
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Fig.3. The search and store of the frequent pattern 

To facilitate the traversal of the tree, we further build a node 

header table where each node points to its occurrences in the 

tree via a node-pointer, and we link nodes with the same names 

via such node-pointers in sequence.  

Then, we will use the tree to calculate the confidence of the 

frequent pattern. Take P (p2| p1, p4) as example, we first find the 

positions that node p4 occurs in the tree through the header table 

and node pointer. Then for each node p4 in the tree, we will 

walk up the tree recursively to search node p1, once p1 is the 

ancestor node of  p4, support (p1, p4) will be incremented by the 

count of the node p4. In the same way, we obtain the value of 

support (p1, p2, p4). Then we calculate P (p2| p1, p4) use (1). The 

time complexity of the calculate process is O (m*h), where m 

denotes the number of nodes p4 that occurs in the tree and h 

denotes the average height of the tree.  

B. Collaborative Filtering based Heuristic Approach 

The basic approach gives no considerations to the users’ 

individualized characteristics. In real life, people actually like 

to visit certain POIs that fit their own personal interest. For 

example, as shown in Figure 1, suppose that most people will 

visit the bar when driving along path 3, however, those who 

often went to the book stores tend to visit the library instead of 

the bar. It’s obviously that the basic approach will not deal with 

the above situation. Therefore, we present a collaborative 

filtering (CF) based heuristic algorithm to provide users with 

personalized privacy evaluation. 

Definition 4: User’s Rating Array: Given a user uk , his 

personal characteristic is represented as an rating array 

R(k)=<rk1,… , rki,… , rkn>, where  rki denotes uk’s rating of  POI 

pi and it reflects how much the user uk like POI pi. A 

straightforward solution to calculate rki is to use the 
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number of repeat visits to POI pi from uk, but the method is 

insufficient. For example, uk check-in 10 times at Carrefour 

hypermarket where plenty of people check-in whereas uk 

check-in 10 times at the Science Museum where only a few 

people check-in. It’s apparently that the Science Museum is 

more important when reflecting user’s personal preference. 

Inspired by the TF-IDF scheme in information retrieval system, 

we treat a check-in record as “a term”, and treat the user’s 

check-in sequence as “a document”. Formally, user’s rating rki 

is computed as 

( )

. | |
* log

. |{ | . 1, }|
j

k i

ki

k j i

p S k

u l U
r

u l u u l u U



 

                 (2) 

where U denotes the collection of all the users and li denotes 

number of repeat visits to POI pi from uk. The first part of (2) is 

the TF value of POI pi in the check-in sequence of uk, and the 

second part denotes the IDF value of POI pi.  

Definition 5: POI Similarity sim (pi, pj): POI similarity 

indicates the correlation between POI pi and POI pj in the space 

of human behavior. For example, if most people who often 

visited the restaurant, also like going to the cinema. Then the 

restaurant and the cinema are similar though they are different 

in terms of the business categories.  
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Fig.4. The process of similarity computation 

The similarity between two POIs is calculated by integrating 

the users’ check-in sequences. As shown in Figure 4, the users’ 

ratings of the POIs are stored as entries of a matrix where the 

matrix rows corresponds to the users and the columns 

corresponds to the POIs.  The basic idea to compute the POI 

similarity is to isolate the users who have checked in (rated) 

both of the POIs, and to determine the similarity by using the 

users’ ratings (collaborative filtering algorithm). In the case, we 

consider the two POIs as two vectors in the m-dimensional 

user-space and then use the cosine of the angle to compute the 

similarity between the two vectors. Formally, sim (pi, pj) is 

calculated as        
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where co (i,j) denotes the set of users who have checked in 

both POI i and POI j and “  ” denotes the dot-product  between 

the two vectors. We predict a user’s rating of unvisited POIs by 

using the POI similarity and users’ rating array. Intuitively, to 

predict the user’s rating of POI pj given the user’s ratings of  

POI pi and  pi+1, if  POI pi  is  more  related  to pj beyond pj+1,  

then the rating  of  POI  pi  is  likely  to  be  a  better predictor for 

POI pj than the rating of POI pi+1 is. Formally, our approach can 

be represented as 

,
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where sim (pi, pj) denotes the similarity between POI i and POI 

j, and devj,i is calculated by using (5). The ratings have 

profound influences over one’s behaviors [3]. Thus, we 

redefine the confidence of frequent pattern by introducing 

individual’s rating. Formally, the confidence of the frequent 

pattern is computed as 

1
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   (6) 

where support (pi, pj, pi+1) has no difference from (1), Rk 

denotes uk’s average ratings of the POIs geographically located 

between pi and pi+1（ the POIs will be given in section C）, and 

a is turning parameter ranging within [0, 1].  

