
Effective Task Scheduling in Proximate Mobile
Device based Communication Systems

Longfei Wu
†
, Xiaojiang Du

†
, Hongli Zhang

∗
, Wei Yu

‡
, and Chonggang Wang

§

†
Dept. of Computer and Information Science, Temple University, Philadelphia, PA, USA, {longfei.wu, dux}@temple.edu
∗
School of Computer Science and Engineering, Harbin Institute of Technology, Harbin, China, zhanghongli@hit.edu.cn

‡
Dept. of Computer and Information Science, Towson University, Towson, MD, USA, wyu@towson.edu

§
InterDigital Communications, King of Prussia, PA, USA. chonggang.wang@interdigital.com

Abstract—Despite the increasing capabilities, mobile devices
still cannot satisfy the computation requirement of many ap-
plications. Intuitively, this can be solved by outsourcing tasks
to external resources such as a remote server, cloud, or closely
deployed cloudlet. However, all of them require extra infras-
tructures. In this paper, we consider a proximate-mobile-device
based communication system in which all tasks and resources are
under the control of a central scheduler. We propose a friendship-
based task scheduling algorithm to address the contentions when
resources are not sufficient. We also present two attack models
including the denial-of-service (DoS) attack and the collusion
attack. We evaluate the performance of the proposed algorithm
along with another contribution-based task scheduling algorithm
through extensive experiments.

Keywords—Resource sharing; mobile network; task scheduling

I. INTRODUCTION

As today’s mobile devices becoming increasingly power-
ful, mobile applications are more demanding on computation
resources. A lot of software have published the mobile version,
and mobile users expect their devices to run the applications
as smooth as on PC. However, mobile devices are resource-
constrained compared to PC, which results in poor user ex-
perience when executing complicated tasks. To deal with this
issue, mobile devices may utilize external resources to run
computational-intensive tasks, which is commonly known as
Mobile Could Computing (MCC).

Mobile devices may be augmented through various cloud-
based computing resources. In general, there are four types
of cloud-based resources for mobile augmentation [1]: dis-
tant immobile clouds, proximate immobile computing entities,
proximate mobile computing entities, and hybrid (a combina-
tion of the other three models). The first case, second case
and hybrid of the two have been well studied in previous
works [2][3][4][5][6]. For the proximate-mobile-device based
MCC, previous works mainly focus on Ad Hoc mobile cloud
framework [7][8].

Instead, our work studies the proximate-mobile-device
based cloud system in which mobile devices are controlled
in centralized manner. The following is a practical scenario:
in a wireless local area network (WLAN), a cluster of mobile
devices connected via Wi-Fi are devoted to share their com-
putation resources with others running computation-intensive
applications. A central scheduler built in the Wi-Fi Access
Point (AP) could provide fast and effective scheduling for
proximate mobile devices. Since a centralized scheduler has a

full view of the outsourced tasks and available resources, the
scheduling of tasks can easily achieve the maximum resource
utilization and/or computational load balancing. However, the
design of task scheduling algorithm should consider many
factors including resource utilization, energy consumption,
delay, and resource contention. During the peak time in which
resources are not enough to support all of the outsourced
tasks, some of them have to be postponed. Hence, a priority
should be assigned to each outsourced task so that those
with lower priorities get delayed when resource contention
happens. The two schemes in our study determine the priority
based on the contribution of mobile devices (users) in terms
of helping others with their outsourced tasks, and the social
relationship of the users, respectively. On the one hand, users
that contribute more should get more rewards (e.g., higher
priority). On the other hand, each user may have his/her own
preference regarding whom to help with, and whom to get
help from (e.g., close friends). The scheduling rule based on
contribution and friendship can make a big difference on the
system performance.

Security is another critical issue in the design of mobile
cloud system. In our work, we discover two attacks that could
degrade the performance of a MCC system. In the first threat,
malicious participants could launch the denial-of-service (DoS)
attack, in which they accept outsourced tasks but do not
execute or return the results. This happens most likely among
new/unfamiliar participants. The second attack is performed by
collusions of two or more users, in which both the outsourced
task owners and the resource providers are malicious users.
They can fabricate a “successful” task outourcing while in
fact no computation is done. We need a secure task scheduling
algorithm that can mitigate these attacks.

