
Detective: Automatically Identify and Analyze 
Malware Processes in Forensic Scenarios via DLLs 

 

Yiheng Duan1, Xiao Fu1*, Bin Luo1, Ziqi Wang1, Jin 
Shi2 

Software Institute1, School of Information Management2 
Nanjing University, Nanjing, China 

Email: duanyiheng@gmail.com, fuxiao@nju.edu.cn, 
luobin@nju.edu.cn 

Xiaojiang (James) Du 
Department of Computer and Information Sciences 

Temple University, Philadelphia, USA 
Email: dxj@ieee.org

 
 

Abstract—Current memory forensic methods mainly focus on 
evidence collection and data recovery. A little work is about how 
to automatically identify malwares from many unknown 
processes and analyze their behaviors in high semantic level so as 
to collect related evidences. In fact, in real cases, investigators are 
often faced with large number of processes that they have no 
knowledge of. Although current malware detection tools could 
provide some help, they usually can’t illustrate the purposes, 
abilities and behavior details of malwares and are thus often not 
fit for the forensic requirements. In this paper, we present a 
framework named Detective to cope with these issues. Given a set 
of unknown processes, Detective can classify benign and malware 
processes automatically. This is implemented by HNB classifying 
algorithm and a Dynamic-Link Libraries-based model. Detective 
could then explain malware behaviors in high semantic level 
through clustering and frequent item sets mining techniques. 
Besides, Detective sheds light on evidence collection by the 
information obtained from previous steps. Detective is applicable 
for both online and offline forensic scenarios. Experiments on 
real-world malware set have proved that the accuracy of 
Detective is above 90% and the time cost is only several seconds. 

Keywords—malware processes; memory forensics; DLL; data 
mining 

I. INTRODUCTION  

Memory forensics developed greatly in past ten years, as 
memory can provide information disks don’t contain, such as 
running processes, network connections and so on. Moreover, 
although the binary codes can be encrypted or obfuscated, all 
illegal processes still have to be executed in memory and leave 
some footprints inevitably. So evidences from memory are 
more reliable. Researchers in the area of malware investigation 
are especially interested in this kind of technology as some 
malwares only exist in memory. However in memory-based 
malware forensic cases, investigators are often faced with large 
number of processes they have no prior knowledge of. 
Understanding all these processes is a time consuming task 
even for skillful experts. Thus how to automatically identify 
malwares from unknown processes and analyze their behaviors 
in high semantic level so as to obtain the related evidences 
have become some of the key issues for malware investigators.  

Current methods in the area of memory forensics mainly 
fall into two categories: one focuses on dumping memory 
completely and reliably, and the other concentrates on 
recovering data accurately. Little work is about automatic 
analyzing of data or evidences. Some powerful tools, such as 
Volatility[1] offer certain analyzing functions, but they are 
usually simple and depend highly on users’ prior knowledge, 
making them unable to automatically identify and analyze 
malwares. Although current antivirus software can identify 
malwares with high accuracy, they are that not fit for forensics 
for some reasons. Firstly, they need to be installed on the target 
system before analysis which will cause contamination. 
Secondly, they can also be compromised by malwares, so the 
result of detection is not reliable. Thirdly, the goal of antivirus 
software is to find and remove the malwares, not to capture, 
analyze them and obtain related evidences. So the help from 
them for investigators is limited. Although current process 
analysis methods, such as some dynamic analysis approaches[6] 
can provide the details of processes, these methods are usually 
based on VMI and taint analysis technique, which need high 
cost and have to be performed on preinstalled specific virtual 
machines (e.g. QEMU). It is not practical for investigators. 

