
Detective: Automatically Identify and Analyze
Malware Processes in Forensic Scenarios via DLLs

Yiheng Duan1, Xiao Fu1*, Bin Luo1, Ziqi Wang1, Jin
Shi2

Software Institute1, School of Information Management2
Nanjing University, Nanjing, China

Email: duanyiheng@gmail.com, fuxiao@nju.edu.cn,
luobin@nju.edu.cn

Xiaojiang (James) Du
Department of Computer and Information Sciences

Temple University, Philadelphia, USA
Email: dxj@ieee.org

Abstract—Current memory forensic methods mainly focus on
evidence collection and data recovery. A little work is about how
to automatically identify malwares from many unknown
processes and analyze their behaviors in high semantic level so as
to collect related evidences. In fact, in real cases, investigators are
often faced with large number of processes that they have no
knowledge of. Although current malware detection tools could
provide some help, they usually can’t illustrate the purposes,
abilities and behavior details of malwares and are thus often not
fit for the forensic requirements. In this paper, we present a
framework named Detective to cope with these issues. Given a set
of unknown processes, Detective can classify benign and malware
processes automatically. This is implemented by HNB classifying
algorithm and a Dynamic-Link Libraries-based model. Detective
could then explain malware behaviors in high semantic level
through clustering and frequent item sets mining techniques.
Besides, Detective sheds light on evidence collection by the
information obtained from previous steps. Detective is applicable
for both online and offline forensic scenarios. Experiments on
real-world malware set have proved that the accuracy of
Detective is above 90% and the time cost is only several seconds.

Keywords—malware processes; memory forensics; DLL; data
mining

I. INTRODUCTION

Memory forensics developed greatly in past ten years, as
memory can provide information disks don’t contain, such as
running processes, network connections and so on. Moreover,
although the binary codes can be encrypted or obfuscated, all
illegal processes still have to be executed in memory and leave
some footprints inevitably. So evidences from memory are
more reliable. Researchers in the area of malware investigation
are especially interested in this kind of technology as some
malwares only exist in memory. However in memory-based
malware forensic cases, investigators are often faced with large
number of processes they have no prior knowledge of.
Understanding all these processes is a time consuming task
even for skillful experts. Thus how to automatically identify
malwares from unknown processes and analyze their behaviors
in high semantic level so as to obtain the related evidences
have become some of the key issues for malware investigators.

Current methods in the area of memory forensics mainly
fall into two categories: one focuses on dumping memory
completely and reliably, and the other concentrates on
recovering data accurately. Little work is about automatic
analyzing of data or evidences. Some powerful tools, such as
Volatility[1] offer certain analyzing functions, but they are
usually simple and depend highly on users’ prior knowledge,
making them unable to automatically identify and analyze
malwares. Although current antivirus software can identify
malwares with high accuracy, they are that not fit for forensics
for some reasons. Firstly, they need to be installed on the target
system before analysis which will cause contamination.
Secondly, they can also be compromised by malwares, so the
result of detection is not reliable. Thirdly, the goal of antivirus
software is to find and remove the malwares, not to capture,
analyze them and obtain related evidences. So the help from
them for investigators is limited. Although current process
analysis methods, such as some dynamic analysis approaches[6]
can provide the details of processes, these methods are usually
based on VMI and taint analysis technique, which need high
cost and have to be performed on preinstalled specific virtual
machines (e.g. QEMU). It is not practical for investigators.

Therefore, in this paper we present Detective, a novel
framework to address the automated malware identification
and analysis issues in memory forensic context. Detective
mainly achieves three goals: classifying benign and malware
processes automatically, explaining malware behaviors in high
semantic level and shedding light on evidence collection. In
order to identify malware processes from unknown process
automatically, we propose a novel Dynamic-Link Libraries (i.e.
DLLs) based malware detection technique. It is composed of a
HNB classifying algorithm and a DLLs-based process model.
We choose DLLs to profile processes not only because they are
good indications of the real goals and behaviors of processes,
but also because they can be obtained both online and offline.
We also design a data mining based analysis method to explain
malware behaviors in high semantic level. This is implemented
by clustering and frequent item sets mining techniques. Finally,
Detective will shed light on evidence collection by the
information obtained from previous steps.