In this paper, we propose a friendship-based task schedul-
ing algorithm for a proximate-mobile-device based communi-
cation system. The friendship-based task scheduling algorithm
utilizes the friendship among users to mitigate the DoS attack
and the collusion attack. Specifically, the stable task-resource
matching algorithm is used to achieve the optimization that
tasks are allocated to the most reliable resource providers. We
also implement a contribution-based task scheduling algorithm
which ranks the priority of users based on their contributions
to other users. We evaluate the two task scheduling algorithms
with extensive simulations.

The rest of the paper is organized as follows. Section
II discusses related works. Section III gives an overview of

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 3503

the background and the system model. Section IV presents
the two task scheduling algorithms. Section V conducts the
performance evaluation, and Section VI concludes the paper.

II. RELATED WORK

Regarding proximate-mobile-device based augmentation of
computation capacity, an ad hoc mobile cloud architecture has
been proposed and implemented in [7] and [8]. The nearby
mobile devices are pooled together, and share computing re-
sources with others in need. Huerta-Canepa et al. [7] proposed
a peer-based MapReduce framework formed by virtual mobile
cloud computing providers in vicinity. Their evaluation results
proved the feasibility of a virtual cloud computing platform
using mobile phones. Marinelli [8] presented Hyrax, which
employs a similar idea of utilizing Hadoop framework on
Android smartphones to share data and computation resource.
Hyrax allows client applications to execute computing tasks on
both a network of smartphones and a heterogeneous network
of phones and servers. They also showed that Hyrax allows
applications to use distributed resources abstractly with no
respect to the physical nature of cloud. Different from the
above related work, in this paper we focus on the task
scheduling issue for a mobile cloud system.

References [9] and [10] studied the computational offload-
ing among a set of mobile devices. The Serendipity system is
proposed and implemented in [9], which allows mobile tasks
to use remote computational resources available from other
mobile devices in its environment. The remote intermittently-
connected mobile devices are regarded as resource providers,
and the task allocation algorithm aims to improve computation
speed as well as save energy for the initiating mobile device.
[10] considers the same context in which mobile devices
can offload computational tasks to other mobile devices in
various connectivity conditions. The main goal of the task
allocation is to maximize the lifetime of the whole system.
However, the goal of our task scheduling algorithm is different:
we mainly focuses on solving the resource contention issue
when resources are insufficient and the security vulnerabili-
ties. Besides, we consider and utilize two practical factors -
contribution and friendship for task scheduling.

III. BACKGROUND AND SYSTEM MODEL

We consider a proximate-mobile-device communication
system in which computation tasks can be outsourced to
available resources. Specifically, each mobile device in the
pool may request for external computation resources when
executing heavy tasks. Meanwhile, a device may provide its
idle computation resources to others in need. The system
consists of two components: a central scheduler and a number
of mobile participants (e.g., smartphones and tablets). The
responsibility of the scheduler is to collect task and resource
information, then assign tasks to available resources. The
sharing of computation resources in this mobile environment
follows the basic rule that all participants offer their idle
resources dedicatedly. The central scheduler also monitors the
behavior of participants. If the amount of outsourced tasks
exceeds the resources provided beyond a given threshold, that
user will be prohibited from requesting external resources.

In our system model, we divide time into rounds (slots of
equal length), and tasks are allocated and executed by round.

In each round, users report their tasks and available resources
to the central scheduler, and the scheduler allocates tasks to
resources according to the task scheduling algorithm. To deal
with the heterogeneity in both jobs and resources, we introduce
in the concept of a basic unit. The length of one time slot T
(one round) is defined as the time required by one unit of
resource to execute one unit of task. The definition of unit
resource and unit task are described below in Section III-A
and III-B, respectively.

A. The Resource Model

The computation capacity of a mobile device depends on
its CPU power, memory size and disk space. Mobile devices
usually have different number of CPUs, amount of memory
and disk size. Even with the same number of CPUs, the com-
putation power may be different for different types of CPUs.
We propose a measurement-based approach to benchmark the
computation resource of a mobile device:

1) Build a benchmark task set with both computation-
intensive and data-intensive tasks.

2) Pick some popular mobile device models denoted as
1, 2, ..., N , and run the benchmark tasks on each of
the devices while ensuring no other tasks are running.
The execution time Tb measured for each device is
inversely proportional to its computation capacity Cb,
i.e., Cb ∝ 1

Tb
. For simplicity, we set Cb = 1/Tb.