C. Online Privacy Evaluate 

When the TTP gets the server request, it will evaluate 

whether the user’s requirement would be satisfied, if the current 

location was released to LBSN.  

Algorithm 1 Evaluate location privacy 

INPUT：PR(k)= <(c1, s1),… , (ci, si), …, (cn, sn)>   

                 S (k) = <(p1, t1),(p2, t2),… , (pi, ti)> 

                 pi+1 // user’s current location 

                 t      // current time 

OUTPUT: H  // probable leaked POIs, H is initialized to an empty set 

1.  △ t=t- ti 

2.  if  △t dis(pi, pi+1)/ vmax     

3.         return H 

4.  else 

5.         R={pm| dis(pi , pm)+dis(pm , pi+1)  Δt * vmax } 

6.  if R∩C(k)=         //C(k):user’s sensitive POIs set 

7.         return H 

8.  else 

9.         for each ci in R∩C(k) 

10.               if  P (ci |pi , pi+1,R)> si 

11.                       H= H < ci, P (ci |pi , pi+1,R)> 

12.  return H 

Take user uk as an example, suppose that uk  has checked in 

POI pi at ti. Given in a new check-in request (uk, pi+1, t, PR (k), 

qc), Firstly, TTP will calculate the interval △t between two 

check-ins: △t= (t-ti). Since the map information and the 

maximum velocity of the road segments vmax are publicly 

observed, TTP will evaluate whether uk has visited other POIs 

from the above observation. If Δt (dis(pi, pi+1)/ vmax), TTP can 

infer that uk definitely does not have time to visit any other POIs 

between the two check-ins (dis(pi,pi+1) denotes the 

Manhattan Distance between pi and  pi+1). Then the check-in 

request will be forwarded to the LBSN. Otherwise, as shown in 

Figure 1, the TTP will calculate the reachable POIs set R= {pm| 

dis (pi, pm) +dis (pm, pi+1) +  Δt * vmax}.  Then the privacy 

evaluate question is formalized as a posterior probability P (pj| 
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pi, pi+1, R). We use Bayesian reasoning to derive the posterior 

probability. Formally, 

1 1
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1 1
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where P (pi, pj, pi+1) is calculated by using (1) or (6). Then, for 

each ci in R∩C (k), TTP will use P (ci | pi, pi+1, R) to evaluate 

whether the user’s privacy requirement would be satisfied. If 

there is no leakage of the privacy problem, the user’s check-in 

request will be forwarded to the LBSN; if otherwise, TTP will 

return the probable leaked POIs, together with their leakage 

probabilities, to the users. Then the user will decide whether to 

release or not to release the check-in request. The detail of this 

algorithm is shown in Algorithm 1. 

IV. EXPERIMENTS 

In this section, we evaluated our system using real-world 

Foursquare dataset, made available by Gao [5]. It contains the 

check-in history of 18107 users ranging from March 2010 to 

January 2011. For each user, we have his previous check-in 

locations and the corresponding check-in time. We first 

evaluate the accuracy of CLPP algorithms and then explore the 

tradeoff between privacy and utility. Both algorithms are 

implemented in C++. 

A. Accuracy Metrics 

In our dataset, the real sensitive locations are hidden by users, 

thus we generate two sensitive location sets for each user 

artificially in our experiment. Given a user uk, the first hidden 

location set A is generated by randomly marking off a portion of 

POIs that he has checked in, and the second hidden location set 

B is generated by adding POIs which are geographically located 

between the POIs that he has checked in.  
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Fig.5. Performance evaluation on true positive 
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Fig.6. Performance evaluation on false positive 

We then use two performance metrics to evaluate the 

accuracy of our system: (1) Average confidence of hidden 

location set A, represented as true positive. (2) Average 

confidence of hidden location set B, represented as false 

positive. For each approach, we randomly select 1,000 users 

and choose pi and pj in each user’s check-in sequence (the 

interval Δt between pi and pj should exceed the average 

check-in interval). For each user, we random mark off 1, 3, 5, 

and 10 visited POIs between pi  and pj as hidden location set A, 

and add 5, 10, 15, and 20 (different interval Δt between pi and pj) 

un-checked-in POIs that geographically located between pi and 

pj as hidden location set B. 

The experimental results in Figure 5 and Figure 6 show that 

increasing the number of marked off or added POIs does not 

much affect the true confidence and false confidence. The 

result further denotes that simply suppresses sensitive location 

does not protect user’s location privacy. In Figure 5, the higher 

true positive rate is, the better the approach is while false 

positive rate in Figure 6 represents the opposite. It can be seen 

that the CF-based approach always exhibits the best 

performance in terms of true positive rate and false positive rate 

under all values. This is because some users’ check-in 

sequences are personal and unpopular, making it hard for the 

basic approach to evaluate whether the user has visited the 

hidden locations through  majority users’ historical check-in 

sequences.  