Compared with current memory forensic tools (e.g. the
work [7, 8] focusing on recovering a complete list of processes

*Corresponding author. This work is supported by the National Natural
Science Foundation of China (61100198/F0207, 61100197/F0207). And we
are grateful for the valuable data provided by Virus Total.

IEEE ICC 2015 - Next Generation Networking Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 5691

or enumerating all loaded programs), Detective pays more
attention to automated identification and analysis of interested
processes, which is important but has not been well solved.
Although Detective is currently designed for Windows, the key
ideas are also fit for other operating systems. Experiments on
real world malware set have proved that Detective could
achieve a practical accuracy rate at a reasonable cost.

II. BACKGROUND AND OVERVIEW

A. Observations

DLLs that a process loads offer insight into the functions of
the corresponding program. Windows API is implemented as a
set of DLLs, so the list of DLLs can tell us what this process
could probably do, and this information is in small size and
moderate semantic granularity. In addition, DLLs can be
obtained not only from memory dump but also by certain
online obtaining tools [9], so DLLs-based method is fit for both
online and offline forensics. Moreover, DLL patterns of
different categories of processes are essentially different. It can
not only tell the difference between benign and malware
processes, but can also be used to distinguish between different
kinds of malware processes by clustering techniques. If we
cluster one unknown malware process into a known group
formed by lots of known malware processes, the behaviors of
this unknown sample can be appropriately represented by
features extracted from that group. And those features also give
us the clue to collect the evidences of the sample.

B. System overview

In order to automatically locate and analyze malware
processes in forensic scenarios, Detective is divided into three
main components. Fig. 1 shows the key components and basic
inputs and outputs.

Fig. 1. Overview of Detective

III. SYSTEM DESIGN AND IMPLEMENTATION

A. The key DLL based identifier

As is shown in Fig. 2, identifier can be divided into four
main steps with an assistant process.

Fig. 2. Main Steps of Identifier

1) Modeling of n-tuples.

DEFINITION 1. An n-tuple is a sequence of 1 or 0, where
n is a non-negative integer and indicates the number of 1 or 0
in the tuple. An example of n-tuple is {1, 0, 0, 1, 1, 0}.

DEFINITION 2. A flag bit is a bit added to the end of an n-
tuple to indicate whether the process it represents is a malware
process or not. It is used in the classification process.

The goal of this step is converting a DLL list into a data
structure that can be processed by analyzing algorithms easily
and quickly. In order to achieve this goal, identifier chooses n
DLLs as key DLLs. They form the basis of n-tuple. Then it
searches the DLL list of each process to check if there are key
DLLs in it. If any key DLL is found, the corresponding bit in
the tuple is set to 1, otherwise the bit is set to 0. For example, if
the key DLLs are kernel32.dll and shell32.dll while the list
contains kernel32.dll and wininet.dll, then the n-tuple is {1, 0}
as kernel32.dll is in the list and shell32.dll is not. We add a flag
bit 0 to the end to make the tuple {1, 0, 0} eventually.

2) Initializing key DLL set.
Key DLLs are the base of n-tuple model. Firstly, process-

specific DLLs cannot be key DLLs because key DLLs are used
to describe the common characters of many processes in each
category. Although DLLs under system32 folder are common
DLLs, the quantity of them is large, for example, there are
more than 1600 DLLs in System32 folder in a fresh 32-bit
Windows 7. If we choose all of them as key DLLs, the
dimensions of our model will become very large. In fact, less
than one third of them appear frequently in the list of processes
(either malware or benign ones) according to our statistics. In
order to reduce the number of Key DLLs, we initialize the key
DLL set with those appear in DLL lists of both malware and
benign processes in training set. Experiments have proved that
this method can achieve higher accuracy.