3) Calculate the basic unit of computation resource ures,
which is the greatest common divisor of the compu-
tation capacities ures = gcd(Cb1, Cb2, ..., CbN). The
amount of resources of a device i can be obtained as
resi = Cbi/ures, (1 ≤ i ≤ N).

For each participant joining the system, we need to know
its total amount of resources. If that device is among the tested
samples, we can directly use the existing result; otherwise, we
have to execute the benchmark tasks to quantify the number
of unit resources it contains.

B. The Job Model

Similarly, we assume that a job can be divided into a
number of task units utask. For example, [7] gives a practical
scenario where visitors in a museum want to understand an art
description which is written in a foreign language. A feasible
solution is to take a picture of the description, then multiple
mobile devices can work collaboratively to extract and translate
the foreign language into English. Specifically, a mobile device
first uses an optical character recognition (OCR) software to
split the text into characters (words), and distribute them to
other devices nearby. Then the recognition and translation of
each character (word) can be executed distributedly. Finally
the results are collected and shared among all participants.

For a complex job that could not be splitted as independent
tasks (e.g., certain tasks must be performed ahead of others),
we use directed acyclic graph (DAG) to model the dependency.
In a DAG G = (V,E), each vertice vi ∈ V represents a task
of the job while each edge eij ∈ E represents the constraint
that task vj depends on task vi. During each round, only
tasks without predeccessors can be executed. In the rest of this
paper, for simplicity, we use the term “task” and “resource” to
represent “unit task” and “unit resource”, respectively.

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3504

C. The Task Processing Model

In a given time slot, the total number of pending tasks
include the newly generated tasks and previously unfinished
tasks stored in the task queue. The task processing model
consists of two modules: a local processing module and a
central scheduling module. Tasks first go through the local
processing module to be assigned to local resources. Then
the unassigned tasks and unused resources are registered at
the central scheduler. In the central scheduling module, the
remaining tasks are assigned to unused (idle) resources of other
devices based on certain rules/algorithms. When the amount
of tasks exceeds the available resources, there will be resource
contentions and some tasks will not be assigned. In such cases,
the central scheduler should provide resources to tasks with
higher priority. Unassigned tasks are put in the task queue and
will be considered in the next round. By the end of each round,
the results of outsourced tasks are collected by the scheduler
and returned to task owners.

Note that since mobile devices could move out of the
communication range, a task owner has the risk that it may
never receive the result back. This issue could be addressed
by the following approach: the scheduler can be equipped
with the capability of tracking the signal strength of each
registered device. If the signal strength is below a threshold,
the registered device is considered unavailable and the central
scheduler marks all outsourced tasks assigned to that device
as unfinished, and the unfinished tasks are put back into the
task queue. To deal with the case that a mobile device may run
out of battery, we use the following approach: If the battery
level of a mobile device is below a certain threshold, no more
outsourced task will be allocated to that device.

IV. THE TASK SCHEDULING ALGORITHMS

The details of friendship-based task scheduling (FTS) algo-
rithm and contribution-based task scheduling (CTS) algorithm
are given below.

A. The Friendship-based Task Scheduling Algorithm

The reliability and security issues arise for outsourced tasks
that are executed by shared computation resources from other
users. A single malicious participant could launch the denial-
of-service (DoS) attack. Multiple malicious participants could
conspire to fake task outsourcings. To mitigate these attacks,
we propose a friendship-based task scheduling algorithm. The
intuition is that the outsourced tasks are preferably executed by
friends of the task owner, since friends tend to be more reliable
and trustful. The friendship level could be evaluated based
on familiarity (e.g., closer friends have higher levels). When
joining the system, each new user will provide a list of friends
in the order of friendship level to the central scheduler. For
participants who are not a friend with that user, the scheduler
put them at the end of the friend list in a random order such
that the initial preference list includes all other participants in
the pool. Then, outsourced tasks are able to apply for available
resources in order according to the task owner’s preference
list. On the other side, resources are preferably offered to
the provider’s friends who have executed more tasks for the
provider as a reward (friendship reward rule). When tasks
from multiple users request for the same resource, the resource

Algorithm 1 The FTS Algorithm in One Round
Input: Parameters Nt, Nr, tij , rij ;
Output: Parameters tij , rij ;