B. Privacy-Utility Tradeoff 

What’s the price in terms of utility that we have to pay for a 

formal privacy guarantee? Since the users want to publish as 

much geo-location content as possible to get better service. A 

performance metric called utility ratio is put forward to 

evaluate system utility. It is calculated by dividing the number 

of POIs that user wants to check-in by the number of POIs that 

user can check-in while ensuring location privacy. 

0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

u
ti
lit

y
 r

a
ti
o

confidence s

 CF-based approach

 Basic approach

 
Fig.7. Utility ratio (the ratio of sensitive POIs is 5 percent) 
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Fig.8. Utility ratio (the ratio of sensitive POIs is 10 percent) 

For each user, we randomly select a part of POIs (5 percent 

and 10 percent separately) in the dataset and add them as 

sensitive locations.  For simplicity, we assume that the user’s 

requirement for different POIs is the same, but our system 

allows the users to define personal privacy requirement for 

different POIs. 
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We vary user’s privacy requirement by varying the value of 

confidence s. For both sets of experiments, as shown in Figure 

7 and Figure 8, the performance degradation of our system 

utility is small. This is because the false positive of our 

approach is very low (especially for the CF-based algorithm) 

and only the POIs that very relevant (which is calculated by (7)) 

to the sensitive POIs will be suppressed by our system. The 

result implies that our system can afford strong privacy 

guarantees (by choosing a smaller value of confidence s) 

without sacrificing too much utility. 

V. RELATED WORK 

Protecting location privacy of mobile users has been widely 

studied in recent years. Depending on the different methods to 

distort the users’ queries before the queries reach the location 

based server (LBS), we roughly classify the existing work into 

the following categories:  

Obfuscation based approaches: Obfuscation approaches 

try to preserve location privacy by adding uncertainty to users’ 

location. Spatial Location cloaking is one of the most 

representative approaches [2, 6-7]. It typically blurs users’ real 

location into spatial regions to meet anonymity constraints 

(such as k-anonymity) and reports the spatial region to LBS 

server. However, this approach may lead to the degradation of 

the quality of service. Another representative approach is 

dummy location [8, 9], which refers to the technique that 

reports multiple false locations together with the real location to 

confuse the adversary about the real location. However, it does 

not apply to the social network that emphasizes content 

authenticity. 

Anonymity based approaches: The anonymity based 

approaches remove users’ real names or replace users’ 

identities with pseudonyms [10-13]. The mere anonymity is not 

sufficient to ensure user’s location privacy [10]. Barkhuus et al. 

[10] proposed to frequently change pseudonyms over time, and 

further introduced the concept of mix zone. Palanisamy et al. 

[11] considered the mix-zone geometry and road characteristics 

against timing attack and transition attack. Combing with social 

network, Zhao et al. [12] proposed a location privacy 

preserving framework based on Searchable Encryption. Li et al. 

[13] proposed fine grained privacy preserving location query 

protocol based on Homomorphic Encryption. However, the 

cryptographic computations are costly to the mobile users. 

Moreover, Existing techniques mostly focus on “single shot” 

scenario, which, however fall to protect privacy of LBSN users 

when applied to inference attack due to spatio-temporal 

correlation between published contents. There has been some 

work to protect against adversaries aware of some 

spatial-temporal correlations. Shokri et al. [14] quantified 

location privacy in the scenario of sporadic location exposure. 

Cheng et al. [15] discussed the linkage attacks based on the 

knowledge about maximum velocity of uses. The work is 

improved by Ghinita et al. [16] and Wang et al. [7] using spatial 

cloaking and introducing delays. However, the work by [7, 

14-16] does not provably protect privacy against adversary 

aware of context correlation beyond the max velocity. 

VI. CONCLUSION 

In this paper, observing that the privacy requirements of 

users are not constant and isolate in LBSN, we formalize this as 

Context-aware Location Privacy Protection (CLPP) problem. 

To this end, we use s-confidence to evaluate users’ location 

privacy. We further use Bayesian inference to derive the 

probability of the visited POIs, and on this basis we present a 

CLPP server framework to securely release user’s geo-location 

content. To achieve online evaluating, we propose two novel 

algorithms to calculate the correlation between the locations 

offline. The Basic algorithm makes use of majority users’ 

behavioral patterns. The CF-based algorithm further considers 

users’ own personal characteristic. Extensive experiments 

demonstrate the validity and practicality of the proposed 

strategy.  
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