3) Refining and obtaining the “optimal” key DLL set.
Identifier needs enough training data containing both

malware and benign processes to achieve high accuracy. The
intuitive way for creating training dataset (Volatility-based
method) requires lots of time and spaces. To address this issue,
we introduce an extra validation procedure to the normal
training and testing process. Data that can be obtained easily
like reports from Virus Total can be used as training set. And
data obtained by Volatility-based method can be used as
validation set. The key difference between training and
validation set is the latter is smaller and more similar to the
data we get in real forensic cases. When both sets are ready, we
could list all the possible combinations of DLLs in the key
DLL set obtained by statistics to find out the best subset
theoretically. When we say subset A is better than subset B, we
mean the classifier built on A performs better than the classifier
built on B on validation set. However, it is impossible to do the
exhaustive listing as the number of combinations goes up
exponentially. For instance, if we start with 200 DLLs, the
number of combinations is 2200-1. Here we present a two-step
way to solve the problem. The first is shown in algorithm 1.

Algorithm 1 Refining Key DLL set
bestPairList consists of pairs of upper and lower bounds
1: Subset Getter(upper, lower){
2: If (pair. Lower<=Percentage of some DLL<= pair. Upper)
3: Add the DLL to subset;

IEEE ICC 2015 - Next Generation Networking Symposium

5692

Algorithm 1 Refining Key DLL set
4: Return subset;
5: }
6: Iterator(gap){
7: for(start=0; start<=0.5; start + gap){
8: for(end=0.5; start<=1; end + gap){
9: test Performance on (subset Getter(start, end));
10: if(performance is better)
11: update bestPairList;
12: }
13: }
14: Return bestPairList
15: }

Subset Getter in line 1 uses two parameters namely upper
bound and lower bound to generate a subset of the initial set.
For instance, when upper bound equals 90% and lower bound
equals 1%, it means a subset containing all DLLs that have an
appearance rate between 1%(excluded) and 90%(included) in
both malware lists and benign lists. The enumeration happens
in Iterator in line 6. If we set the step length to be 0.5%, we
make the number of possibilities less than 10000. Code on line
9 test the performance of the model built on that subset. After
rounds of enumerations, we get the best pair list in line 14 and
they can be converted to best subsets by Subset Getter. The
second is shown in algorithm 2.

Algorithm 2 obtain the “optimal” key DLL set
Sb adds Sr equals the initial set
1: Best Subset Getter(subset list){
2: for(subset in subset list){
3: if(subset performs better than best);
4: best = subset;
5: }
6: return best;
7: }
8: Optimizer (Sb, Sr){
9: iteratively add on element in Sr to Sb to form St list
10: Sb = Best Subset Getter(St list);
11: update Sr;
12: if(performance of Sb does not improve anymore)
13: return Sb
14: else
15: Optimizer (Sb,Sr);
16: }

Here we call the best subset(s) got in step one Sb, the set
containing DLLs appear in initial set but not in Sb is called Sr.
Each time we take one DLL from Sr iteratively and add that to
Sb to form a set named St in line 9. If there are n elements in Sr
and m elements in Sb, we will have n different St, each
containing m+1 elements. Best Subset Getter in line 1 builds
models on all these St and chooses the best one(s) to be the
new Sb, meanwhile, Sr is updated each time. Optimizer stops if
the performance of Sb on validation set does not improve
anymore. This greedy algorithm offers us a relatively optimal
key DLL set at a reasonable cost.

4) Classifying and output.
We need a proper classification algorithm to be more

efficient. After trying many mainstream algorithms including
decision tree induction, Bayes classification, rule-based
classification, support vector machines and so on, we choose a
novel Bayes model named hidden naive Bayes (HNB) finally.
That’s mainly due to the highly coupled character of DLLs.
HNB can deal with high coupled attributes. In HNB, a hidden

parent is created for each attribute which combines the
influences from all other attributes.

Each version of Windows has a limited and stable
collection of system processes, such as lsm.exe and lsass.exe.
Experiments show that they act like “noises” in the
classification. Hence, these system processes are filtered out in
the first place before classification. The elimination of these
processes improves the accuracy of identifier.

When real targets come, they are converted into n-tuples
based on key DLLs obtained in last step. Then they are
regarded as test set and identifier will generate the flag bits for
them, indicating whether they are malwares or not.

