
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2014; 7:492–502

Published online 28 February 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.740
RESEARCH ARTICLE

Verifying cloud service-level agreement by a third-party
auditor
Hongli Zhang1, Lin Ye1, Jiantao Shi1, Xiaojiang Du2* and Mohsen Guizani3

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
2 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A.
3 Qatar University, Doha, Qatar
ABSTRACT

In this paper, we study the important issue of verifying service-level agreement (SLA) with an untrusted cloud and present
an SLA verification framework that utilizes a third-party auditor (TPA). A cloud provides users with elastic computing and
storage resources in a pay-as-you-go way. An SLA between the cloud and a user is a contract that specifies the computing
resources and performances that the cloud should provide to the user. A cloud service provider (CSP) has incentives to
cheat on the SLA, for example, providing a user with less central processing unit and memory resources than specified
in the SLA, which allows the CSP to support more users and make more profits. A malicious CSP can easily disrupt the
existing SLA monitoring/verification techniques by interfering with the monitoring/measurement process. A TPA resolves
the trust dilemma between a CSP and its users. Under the TPA framework and the untrusted-cloud threat model, we design
two effective testing algorithms that can detect an SLA violation of the virtual machine memory size. Using real experiments,
we demonstrate that our algorithms can detect cloud cheating on a virtual machine’s memory size (i.e., SLA violations).
Furthermore, we show that our testing algorithms can defend various attacks from a malicious CSP, which tries to hide an
SLA violation. Copyright © 2013 John Wiley & Sons, Ltd.

KEYWORDS

service-level agreement; verification; security; cloud computing

*Correspondence

Xiaojiang Du, Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A.
E-mail: dxj@ieee.org
1. INTRODUCTION

As an emerging and promising scheme, cloud computing
has been used in many fields, such as mobile Internet pro-
tocol television systems [1] and digital television platforms
[2]. Cloud computing offers dynamically provisioned
resources as a service over the Internet to users. A cloud
is client/mission oriented, formed by service-level agree-
ments (SLAs) between a cloud service provider (CSP)
and paid clients. Depending on the type of resources
provided by the cloud, cloud services can be classified into
Infrastructure as a Service, Platform as a Service, and
Software as a Service. Amazon’s Elastic Compute Cloud
(EC2) [3] is a prominent example for an Infrastructure as
a Service, which provides basic infrastructure
components such as central processing units (CPUs),
memory, and storage. The Google App Engine [4] is an
example for a Platform as a Service, which enables us to
deploy Python-based and Java-based Web applications.
492
Recently, the cloud computing paradigm is gaining
increasing attention because it could bring many economic
benefits to users. The main benefit is to reduce capital
expenditures. This includes hardware costs and software
license costs. Cloud computing also significantly reduces
the operational expenditures such as costs of hiring
information technology personnel. In addition, users will
have universal data access and data storage at multiple
independent geographical locations [5]. A number of major
information technology companies (such as Amazon [3],
Google [4], IBM [6], and Microsoft [7]) have started offer-
ing cloud computing services. Meanwhile, an increasing
number of enterprises are migrating their computing to
the cloud environment.

A cloud provides users with elastic computing and
storage resources in a pay-as-you-go way. Before a service
starts, a user will negotiate and sign an SLA with a CSP.
The SLA is a contract between the two parties, which
specifies the details of the computing/storage resources
Copyright © 2013 John Wiley & Sons, Ltd.



Verifying cloud SLA by a third-party auditorH. Zhang et al.
and performances that the cloud should provide to the user.
The typical SLA metrics include memory size, CPU speed/
frequency, CPU type (e.g., CPU or graphics processing
unit (GPU)), storage size, network bandwidth, response
time, system uptime, and packet loss. For example, a small
instance of the Amazon EC2 has the following configura-
tion [8]: 1.7-GB memory, one 1.0–1.2-GHz Opteron or
Xeon processor, and 160-GB instance storage.

An SLA serves as the basis for the expected level of ser-
vice from the CSP. The price that a user pays to the CSP is
closely related with the SLA. The more memory, the faster
the CPU, and the larger the storage space, then the more
the user will pay. An important question arises here. How
does a user know if he/she obtains the memory size or
CPU speed specified in the SLA? A CSP is a profit-based
company, and hence, it has incentives to cheat on the
SLA. For example, a CSP may provide less memory and/
or CPU resources to a user, and this allows the CSP to
support more users and make more profits. We need some
way to verify the SLA.

Obviously, we cannot rely on CSPs to verify the SLA.
Currently, Amazon EC2 puts the burden of verifying SLAs
on users. However, it is very difficult for a user to verify
the SLA because the CSP has complete control of its
resources, including all the physical machines, hypervi-
sors, virtual machines (VMs), and routers within the cloud.
In summary, neither the CSP nor the user is suitable for
SLA verification. Hence, a third party should be used to
perform the cloud SLA verification.