1: for each user i do
2: Sort outsourced tasks of user i, tij , to obtain pltoi ;
3: Sort provided resources of user i, rij , to obtain plrpi ;
4: end for
5: while there is unassigned task that has not requested for

every resource do
6: Choose such a task t;
7: Update resource preference list of t, rplt based on pltoi ;
8: Pick the highest ranked resource r from rplt that t has

not applied for;
9: if r has not been allocated then

10: Assign t to r;
11: else
12: Update task preference list of r, tplr based on plrpi ;
13: if r prefers current task to t (based on tplr) then
14: t remains unassigned;
15: else
16: Reset r’s current task to unassigned;
17: Assign t to r;
18: end if
19: end if
20: end while
21: if Nt > Nr then
22: Put Nt −Nr unassigned tasks into the task queue;
23: end if
24: Update tij and rij based on min(Nt, Nr) assigned tasks;

TABLE I. PARAMETERS IN THE FTS ALGORITHMS

Variable Description
tij Number of outsourced tasks of user i executed by user j.
rij Number of available resources provided by user i to user j.
pltoi Preference list of user i as task owner. (offered help list)
plrpi Preference list of user i as resource provider. (received help list)
tplr Task preference list of resource r.
rplt Resource preference list of task t.
Nt The number of outsourced tasks in current round.
Nr The number of available resources in current round.

provider select the task to execute based on its friend list
(preference list).

As we can see, the friendship-based task scheduling issue
is actually a two-way selection problem. Tasks and resources
choose each other based on their own preference lists. We may
solve this problem using the idea of stable matching (SM)
[11]: tasks are regarded as men and resources are regarded
as women. In SM problem, the result of men-propose stable
matching is optimal for men while women are paired to the
worst valid partner, or vice versa. However, in our scenario,
only the task may have reliability concerns if it is assigned to
an unknown resource provider; while for a resource, it does
not matter which task to be coupled with from reliability per-
spective. Therefore, stable task-resource matching with task-
propose can achieve an optimal solution such that tasks are
assigned to the most reliable resource providers and providers
are also satisfied with the assignment.

The relationship among participants are maintained and
updated dynamically using a credit-based mechanism. This is
necessary since the initial preference list could be outdated in
circumstances like: a user find her friend does not regard her

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3505

as a friend any more (does not execute tasks for her), or users
who are initially strangers help each other and become close
friends. In the beginning, the preference list of a new user is
the friend list provided by the user when joining the system.
Later, preference lists are updated according to the number of
tasks executed for other users (offered help), and the number of
tasks outsourced to others (received help). Each task is counted
as one credit. The scheduler maintains an ordered offered help
list and an ordered received help list for each participant, which
can reflect the up-to-date relationship. Tasks from a given user
request resources from the top ranked user in the offered help
list, since by the aforementioned friendship reward rule, tasks
are most likely to be executed by those have received most
help from the requestor. Meanwhile, resource providers also
follow the friendship reward rule, and give resources to top
ranked user in the received help list, namely those who have
offered most help so far.

The task-resource matching issue is a variance of the stable
matching problem which involves ties in preference list. Each
user can be treated as a number of tasks or resources, and
the corresponding preference list of the user (offered help list
or received help list) is passed on to the associated tasks or
resources. The tasks and resources of the same user tie in a list
because they have the same preference ranking. For a stable
marriage problem with ties (SMT), there are three forms of
stability [12]. We adopt the weak stability for our problem. A
weakly stable matching exists for every instance of SMT, it can
be found in linear time by breaking all ties in an arbitrary way
(i.e., by strictly ranking the members of each tie randomly)
and then applying the Gale-Shapley algorithm [11].

The strategic manipulation of the preference list in the
stable marriage are discussed in [13] and [14], by which
men/women may find better mates. Teo et al. [13] studied the
situation that there exists a specified woman who is the only
deceitful agent. They proposed a polynomial time algorithm for
constructing this woman’s optimal cheating strategy. In terms
of permuting men’s preference lists to manipulate the outcome
of stable matching, there is an example presented in [14].
However, the cheating schemes are based on the knowledge
of all other users’ preferences, which is not achievable in our
system (only the central scheduler has the global knowledge).

Note that the amount of tasks and the amount of resources
are not necessarily to be the same. It has been studied in [15]
that for the instances of SM with unequal size of men and
women sets, there always exists at least one stable matching
in which each member of the smaller set is matched, and
the larger set can be splitted into two subsets such that all
members of one subset are matched while the members of the
other subset are left single. Actually, the instance of SM with
unequal size sets has exactly the same set of stable matchings
as the instance with the unmatched members removed.