5) Implementation.
We implement identifier with five modules. N-tuples

converting module executes the modeling task. As the forms of
data vary, the converting process might be slightly different.
The module initializes the tuple with zeros and alters the bit to
one if corresponding DLL is found. It adds a zero to the end of
each tuple as flag bit, which means that the tuple stands for a
malware process. Key DLL statistic module does the statistics
work for training data so as to initialize the key DLL set.
Percentage enumeration module generates the best pair(s) of
upper bound and lower bound for identifier. It enumerates all
possible percentages at a certain gap. This module works
together with Weka, a collection of machine learning
algorithms for data mining tasks. Implemented in python,
greedy algorithm module aims to find the relatively optimal
key DLLs on the base of best pair(s). Finally, output module
ends the mission of this component.

B. The clustering based analyzer

As is shown in Fig. 3, analyzer can be divided into three
steps with an assistant process.

Fig. 3. Main steps of Analyzer

1) Modeling of n-tuples.
Just like the modeling process in identifier, training data

needs to be converted into n-tuples. However, the goal of
selection of key DLLs differs slightly. In identifier there are no
parameter settings and the key DLLs are meant to identify
malware processes from benign ones. In analyzer, however,
key DLLs are chosen so that features of different malware
processes could be represented and similar processes come into
same clusters. Analyzer uses the same key DLLs as in
identifier by default. Personalized DLLs whose frequencies of
appearing in training dataset within an upper bound and lower
bound are also supported based on statistics over training data.

2) Parameter settings.
As for the parameter settings, investigators could of course

assign all parameters the algorithm (in our framework, it is
DBSCAN) needs, they can also just give conditions like the

IEEE ICC 2015 - Next Generation Networking Symposium

5693

max number of clusters and max noise rate they could tolerate.
Then analyzer can calculate the possible parameter settings.

3) Clustering and output.
When investigators get malware processes from identifier,

the category of them becomes the next goal. Analyzer groups a
set of malware processes based on their DLL lists in such a
way that malware processes in the same group are more similar
to each other than to those in other groups.

Analyzer uses DBSCAN as the clustering algorithm as it
does not require investigators to specify the number of clusters
in the data a priori, which is consistent with “no prior
knowledge” purpose of Detective. Being able to find arbitrarily
shaped clusters, being robust to outliers, being mostly
insensitive to the ordering of the points in training data and low
complexity make DBSCAN a reasonable candidate for
analyzer. We could not expect a comprehensive cover of
malware categories of all time if training data does not cover
that much. For instance, if training data covers popular
malware samples of the recent months, then the groups
generated probably include most malware categories appeared
in that time period. It grants investigators the freedom to
choose the coverage of analyzer from another perspective.

When the model is built, analyzer convert targets into n-
tuples based on key DLLs and regard them as test set. It will
give the number of clusters each target belongs to, indicating
its family.

4) Implementation.
We implement analyzer with four modules. N-tuples

converting module does the same job as before. Personalized
key DLL module enables investigators to change key DLL set
according to their needs by giving an upper bound and lower
bound. Appropriate parameter setting generating module
generates appropriate parameter settings for investigators when
they just want to give conditions like the max number of
clusters and max noise rate they could tolerate. In order to
generate an appropriate parameter setting, this module
iteratively tries a large range of parameters and tests these
results to see if they comply with the conditions given by
investigators. This module is practical due to the low
complexity feature of DBSCAN. We build our own version of
DBSCAN in weka. It first calculates the instance between of
existing instances. If it is within the range the parameter
specifies, the module then check the minimum points to see if
it is qualified. If so, the module returns the number of clusters
and break. Or it will continue this process. If no match is found,
it marks the instance as noise.

C. The frequent item set based extractor

As is shown in Fig. 4, extractor can be divided into three
steps with an assistant process.

Fig. 4. Main steps of extractor

1) Modeling of n-tuples.
To find the meanings of each group, extractor tries to find

the frequent item sets of each group. However, we need to
change these n-tuples within each group by change key DLLs
as the purposes in analyzer and extractor are different. In
analyzer, they are meant to make similar processes come into
same clusters while in extractor they represent all the possible
behaviors of the group. Hence key DLLs here include all the
DLLs that appear once or more in training data.