Therefore, in this paper we present Detective, a novel 
framework to address the automated malware identification 
and analysis issues in memory forensic context. Detective 
mainly achieves three goals: classifying benign and malware 
processes automatically, explaining malware behaviors in high 
semantic level and shedding light on evidence collection. In 
order to identify malware processes from unknown process 
automatically, we propose a novel Dynamic-Link Libraries (i.e. 
DLLs) based malware detection technique. It is composed of a 
HNB classifying algorithm and a DLLs-based process model. 
We choose DLLs to profile processes not only because they are 
good indications of the real goals and behaviors of processes, 
but also because they can be obtained both online and offline. 
We also design a data mining based analysis method to explain 
malware behaviors in high semantic level. This is implemented 
by clustering and frequent item sets mining techniques. Finally, 
Detective will shed light on evidence collection by the 
information obtained from previous steps. 

Compared with current memory forensic tools (e.g. the 
work [7, 8] focusing on recovering a complete list of processes 
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or enumerating all loaded programs), Detective pays more 
attention to automated identification and analysis of interested 
processes, which is important but has not been well solved. 
Although Detective is currently designed for Windows, the key 
ideas are also fit for other operating systems. Experiments on 
real world malware set have proved that Detective could 
achieve a practical accuracy rate at a reasonable cost. 

II. BACKGROUND AND OVERVIEW 

A. Observations 

DLLs that a process loads offer insight into the functions of 
the corresponding program. Windows API is implemented as a 
set of DLLs, so the list of DLLs can tell us what this process 
could probably do, and this information is in small size and 
moderate semantic granularity. In addition, DLLs can be 
obtained not only from memory dump but also by certain 
online obtaining tools [9], so DLLs-based method is fit for both 
online and offline forensics. Moreover, DLL patterns of 
different categories of processes are essentially different. It can 
not only tell the difference between benign and malware 
processes, but can also be used to distinguish between different 
kinds of malware processes by clustering techniques. If we 
cluster one unknown malware process into a known group 
formed by lots of known malware processes, the behaviors of 
this unknown sample can be appropriately represented by 
features extracted from that group. And those features also give 
us the clue to collect the evidences of the sample. 

B. System overview 

In order to automatically locate and analyze malware 
processes in forensic scenarios, Detective is divided into three 
main components. Fig. 1 shows the key components and basic 
inputs and outputs. 

Fig. 1. Overview of Detective 

III. SYSTEM DESIGN AND IMPLEMENTATION 

A. The key DLL based identifier 

As is shown in Fig. 2, identifier can be divided into four 
main steps with an assistant process. 

Fig. 2. Main Steps of Identifier 

1) Modeling of n-tuples. 

DEFINITION 1. An n-tuple is a sequence of 1 or 0, where 
n is a non-negative integer and indicates the number of 1 or 0 
in the tuple. An example of n-tuple is {1, 0, 0, 1, 1, 0}. 

DEFINITION 2. A flag bit is a bit added to the end of an n-
tuple to indicate whether the process it represents is a malware 
process or not. It is used in the classification process. 

The goal of this step is converting a DLL list into a data 
structure that can be processed by analyzing algorithms easily 
and quickly. In order to achieve this goal, identifier chooses n 
DLLs as key DLLs. They form the basis of n-tuple. Then it 
searches the DLL list of each process to check if there are key 
DLLs in it. If any key DLL is found, the corresponding bit in 
the tuple is set to 1, otherwise the bit is set to 0. For example, if 
the key DLLs are kernel32.dll and shell32.dll while the list 
contains kernel32.dll and wininet.dll, then the n-tuple is {1, 0} 
as kernel32.dll is in the list and shell32.dll is not. We add a flag 
bit 0 to the end to make the tuple {1, 0, 0} eventually. 

2) Initializing key DLL set. 
Key DLLs are the base of n-tuple model. Firstly, process-

specific DLLs cannot be key DLLs because key DLLs are used 
to describe the common characters of many processes in each 
category. Although DLLs under system32 folder are common 
DLLs, the quantity of them is large, for example, there are 
more than 1600 DLLs in System32 folder in a fresh 32-bit 
Windows 7. If we choose all of them as key DLLs, the 
dimensions of our model will become very large. In fact, less 
than one third of them appear frequently in the list of processes 
(either malware or benign ones) according to our statistics. In 
order to reduce the number of Key DLLs, we initialize the key 
DLL set with those appear in DLL lists of both malware and 
benign processes in training set. Experiments have proved that 
this method can achieve higher accuracy. 