The FTS algorithm is described in Algorithm 1. All the
parameters are listed in Table I.

B. The Contribution-based Task Scheduling Algorithm

To evaluate the performance of our FTS algorithm, we im-
plement a contribution-based task scheduling (CTS) algorithm
as comparison, which has the similar idea as the schemes used
in [16][17][18][19]. In Disruption Tolerant Network (DTN),

Algorithm 2 The CTS Algorithm in One Round
Input: Parameters ti, t

s
i , ri, r

s
i ;

Output: Parameters tsi , r
s
i ;

1: for each user i do
2: Update sum of provided resources, rsi = rsi + ri;
3: Calculate (absolute) contribution credit, ci = rsi − tsi ;
4: end for
5: Sort contribution credits to obtain user contribution list lc;
6: Generate task list lt based on task owner’s priority in lc

(|lt| =
∑

i ti);
7: Generate and randomize resource list lr (|lr| =

∑
i ri);

8: for k = 1 to min(|lt|, |lr|) do
9: Assign kth task to kth resource;

10: end for
11: if |lt| > |lr| then
12: Put |lt| − |lr| unassigned tasks into the task queue;
13: end if
14: Update tsi according to min(|lt|, |lr|) assigned tasks;

TABLE II. PARAMETERS IN THE CTS ALGORITHMS

Variable Description
ti Number of outsourced tasks of user i in current round.
tsi Sum of outsourced tasks of user i.
ri Number of available resources provided by user i in current round.
rsi Sum of available resources provided by user i.
ci The contribution credit of user i.
lc/lt/lr The user contribution list / task list / resource list.
|lt|/|lr| The length of task list / resource list.

users can build up reputation credits by forwarding packets for
others, and are rewarded with higher priority (receiving better
forwarding service) when sending their own packets [16][17].
Similar mechanisms are also utilized in P2P systems, in which
downloading services are provided depending on reputation
credits accumulated during uploading [18][19].

We adopt the idea of reputation (contribution) in the CTS
algorithm. Since all of the computation resources are provided
by mobile devices, the performance of the mobile cloud system
depends on the active involvements (i.e., contributions) of the
registered devices. The contribution of a mobile device is
not amount to the number of resources being used for the
execution of outsourced tasks. Instead, the total idle resources
provided (used or not) should be counted as contribution. If
the amount of available resources is more than the number
of tasks, tasks are randomly assigned to resources. Regarding
participants who provide more resources may also consume
more resources for their outsourced tasks, we use the concept
of “absolute contribution” as the metric of priority (credit),
which is defined as the balance of total resources provided
and the total external resource usage. Each unit of resource
and task is considered as one credit. If user A executes n tasks
for user B, the credit of user A increases by n while user B’s
credit decreases by n.

The CTS algorithm is presented in Algorithm 2, and the
parameters are listed in Table II.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
friendship-based task scheduling (FTS) algorithm, which is
compared with the contribution-based task scheduling (CTS)
algorithm. Five metrics are used in the evaluation.

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3506

(a) Standard Deviation of Task Postpone (b) Average Mutual Task Execution (c) Standard Deviation of Task Finished

Fig. 1. Performance Comparison of CTS and FTS

• Standard Deviation of Task Postpone. Task postpone is
caused by resource contentions during peak time. With the
resource utilization maximized, the total amount of postponed
tasks are the same whatever task scheduling algorithm is used.
However, as occasional short postpone is tolerable for both ap-
plication and user experience, the scheduling algorithm should
prevent long postpone from happening to certain minority users
like new participants. The standard deviation of postpone tasks
shows the distribution of postpones among mobile users.

• Average Number of Mutual Task Execution. Friends are
encouraged to help each other for outsourced tasks in FTS. The
number of mutually executed tasks can indicate the amount of
mutual help. If user A has executed m tasks for user B, and
B has executed n tasks for A. The number of mutual task
execution is min{m,n}.
• Standard Deviation of Finished Tasks. Battery is one of
the severe constraints for mobile devices, and the execution of
outsourced tasks would be extra burden for resource providers
in terms of power consumption. The distribution of total
finished tasks (own tasks and others’ tasks) can reflect if some
users suffer much greater power consumption than others.

• Average Task Postpone of Existing/New Users. The system
should be scalable, and newly joined users should be treated
fairly considering their outsourced tasks are not delayed much
longer than existing users.