2) Calculating frequent item set and tags.
When the converting work is done, extractor begins to

tackle the second problem. We observe that the number of each
bit of the n-tuples within the same cluster tends to be the same,
either 1 or 0. Actually, most bits get 90% of their numbers to
be the same one, thus making frequent item sets obvious with
high value of support. With this in mind, extractor get frequent
item sets by statistics and validation. Extractor might not get all
the frequent item sets, useful ones are obtained at a reasonable
cost. Besides, if training data are from Virus Total, extractor
uses hashes representing samples in each group to get the tags
all these antivirus vendors give in their reports and does a little
statistics work within each group. For instance, extractor could
tell you what McAfee think of all these samples of some group
and the concrete percentages of each tag. The clue is obvious if
McAfee tags 90% of the samples in this group as something as
Heuristic.BehavesLike.Win32.Suspicious.D.

3) Generating strategy.
DEFINITION 3. A malware profile is a structure that

describes a malware process in high semantic level. The
structure consists of the meanings of the DLLs in the frequent
item set it belongs to and the tags of the group it belongs to.

With malware profiles in hand, the procedure of searching
evidence starts. Extractor mainly offers strategy with the help
of Volatility as it is widely used in forensic scenarios. First of
all, if the tag is available, investigators might receive guidance
from sites of these vendors. For instance, if the tag part of the
profile indicates the target has something to do with the
network, command ‘netscan’ is recommended. However, tag
parts are not always available and not accurate sometimes.
Frequent item set part of the profile tells a vivid story of what
the malware could probably do. The purpose of each DLL in
the profile draws a picture of potential behaviors of the target.
All these behaviors become the clue to get the evidence. For
instance, Rpcrt4.dll contains the routines, tables, and data that
support communication between clients and servers. Its
existence tells you command ‘netscan’ might be your choice.

4) Implementation.
We implement identifier with three modules. N-tuples

converting module does the same job as before. Malware
profile generating module focuses on frequent item sets and
tags. Finally strategy module provides mapping relationship
between details of malware profiles and practical strategies.

IV. EVALUATION

Evaluation focuses on three abilities of Detective, i.e. the
ability of identifying the malware, the ability of classifying the
malware and the ability of instructing the evidence collection.

IEEE ICC 2015 - Next Generation Networking Symposium

5694

A. Evaluation of identifying abilities

1) Data settings.
As is shown in Table 1, we have a training set, a validation

set and two groups of test sets. The training set is
comparatively large and the source of the data is not from
Volatility for reasons stated in system design. We get the
validation set from Volatility as we expect the final model to
deal better with targets from Volatility in real forensics
scenarios. The remaining two groups of test sets are meant to
simulate data from two normal computers.

TABLE 1. DATA SETTINGS OF EVALUATION OF IDENTIFYING ABILITIES

Sets
Amount

(malware)
Source

Amount
(benign)

Source

Training 3300 Virus Total 181
Process
Explorer

Validation 45 Volatility 40 Volatility

Test A 25 Volatility 5 Volatility

Test B 20 Volatility 4 Volatility

2) Correctness.
The number of key DLLs turns out to be 121 and then

percentage enumeration module initializes the key DLLs for
greedy algorithm module. Here we tried a few mainstream
classifying algorithms on the basis of key DLLs and the result
is shown in initial correctness in Table 2.

TABLE 2. CORRECTNESS BASED ON KEY DLLS

Algorithms Initial correctness Final correctness
AODE 69.4% 84.71%
WAODE 70.59% 84.71%
Naive Bayes 62.35% 75.29%
RBFNetwork 60.00% 76.47%
IBK 72.94% 64.71%
Kstar 62.35% 71.76%
LWL 55.29% 61.18%
BFtree 70.58% 76.47%
J48 65.88% 90.59%
RandomTree 54.11% 62.35%
HNB 80.00% 94.12%

HNB performs better than most other algorithms on initial
key DLLs. Greedy algorithm module then comes to improve
the key DLL set specifically for Volatility sources. Fig. 5
shows the trend of correctness for greedy algorithm. It finally
stops at 94.12% and we get the final key DLL set. Then we do
the test on mainstream classifying algorithms again. The result
is shown in final correctness in Table 2. Correctness of most
algorithms improves more or less and HNB still has the best
correctness. It proves that the validation process really works.