3) Refining and obtaining the “optimal” key DLL set. 
Identifier needs enough training data containing both 

malware and benign processes to achieve high accuracy. The 
intuitive way for creating training dataset (Volatility-based 
method) requires lots of time and spaces. To address this issue, 
we introduce an extra validation procedure to the normal 
training and testing process. Data that can be obtained easily 
like reports from Virus Total can be used as training set. And 
data obtained by Volatility-based method can be used as 
validation set. The key difference between training and 
validation set is the latter is smaller and more similar to the 
data we get in real forensic cases. When both sets are ready, we 
could list all the possible combinations of DLLs in the key 
DLL set obtained by statistics to find out the best subset 
theoretically. When we say subset A is better than subset B, we 
mean the classifier built on A performs better than the classifier 
built on B on validation set. However, it is impossible to do the 
exhaustive listing as the number of combinations goes up 
exponentially. For instance, if we start with 200 DLLs, the 
number of combinations is 2200-1. Here we present a two-step 
way to solve the problem. The first is shown in algorithm 1. 

Algorithm 1 Refining Key DLL set 
bestPairList consists of pairs of upper and lower bounds 
1: Subset Getter(upper, lower){ 
2:       If (pair. Lower<=Percentage of some DLL<= pair. Upper) 
3:                Add the DLL to subset; 
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Algorithm 1 Refining Key DLL set 
4:       Return subset; 
5: } 
6: Iterator(gap){ 
7:    for(start=0; start<=0.5; start + gap){ 
8:       for(end=0.5; start<=1; end + gap){ 
9:          test Performance on (subset Getter(start, end)); 
10:          if(performance is better) 
11:                update bestPairList; 
12:     } 
13:   } 
14:   Return bestPairList 
15: } 

Subset Getter in line 1 uses two parameters namely upper 
bound and lower bound to generate a subset of the initial set. 
For instance, when upper bound equals 90% and lower bound 
equals 1%, it means a subset containing all DLLs that have an 
appearance rate between 1%(excluded) and 90%(included) in 
both malware lists and benign lists. The enumeration happens 
in Iterator in line 6. If we set the step length to be 0.5%, we 
make the number of possibilities less than 10000. Code on line 
9 test the performance of the model built on that subset. After 
rounds of enumerations, we get the best pair list in line 14 and 
they can be converted to best subsets by Subset Getter. The 
second is shown in algorithm 2. 

Algorithm 2 obtain the “optimal” key DLL set 
Sb adds Sr equals the initial set 
1: Best Subset Getter(subset list){ 
2:       for(subset in subset list){ 
3:            if(subset performs better than best); 
4:               best = subset; 
5:       } 
6:        return best; 
7:  }   
8:  Optimizer (Sb, Sr){ 
9:      iteratively add on element in Sr to Sb to form St list 
10:     Sb = Best Subset Getter(St list); 
11:     update Sr; 
12:    if(performance of Sb does not improve anymore) 
13:        return Sb 
14:    else 
15:        Optimizer (Sb,Sr); 
16: } 

Here we call the best subset(s) got in step one Sb, the set 
containing DLLs appear in initial set but not in Sb is called Sr. 
Each time we take one DLL from Sr iteratively and add that to 
Sb to form a set named St in line 9. If there are n elements in Sr 
and m elements in Sb, we will have n different St, each 
containing m+1 elements. Best Subset Getter in line 1 builds 
models on all these St and chooses the best one(s) to be the 
new Sb, meanwhile, Sr is updated each time. Optimizer stops if 
the performance of Sb on validation set does not improve 
anymore. This greedy algorithm offers us a relatively optimal 
key DLL set at a reasonable cost. 

4) Classifying and output. 
We need a proper classification algorithm to be more 

efficient. After trying many mainstream algorithms including 
decision tree induction, Bayes classification, rule-based 
classification, support vector machines and so on, we choose a 
novel Bayes model named hidden naive Bayes (HNB) finally. 
That’s mainly due to the highly coupled character of DLLs. 
HNB can deal with high coupled attributes. In HNB, a hidden 

parent is created for each attribute which combines the 
influences from all other attributes.  