• Average Number of Task Executors. For a given user, the
number of other participants who have executed outsourced
tasks for that user can reflect the vulnerability of suffering
the DoS attack. More executors means higher probability of
encountering a DoS attack, given the same possibility for a
participant to be malicious.

A. Simulation Setup

In the simulation, we build a mobile computation sharing
environment with 30 users. We generate five scenarios (Scene
1 to 5) with different amount of resource supplies (listed in
Table III). The number of tasks generated by a user in one
time slot is uniformly distributed between 10 and 15. Each
scenario is tested for 100 rounds with each round consisting
of 500 time slots (TS). The average value of 100 rounds is
calculated as the result.

B. Impact of Resource Supply

In this set of experiments, we analyze the effect of resource
supply by comparing the performance in different scenarios.

TABLE III. RESOURCE SUPPLY IN DIFFERENT SCENARIOS

Scenarios Resource Uniform Distribution Range
Scene 1 10 - 15
Scene 2 11 - 15
Scene 3 12 - 15
Scene 4 13 - 15
Scene 5 14 - 15

Figure 1(a) shows the standard deviation of task postpone
decreases as the amount of resources increases. In Scene 3, the
standard deviation of task delay drops to 0.066 and 0.053 for
CTS and FTS, respectively. While for Scene 4 and 5, there is
no delay at all. As we can see, the FTS has a lower postpone
deviation than CTS when resource contentions occur.

Figure 1(b) shows that when there are resource contentions
(Scene 1, 2 and 3), the average number of mutual task
execution increases along with the total amount of resources
(namely the total finished outsourced tasks) for FTS, while it’s
nearly unchanged for CTS. But when resources are sufficient
and no resource contention happens (Scene 4 and 5), the
number of mutually executed tasks drops in both FTS and
CTS since less tasks need to be outsourced.

Figure 1(c) shows the standard deviation of finished tasks in
CTS and FTS, which both decline as the amount of resources
rises up. In Scene 1-3 when computation resources are limited,
the distribution of outsourced task execution is more evenly in
FTS. Starting from Scene 4 (plenty computation resources), the
finished task deviation of CTS becomes lower than FTS. But
this does not mean that FTS would deplete battery drastically,
since the number of outsourced tasks also reduces as local
resources become more sufficient.

C. Scalability and Fairness

The proposed system should be well scalable so that the
resource sharing is fair to newly joined users. Initially, new
users have no history (credit). This means if a new user is
involved in a resource contention, it may not get resources
for its outsourced tasks. Figure 2 presents the average task
postpone in Scene 6, where 26 users participate from the
beginning, and 4 others join at 1000 TS. The test starts
recording at 1000 TS and last for 500 TS. The tasks and
resources are generated with the same distribution as Scene 1
(limited resources). As we can see, the average task delay of
new users in CTS is quadrupled to existing users; while in FTS,
the task delay for the two groups of users are about the same.
This is because new users with the lowest (no) contribution

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3507

Fig. 2. Average Task Postpone of
Existing/New Users in CTS and FTS

Fig. 3. Average Task Executor Num-
ber in CTS and FTS

may have friends among new users, or become friends with
existing users for resources sharing.

D. Security

1) Mitigating the DoS Attack: A malicious user who claims
to be a resource provider could launch the DoS attack, in which
accepted outsourced tasks are not executed and fake answers
are returned. When tasks are outsourced to an unfamiliar
resource provider, they are in the risk of suffering the DoS
attack that can cause extra postpone or more serious problems
(e.g., the application may crash if fake results are used).
Intuitively, the fewer unfamiliar task executors, the more secure
the outsourced tasks are. Figure 3 shows the average number
of task executors from Scene 1 to Scene 5. We can find that
there are less task executors in FTS than in CTS, which means
that FTS is more robust to the DoS attack than CTS.

2) Defending the Collusion Attack: If more than one ma-
licious users collude during task outsourcing, the malicious
users may deceive the credit accumulation mechanism. For
example, malicious users can outsource “fake” tasks whose
answers are already known to the accomplice, such tasks are
not executed in fact. Since the returned answer is correct, even
a central computation verifier cannot detect this kind of attack.
Although the absolute contribution used in CTS can ensure that
the total amount of contribution of malicious users remains
the same, malicious users may exchange contribution credits
and promote the priority of one particular attacker in a short
period of time. This prioritized attacker has a better chance
of getting resources than normal users during contention, and
hence is capable of paralyzing the system by generating huge
amount of outsourced tasks (normal users’ outsourced tasks
will be postponed). While in FTS, such collusion attack can
only enhance the “friendship” among the attackers themselves,
the task outsourcing of other legitimate users are not affected.