Much work (e.g., [9,10]) has been carried out on SLA
monitoring/verification in the traditional Internet. Some
of the work uses a third party. However, SLA verification
in the cloud is much more difficult than that in the tradi-
tional Internet and computer networks. An untrusted CSP
can easily defeat the existing Internet SLA monitoring/
verification techniques by interfering with the monitoring/
measurement process.

In this paper, we present an SLA verification framework
that utilizes a third-party auditor (TPA). A TPA resolves
the trust dilemma between a CSP and its users. We believe
that the TPA will become a standard service for cloud com-
puting in the near future as it is critical to audit and evaluate
the performance of CSPs, which will ensure the benefits of
cloud users. The TPA would be similar to today’s public
key certification service provided by VeriSign.

There are several benefits of our TPA-based SLA veri-
fication framework. First, the TPA framework is flexible
and scalable. It supports various types of tests targeting at
different SLA metrics (e.g., memory or CPU). Second, it
supports testing from multiple (including a large number
of) users. This feature could significantly enhance the
capability of testing a cloud. Third, the TPA framework
also relieves users from the testing burden.

With the third-party auditing function, we can either
prove to cloud users that the CSP indeed satisfies the
SLA (which will in turn build trust between users and the
CSP) or detect and report an SLA violation to users (which
will protect users’ benefit and also deter CSP from cheating
Security Comm. Networks 2014; 7:492–502 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
in the future). To sum up, a third-party auditing function is
very important, and it will promote the healthy growth of
cloud computing.

In the following, we summarize our contributions in
this paper:

• We propose a flexible and scalable framework that
utilizes a TPA for cloud SLA verification. The frame-
work supports various types of SLA tests.

• We design two effective testing algorithms that can
detect SLA violations on the memory size of a VM.

• Using real experiments, we demonstrate that our algo-
rithms can detect cloud cheating on VM memory size
(i.e., SLA violation).

• We show that our testing algorithms can defend vari-
ous attacks from a malicious CSP, which tries to hide
an SLA violation.

The rest of this paper is organized as follows. Section 2
describes related work on SLAs. Section 3 discusses our
assumptions and the threat model. Section 4 presents the
TPA framework and each component in the framework.
Section 5 discusses the two testing algorithms for detecting
SLA violations on VM memory size. Section 6 concludes
our paper.
2. RELATED WORK

The SLAs have been widely used by Internet and telecom-
munication service providers to define certain performance
guarantees for users. First, we give some background in-
formation on SLAs. An SLA is an agreement that defines
performance guarantees made by a service provider. An
ideal SLA should contain the following [11]:

• A set of services the provider will deliver
• A complete, specific definition of each service
• The responsibilities of the provider and the user
• A set of metrics to determine whether the provider is
delivering the service as promised, such as through-
put, reliability, durability, elasticity, linearity, automa-
tion, and user service response times

• An auditing mechanism to monitor the service
• The remedies available to the user and provider if the
terms of the SLA are not met

• How the SLA will change over time

There are two types of SLAs: off-the-shelf agreements
and customized, negotiated agreements. The latter one is
preferred if a user has critical or special demands, which
cannot be satisfied by an off-the-shelf agreement.

The authors in [9,10] discussed SLA issues in Internet
protocol networks. The authors in [12,13] proposed a
layered cloud architecture to model the bottom-up propa-
gation of failures and use it to detect SLA violations by
mapping resource metrics to SLA parameters. In [14–18],
the authors presented several approaches for SLA
493



Verifying cloud SLA by a third-party auditor H. Zhang et al.
assessment with a focus on accurately measuring or
estimating quality-of-service parameters. For example,
Sommers et al. [14] proposed a new active measurement
methodology to monitor whether measured network path
characteristics are in compliance with performance targets
specified in SLAs. Wang et al. [18] presented a quantita-
tive study of the end-to-end networking performance
among Amazon EC2 from users’ perspective and con-
cluded that virtualization can cause significant throughput
instability and abnormal delay variations. Serral-Gracià
et al. [16] proposed a novel passive traffic analysis
approach for online SLAs assessment, which reduces both
the need for measuring quality-of-service metrics and the
interactions between the ingress and egress nodes in the
network. Li et al. [19] compared the performance and cost
of several major cloud providers (Amazon, Microsoft,
Google, and Rackspace). Some recent work (e.g., [29])
has studied cloud security.