Each version of Windows has a limited and stable 
collection of system processes, such as lsm.exe and lsass.exe. 
Experiments show that they act like “noises” in the 
classification. Hence, these system processes are filtered out in 
the first place before classification. The elimination of these 
processes improves the accuracy of identifier. 

When real targets come, they are converted into n-tuples 
based on key DLLs obtained in last step. Then they are 
regarded as test set and identifier will generate the flag bits for 
them, indicating whether they are malwares or not. 

5) Implementation. 
We implement identifier with five modules. N-tuples 

converting module executes the modeling task. As the forms of 
data vary, the converting process might be slightly different. 
The module initializes the tuple with zeros and alters the bit to 
one if corresponding DLL is found. It adds a zero to the end of 
each tuple as flag bit, which means that the tuple stands for a 
malware process. Key DLL statistic module does the statistics 
work for training data so as to initialize the key DLL set. 
Percentage enumeration module generates the best pair(s) of 
upper bound and lower bound for identifier. It enumerates all 
possible percentages at a certain gap. This module works 
together with Weka, a collection of machine learning 
algorithms for data mining tasks. Implemented in python, 
greedy algorithm module aims to find the relatively optimal 
key DLLs on the base of best pair(s). Finally, output module 
ends the mission of this component. 

B. The clustering based analyzer 

As is shown in Fig. 3, analyzer can be divided into three 
steps with an assistant process. 

 

Fig. 3. Main steps of Analyzer 

1) Modeling of n-tuples. 
Just like the modeling process in identifier, training data 

needs to be converted into n-tuples. However, the goal of 
selection of key DLLs differs slightly. In identifier there are no 
parameter settings and the key DLLs are meant to identify 
malware processes from benign ones. In analyzer, however, 
key DLLs are chosen so that features of different malware 
processes could be represented and similar processes come into 
same clusters. Analyzer uses the same key DLLs as in 
identifier by default. Personalized DLLs whose frequencies of 
appearing in training dataset within an upper bound and lower 
bound are also supported based on statistics over training data. 

2) Parameter settings. 
As for the parameter settings, investigators could of course 

assign all parameters the algorithm (in our framework, it is 
DBSCAN) needs, they can also just give conditions like the 
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max number of clusters and max noise rate they could tolerate. 
Then analyzer can calculate the possible parameter settings. 

3) Clustering and output. 
When investigators get malware processes from identifier, 

the category of them becomes the next goal. Analyzer groups a 
set of malware processes based on their DLL lists in such a 
way that malware processes in the same group are more similar 
to each other than to those in other groups.  

Analyzer uses DBSCAN as the clustering algorithm as it 
does not require investigators to specify the number of clusters 
in the data a priori, which is consistent with “no prior 
knowledge” purpose of Detective. Being able to find arbitrarily 
shaped clusters, being robust to outliers, being mostly 
insensitive to the ordering of the points in training data and low 
complexity make DBSCAN a reasonable candidate for 
analyzer. We could not expect a comprehensive cover of 
malware categories of all time if training data does not cover 
that much. For instance, if training data covers popular 
malware samples of the recent months, then the groups 
generated probably include most malware categories appeared 
in that time period. It grants investigators the freedom to 
choose the coverage of analyzer from another perspective. 

When the model is built, analyzer convert targets into n-
tuples based on key DLLs and regard them as test set. It will 
give the number of clusters each target belongs to, indicating 
its family. 

4) Implementation. 
We implement analyzer with four modules. N-tuples 

converting module does the same job as before. Personalized 
key DLL module enables investigators to change key DLL set 
according to their needs by giving an upper bound and lower 
bound. Appropriate parameter setting generating module 
generates appropriate parameter settings for investigators when 
they just want to give conditions like the max number of 
clusters and max noise rate they could tolerate. In order to 
generate an appropriate parameter setting, this module 
iteratively tries a large range of parameters and tests these 
results to see if they comply with the conditions given by 
investigators. This module is practical due to the low 
complexity feature of DBSCAN. We build our own version of 
DBSCAN in weka. It first calculates the instance between of 
existing instances. If it is within the range the parameter 
specifies, the module then check the minimum points to see if 
it is qualified. If so, the module returns the number of clusters 
and break. Or it will continue this process. If no match is found, 
it marks the instance as noise. 