VI. CONCLUSION

In this paper, we consider the centralized task scheduling
in a proximate-mobile-device based communication system.
We propose a friendship-based task scheduling algorithm to
solve the resource contention problem when resources are
insufficient for outsourced tasks. The friendship-based task
scheduling algorithm performs stable task-resource matching
so that outsourced tasks can be assigned to the most reliable
resource providers. Then we implement a contribution-based
task scheduling algorithm which ranks the priority of users
by absolute contribution. We evaluate and compare the two

task scheduling algorithms with extensive simulations. We
also present two types of attacks - the DoS attack and the
collusion attack. Our analysis shows that the friendship-based
task scheduling algorithm is more robust against these attacks.

ACKNOWLEDGEMENT

This research was supported in part by the US National
Science Foundation (NSF) under grant 1065444, and by the
US Army Research Office under grant WF911NF-14-1-0518.

REFERENCES

[1] S.Abolfazli, Z.Sanaei, E. Ahmed, A.Gani, and R.Buyya, “Cloud-based
augmentation for mobile devices: Motivation, taxonomies, and open
issues,” IEEE Communications Surveys and Tutorials, June, 2013.

[2] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities of
mobile devices with cloud computing,” Mob. Netw. Appl., vol. 16, no. 3,
pp. 270–284, Jun. 2011.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems (EuroSys), 2011.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, 2009.

[5] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
bringing the cloud to the mobile user,” in Proceedings of the third
ACM workshop on Mobile cloud computing and services (MCS), 2012.

[6] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman,
“Cloud-vision: Real-time face recognition using a mobile-cloudlet-
cloud acceleration architecture,” in IEEE Symposium on Computers and
Communications (ISCC), 2012.

[7] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” in Proceedings of the 1st ACM Workshop on Mobile
Cloud Computing (MCS), 2010.

[8] E. Marinelli, “Hyrax: Cloud computing on mobile devices using mapre-
duce,” Master Thesis, Carnegie Mellon University, 2009.

[9] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
enabling remote computing among intermittently connected mobile
devices,” in Proceedings of the thirteenth ACM international symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), 2012.

[10] A. Mtibaa, A. Fahim, K. A. Harras, and M. H. Ammar, “Towards re-
source sharing in mobile device clouds: power balancing across mobile
devices,” in Proceedings of the second ACM SIGCOMM workshop on
Mobile cloud computing (MCC), 2013.

[11] D. Gale and L. Shapley, “College admissions and the stability of
marriage,” American Mathematical Monthly, vol. 69, no. 1, pp. 9–15,
1962.

[12] R. W. Irving, “Stable marriage and indifference,” Discrete Applied
Mathematics, vol. 48, no. 3, pp. 261 – 272, 1994.

[13] C.-P. Teo, J. Sethuraman, and W.-P. Tan, “Gale-shapley stable marriage
problem revisited: Strategic issues and applications,” Management Sci-
ence, vol. 47, no. 9, pp. 1252–1267, Sep. 2001.

[14] D. Guseld and R. Irving, “The stable marriage problem,” Foundations
of computing series MIT Press, 1989.

[15] D. McVitie and L. Wilson, “Stable marriage assignment for unequal
sets,” BIT Numerical Mathematics, vol. 10, no. 3, pp. 295–309, 1970.

[16] Y. Zhu, B. Xu, X. Shi, and Y. Wang, “A survey of social-based
routing in delay tolerant networks: Positive and negative social effects,”
Communications Surveys Tutorials, IEEE, First Quarter 2013.

[17] F. Xia, L. Liu, J. Li, J. Ma, and A. Vasilakos, “Socially aware
networking: A survey,” Systems Journal, IEEE, October 2013.

[18] P. Shi and K. Bhawalkar, “Megatorrent: An incentive-based solution to
freeriding in p2p file-sharing networks,” Operations Research Center,
Massachusetts Institute of Technology, Tech. Rep., April 2008.

[19] M. R. Rahman, “A survey of incentive mechanisms in peer-to-peer sys-
tems,” Cheriton School of Computer Science, University of Waterloo,
Tech. Rep. CS-2009-22, June 2009.

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3508