Fig. 5. Trend of correctness for Greedy algorithm

Finally we test our model on two test sets and the result is
shown in Table 3. The test results turn out to be reasonable and
identifier does not miss one malware in tests.

TABLE 3. CORRECTNESS OF TEST SETS

sets

Correctness False positive False negative

Test set A 93.33% 2 0
Test set B 91.67% 2 0

3) Performance.
The evaluation test of performance is done on a PC with

Intel i5, and a RAM of 8GB. The execution time of all five
modules of identifier each is under 15 seconds. The cost is
based on the scale of data described in data settings. Besides,
only identifier output module needs to be executed each time.
Others are executed only when training data used last time
does not suit the current situation anymore.

B. Evaluation of clustering abilities

1) Data settings.
we have a training set with 3300 malware processes from

virus total and a test set with 4 malware process from Volatility.
The training data set is supposed to be one that includes any
categories of malwares that need to be clustered. It is actually a
quite personal set. The set we use contains data that were active
in the early 2014 recorded by Virus Total.

2) Correctness.
Unlike classifying, there are no obvious standard of

correctness in clustering. The key lies in whether the group that
the target is clustered into could really represent the target and
we will see that in the case study of extractor. As training data
is quite personal, the results are just for reference. Here the
value of epsilon is 1.0, the value of minimum points is 4, the
number of processes is 3300 and the noise percentage is 9.79%.

3) Performance.
On the same PC, The execution time of all four modules of

identifier each is under 15 seconds. The cost is based on the
scale of data described in data settings. If investigator gives the
parameters directly, appropriate parameter setting generating
module does not need to be executed.

C. Case Study

Here we use a case to evaluate the availability of guidance.
Extractor gets a malware process from analyzer whose hash is
eb227cc81f12afc367eea595c5c7adfe44443507ace8ab81b3bb3
0a14eb5626f in Virus Total and we know nothing about it
except the name of the process (eb227cc81f12af), the process
id (2892) and some DLLs in the frequent item set in its profile.

The challenge is to find out what it is and related evidence
in Volatility. Normally we have a profile including the tag and
the frequent item set and tag is easier to use. Here, we just
come to the frequent item set to show the hard part. And often,
we start with the most informative DLLs in the frequent item
set of the profile. In this case, it is Ole32.dll. As it indicates
communications between processes, strategy module suggests
checking the relations of between different processes and
command “pslist” is executed. Result shows that process
“explorer” creates process 3016, process 3016 creates process

IEEE ICC 2015 - Next Generation Networking Symposium

5695

2892 and process 2892 creates 2896.(Process id might vary
with different image, the relationship holds.) It is not surprised
that there are three processes with the same name as malware
programs might have more than one process and not every
process is recognized or clustered into this particular cluster.
However, if we get any one of them, we get the clue to others.
Here we need to pay attention to these three processes.

As the number of processes are limited and they are created
in a chain, strategy module suggests that we might consider
command “malfind” for the last process created. One memory
segment is then detected because it is executable, marked as
private and has a VadS tag, which means there is no memory
mapped file already occupying the space. This can be the
evidence of an API hook. In order to verify our thoughts, we
download this real world malware from Virus Total by its hash
value and get it running. It is a tool designed to hook other
processes, which confirms our findings. Memory forensic can
never be an easy task and Detective could not get the evidence
for investigators directly. There are many other ways to solve
the problem in this case if you are quite experienced. However,
suggestions from the clue strategy module often becomes the
key to success and accelerates the forensic process.

V. RELATED WORK

A. Memory acquisition and recovery.

In the area of memory acquisition, techniques are divided
into hardware-based and software-based methods. Memory can
be obtained by a dedicated hardware card or via a special
hardware bus. Virtualization software can also be helpful as the
memory of a virtual machine can be saved into a file. Besides,
Windows provides software crash dumps and hibernation files,
which are also valuable sources. All these techniques can be
evaluated by two factors namely atomicity and availability.
Atomicity reflects the demand to produce an accurate and
consistent image and availability refers to the applicability of a
certain technique on arbitrary system platforms for any given
scenario. As for the recovery, most of researches concentrate
on how to restore processes, system registry, network
information and files completely and correctly from raw
memory image as malwares often try their best to hide their
traces from being restored. The forensic framework Volatility
[1] implements most of the methods in this area.