C. The frequent item set based extractor 

As is shown in Fig. 4, extractor can be divided into three 
steps with an assistant process.  

 

Fig. 4. Main steps of extractor 

1) Modeling of n-tuples. 
To find the meanings of each group, extractor tries to find 

the frequent item sets of each group. However, we need to 
change these n-tuples within each group by change key DLLs 
as the purposes in analyzer and extractor are different. In 
analyzer, they are meant to make similar processes come into 
same clusters while in extractor they represent all the possible 
behaviors of the group. Hence key DLLs here include all the 
DLLs that appear once or more in training data. 

2) Calculating frequent item set and tags.  
When the converting work is done, extractor begins to 

tackle the second problem. We observe that the number of each 
bit of the n-tuples within the same cluster tends to be the same, 
either 1 or 0. Actually, most bits get 90% of their numbers to 
be the same one, thus making frequent item sets obvious with 
high value of support. With this in mind, extractor get frequent 
item sets by statistics and validation. Extractor might not get all 
the frequent item sets, useful ones are obtained at a reasonable 
cost. Besides, if training data are from Virus Total, extractor 
uses hashes representing samples in each group to get the tags 
all these antivirus vendors give in their reports and does a little 
statistics work within each group. For instance, extractor could 
tell you what McAfee think of all these samples of some group 
and the concrete percentages of each tag. The clue is obvious if 
McAfee tags 90% of the samples in this group as something as 
Heuristic.BehavesLike.Win32.Suspicious.D. 

3) Generating strategy.  
DEFINITION 3. A malware profile is a structure that 

describes a malware process in high semantic level. The 
structure consists of the meanings of the DLLs in the frequent 
item set it belongs to and the tags of the group it belongs to. 

With malware profiles in hand, the procedure of searching 
evidence starts. Extractor mainly offers strategy with the help 
of Volatility as it is widely used in forensic scenarios. First of 
all, if the tag is available, investigators might receive guidance 
from sites of these vendors. For instance, if the tag part of the 
profile indicates the target has something to do with the 
network, command ‘netscan’ is recommended. However, tag 
parts are not always available and not accurate sometimes. 
Frequent item set part of the profile tells a vivid story of what 
the malware could probably do. The purpose of each DLL in 
the profile draws a picture of potential behaviors of the target. 
All these behaviors become the clue to get the evidence. For 
instance, Rpcrt4.dll contains the routines, tables, and data that 
support communication between clients and servers. Its 
existence tells you command ‘netscan’ might be your choice. 

4) Implementation.  
We implement identifier with three modules. N-tuples 

converting module does the same job as before. Malware 
profile generating module focuses on frequent item sets and 
tags. Finally strategy module provides mapping relationship 
between details of malware profiles and practical strategies. 

IV. EVALUATION 

Evaluation focuses on three abilities of Detective, i.e. the 
ability of identifying the malware, the ability of classifying the 
malware and the ability of instructing the evidence collection. 
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A. Evaluation of identifying abilities 

1) Data settings.  
As is shown in Table 1, we have a training set, a validation 

set and two groups of test sets. The training set is 
comparatively large and the source of the data is not from 
Volatility for reasons stated in system design. We get the 
validation set from Volatility as we expect the final model to 
deal better with targets from Volatility in real forensics 
scenarios. The remaining two groups of test sets are meant to 
simulate data from two normal computers. 

TABLE 1. DATA SETTINGS OF EVALUATION OF IDENTIFYING ABILITIES 

Sets 
Amount 

(malware) 
Source 

Amount 
(benign) 

Source 

Training 3300 Virus Total 181 
Process
Explorer

Validation 45 Volatility 40 Volatility

Test A 25 Volatility 5 Volatility

Test B 20 Volatility 4 Volatility

2) Correctness.  
The number of key DLLs turns out to be 121 and then 

percentage enumeration module initializes the key DLLs for 
greedy algorithm module. Here we tried a few mainstream 
classifying algorithms on the basis of key DLLs and the result 
is shown in initial correctness in Table 2. 

TABLE 2.  CORRECTNESS BASED ON KEY DLLS 

Algorithms Initial correctness Final correctness 
AODE 69.4% 84.71% 
WAODE 70.59% 84.71% 
Naive Bayes 62.35% 75.29% 
RBFNetwork 60.00% 76.47% 
IBK 72.94% 64.71% 
Kstar 62.35% 71.76% 
LWL 55.29% 61.18% 
BFtree 70.58% 76.47% 
J48 65.88% 90.59% 
RandomTree 54.11% 62.35% 
HNB 80.00% 94.12% 

HNB performs better than most other algorithms on initial 
key DLLs. Greedy algorithm module then comes to improve 
the key DLL set specifically for Volatility sources. Fig. 5 
shows the trend of correctness for greedy algorithm. It finally 
stops at 94.12% and we get the final key DLL set. Then we do 
the test on mainstream classifying algorithms again. The result 
is shown in final correctness in Table 2. Correctness of most 
algorithms improves more or less and HNB still has the best 
correctness. It proves that the validation process really works. 

 
Fig. 5. Trend of correctness for Greedy algorithm 

Finally we test our model on two test sets and the result is 
shown in Table 3. The test results turn out to be reasonable and 
identifier does not miss one malware in tests. 

TABLE 3. CORRECTNESS OF TEST SETS 

 
sets 

Correctness False positive False negative

Test set A 93.33% 2 0 
Test set B 91.67% 2 0 

3) Performance.  
The evaluation test of performance is done on a PC with 

Intel i5, and a RAM of 8GB. The execution time of all five 
modules of identifier each is under 15 seconds. The cost is 
based on the scale of data described in data settings. Besides, 
only identifier output module needs to be executed each time. 
Others are executed only when training data used last time 
does not suit the current situation anymore. 

B. Evaluation of clustering abilities 

1) Data settings.  
we have a training set with 3300 malware processes from 

virus total and a test set with 4 malware process from Volatility. 
The training data set is supposed to be one that includes any 
categories of malwares that need to be clustered. It is actually a 
quite personal set. The set we use contains data that were active 
in the early 2014 recorded by Virus Total. 

2) Correctness.  
Unlike classifying, there are no obvious standard of 

correctness in clustering. The key lies in whether the group that 
the target is clustered into could really represent the target and 
we will see that in the case study of extractor. As training data 
is quite personal, the results are just for reference. Here the 
value of epsilon is 1.0, the value of minimum points is 4, the 
number of processes is 3300 and the noise percentage is 9.79%. 

3) Performance.  
On the same PC, The execution time of all four modules of 

identifier each is under 15 seconds. The cost is based on the 
scale of data described in data settings. If investigator gives the 
parameters directly, appropriate parameter setting generating 
module does not need to be executed. 

C. Case Study 

Here we use a case to evaluate the availability of guidance. 
Extractor gets a malware process from analyzer whose hash  is 
eb227cc81f12afc367eea595c5c7adfe44443507ace8ab81b3bb3
0a14eb5626f  in Virus Total and we know nothing about it 
except the name of the process (eb227cc81f12af), the process 
id (2892) and some DLLs in the frequent item set in its profile.  

The challenge is to find out what it is and related evidence 
in Volatility. Normally we have a profile including the tag and 
the frequent item set and tag is easier to use. Here, we just 
come to the frequent item set to show the hard part. And often, 
we start with the most informative DLLs in the frequent item 
set of the profile. In this case, it is Ole32.dll. As it indicates 
communications between processes, strategy module suggests 
checking the relations of between different processes and 
command “pslist” is executed. Result shows that process 
“explorer”  creates process 3016, process 3016 creates process 
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2892 and process 2892 creates 2896.(Process id might vary 
with different image, the relationship holds.) It is not surprised 
that there are three processes with the same name as malware 
programs might have more than one process and not every 
process is recognized or clustered into this particular cluster. 
However, if we get any one of them, we get the clue to others. 
Here we need to pay attention to these three processes. 