B. Malware detection: static and dynamic analysis.

As many commercial-off-the-shelf malware detection tools
still use signature-based techniques[2] that are not reliable,
researchers nowadays in this area mainly focus on behavior
based detection techniques that are rust to code obfuscation and
polymorphism. They can be classified into the static and the
dynamic ways. Static analysis techniques try to analyze the
information and contents of a given file. Often they scan the
header and the payload of the file to get necessary information
to build models to detect malwares [3]. While a number of
static analysis techniques show promising results, they are
usually extremely slow [4] and thus unsuitable for real-world
forensic scenarios. Dynamic analysis techniques try to model

run-time behavior of process. Often they rely on system call
sequences [5] or flow graphs [6]. They analyze the execution
of a malware or the effects that the malware has on the
operating systems. Those methods using system call sequences
build the behavioral model of malwares on the basis of the
sequence of invoked system calls and their arguments. And the
idea behind flow graph is to employ taint technique by
analyzing the data flow model.

VI. CONCLUSION

We have presented the Detective framework that
automatically locates and analyzes malware processes in
forensic scenarios via DLLs. Detective mainly includes three
components: identifier, analyzer and extractor. Identifier could
classify benign and malware processes based on models built
on their DLLs at a reasonable accuracy. Analyzer then clusters
malware processes into different groups formed by training
data with DBSCAN algorithm. Next, extractor describes the
group with frequent item sets and tags, characterizes the
unknown malware process with known functions or features,
and sheds light on evidence hunting task. As detective has been
a proof-of-concept prototype so far, many functions are
implemented as separate tools and some functions are still
manual, more work will be done regarding to the integration to
make detective more automatic. Besides, more versions of
Windows will be covered and more customized classifying and
clustering algorithms for this purpose will be developed. Our
experiments prove it is practical to create a unified interface to
make the whole process automatic and effective as long as
DLL data is provided, no matter offline or online. Meanwhile,
both accuracy rate and time cost are reasonable.

REFERENCES
[1] The Volatility Framework, https://code.google.com/p/Volatility/; 2014.

[2] P. Szor, The Art of Computer Virus Research and Defense, Addison-
Wesley Professional, 2005.

[3] M.Z. Shafiq, S.M. Tabish, F. Mirza, M. Farooq, PE-Miner: mining
structural information to detect malicious executables in realtime, in:
Proc. of the 12th International Symposium on Recent Advances in
Intrusion Detection, 2009.

[4] M. Christodorescu, S. Jha, S. Seshia, D. Song, R. Bryant, Semantics-
aware malware detection, in: IEEE Symposium on Security and Privacy,
2005.

[5] F. Ahmed, H. Hameed, M.Z. Shafiq, M. Farooq, Using spatio-temporal
information in API calls with machine learning algorithms for malware
detection, in: Proc. of the 2nd ACM Workshop on Security and
Artificial Intelligence, 2009.

[6] H. Yin, D. Song, M. Egele, C. Kruegel, E. Kirda, Panorama: capturing
system-wide information flow for malware detection and analysis, in:
Proc. of the 14th ACM Conference on Computer and Communications
Security, 2007.

[7] A. Schuster. Searching for processes and threads in Windows memory
dumps. Digital Investigation July 2006d;3(1):10e6,
http://computer.forensikblog.de/en/2006/03/dmp_file_structure.html.

[8] B. Dolan-Gavitt, A. Srivastava, P. Traynor, J. Giffin. Robust signatures
for kernel data structures. In: Proc. of the 16th ACM conference on
computer and communications security; 2009.

[9] ProcessExplorer, http://technet.microsoft.com/en-
us/sysinternals/bb896653.aspx; 2014.

.

IEEE ICC 2015 - Next Generation Networking Symposium

5696