As the number of processes are limited and they are created 
in a chain, strategy module suggests that we might consider 
command “malfind” for the last process created. One memory 
segment is then detected because it is executable, marked as 
private and has a VadS tag, which means there is no memory 
mapped file already occupying the space. This can be the 
evidence of an API hook. In order to verify our thoughts, we 
download this real world malware from Virus Total by its hash 
value and get it running. It is a tool designed to hook other 
processes, which confirms our findings. Memory forensic can 
never be an easy task and Detective could not get the evidence 
for investigators directly. There are many other ways to solve 
the problem in this case if you are quite experienced. However, 
suggestions from the clue strategy module often becomes the 
key to success and accelerates the forensic process. 

V. RELATED WORK 

A. Memory acquisition and recovery. 

In the area of memory acquisition, techniques are divided 
into hardware-based and software-based methods. Memory can 
be obtained by a dedicated hardware card or via a special 
hardware bus. Virtualization software can also be helpful as the 
memory of a virtual machine can be saved into a file. Besides, 
Windows provides software crash dumps and hibernation files, 
which are also valuable sources. All these techniques can be 
evaluated by two factors namely atomicity and availability. 
Atomicity reflects the demand to produce an accurate and 
consistent image and availability refers to the applicability of a 
certain technique on arbitrary system platforms for any given 
scenario. As for the recovery, most of researches concentrate 
on how to restore processes, system registry, network 
information and files completely and correctly from raw 
memory image as malwares often try their best to hide their 
traces from being restored. The forensic framework Volatility 
[1] implements most of the methods in this area.  

B. Malware detection: static and dynamic analysis. 

As many commercial-off-the-shelf malware detection tools 
still use signature-based techniques[2] that are not reliable, 
researchers nowadays in this area mainly focus on behavior 
based detection techniques that are rust to code obfuscation and 
polymorphism. They can be classified into the static and the 
dynamic ways. Static analysis techniques try to analyze the 
information and contents of a given file. Often they scan the 
header and the payload of the file to get necessary information 
to build models to detect malwares [3]. While a number of 
static analysis techniques show promising results, they are 
usually extremely slow [4] and thus unsuitable for real-world 
forensic scenarios. Dynamic analysis techniques try to model 

run-time behavior of process. Often they rely on system call 
sequences [5] or flow graphs [6]. They analyze the execution 
of a malware or the effects that the malware has on the 
operating systems. Those methods using system call sequences 
build the behavioral model of malwares on the basis of the 
sequence of invoked system calls and their arguments. And the 
idea behind flow graph is to employ taint technique by 
analyzing the data flow model. 

VI. CONCLUSION 

We have presented the Detective framework that 
automatically locates and analyzes malware processes in 
forensic scenarios via DLLs. Detective mainly includes three 
components: identifier, analyzer and extractor. Identifier could 
classify benign and malware processes based on models built 
on their DLLs at a reasonable accuracy. Analyzer then clusters 
malware processes into different groups formed by training 
data with DBSCAN algorithm. Next, extractor describes the 
group with frequent item sets and tags, characterizes the 
unknown malware process with known functions or features, 
and sheds light on evidence hunting task. As detective has been 
a proof-of-concept prototype so far, many functions are 
implemented as separate tools and some functions are still 
manual, more work will be done regarding to the integration to 
make detective more automatic. Besides, more versions of 
Windows will be covered and more customized classifying and 
clustering algorithms for this purpose will be developed. Our 
experiments prove it is practical to create a unified interface to 
make the whole process automatic and effective as long as 
DLL data is provided, no matter offline or online. Meanwhile, 
both accuracy rate and time cost are reasonable. 
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