However, none of the preceding work considers an
untrusted/malicious cloud that can actively interfere with
the measurement/monitoring from the users. For example,
an untrusted cloud could adversarially modify, delay, drop,
inject, or preferentially treat packets to disrupt the mea-
surement. In [15], Goldberg et al. did consider the presence
of adversaries. However, the threat model in [15] considers
an adversary in the middle of a path, which is different
from the threat model in our study, where the adversary
(the cloud) is at the end of a path. In addition, [15] mainly
considers networking SLAs (such as packet loss rate and
delay). In this paper, we study a different SLA parameter—
the memory size of a VM.
3. ASSUMPTIONS AND THREAT
MODEL

In our SLA verification framework, we assume that cloud
users trust the TPA. We expect that the TPA will become
a standard service for cloud computing in the near future,
similar to today’s public key certification service provided
by VeriSign and other companies. Our assumptions are
given in the following:

(1) Cloud users allow the TPA to perform auditing
functions using their accounts. For example, a user
may delegate his account to the TPA for a short
period, during which the TPA may perform the
auditing. This assumption is reasonable and
sometimes necessary because certain SLA aspects
must be verified from the users’machine. For exam-
ple, to verify if the response time satisfies the SLA,
the test has to be performed from the users’
machine.

(2) One thing we can do to prevent a CSP from cheat-
ing on users is to require the CSP to provide the
source code of its hypervisor to the TPA. The
TPA can examine the hypervisor source code and
ensure that there is no “malicious” code.
494 Sec
(3) However, a secure static code does not guarantee a
secure running instance because the CSP may run
a different version of the hypervisor. Hence, the
TPA should be able to verify the integrity of a
hypervisor during its run time. This can be achieved
by using some existing techniques, such as the
HyperSentry [20]. The details are given in Section 4.

(4) The CSP allows the TPA to monitor its hypervisor,
which ensures that the hypervisor does not have a
“malicious” code to perform the following two
tasks: (i) to detect if there is a TPA test on the cloud;
and (ii) after a TPA test is detected, to change the re-
source allocation of a VM such that the SLA is sat-
isfied. For example, a user leases a VM with a 2-GB
memory. The CSP only sets the maximum memory
value of the VM to 1GB. When the CSP detects a
test from a TPA, it changes the value back to
2GB. Then, the TPA will not be able to detect
any SLA violation (which actually happened).

Our threat model is given as follows:

1 The cloud has complete control of its own resources,
including all the physical machines, hypervisors,
VMs, and routers within the cloud.

2 The CSP is able to know any security material (such
as an encryption key) used by a VM because the ma-
terial is stored in the physical memory and/or the hard
drive, which the hypervisor has access to. Hence, the
standard crypto schemes do not work. In addition, a
CSP is able to modify any message that is sent by a
VM running in the cloud without being detected.
For example, if a VM runs a test program and creates
a timestamp after the program is completed, the cloud
could change the timestamp without being detected,
even if a message authentication code (MAC) is used
because the hypervisor knows the key for the MAC
and it can create a new valid MAC after changing
the message.

3 A cloud will only perform the cheating if the mone-
tary cost of doing so is less than C, where C is a pa-
rameter. Otherwise, the cloud does not have the
incentive to cheat. For example, if the CSP needs to
reserve a GPU such that it is not detected by a
GPU/CPU test, then the cost of cheating may be too
large for the CSP, and the CSP is not interested in
doing so.

To support more users and hence achieve more financial
gains, a CSP may intentionally assign fewer resources
(than specified in the SLA) to cloud users. This will
degrade the performance of users’ applications, which di-
rectly hurts users’ benefit. Our main objective is to develop
an auditing solution that can examine whether the CSP
satisfies the user SLA or not. Given an untrusted CSP,
we propose a TPA-based framework and design effective
testing algorithms that can verify if the user SLA is satis-
fied. The details are given in Sections 4 and 5.
urity Comm. Networks 2014; 7:492–502 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Verifying cloud SLA by a third-party auditorH. Zhang et al.
4. SERVICE-LEVEL AGREEMENT
VERIFICATION FRAMEWORK

Our SLA verification framework consists of three compo-
nents as shown in Figure 1: (i) a third-party auditing mod-
ule (TPAM) running in the cloud machine; (ii) the SLA
testing programs (testers); and (iii) the TPA server, which
is located outside the cloud. In the following, we discuss
each component in more detail.

Third-party auditing module. The TPAM is a software
module implemented by the TPA to monitor the integrity
and correctness of a running hypervisor in the cloud. Given
the hypervisor’s source code, first, the TPA will carefully
examine the source code by static program analysis and other
techniques to find any malicious/illegal operations. Then,
using compilation parameters and other parameters supplied
by the cloud, the TPA can generate a correct version of the
hypervisor exe code. The job of the TPAM is to check the
consistency between the running instance and the correct
exe code. To securely test the running hypervisor, first, we
need to ensure that the TPAM is trustworthy. That is, the
execution of the TPAM should not be modified or interrupted
by the hypervisor, nor should the TPAM’s measurement be
modified. The TPAM may be protected by using the
HyperSentry [20] technique. HyperSentry has the following
properties:

(1) HyperSentry provides a framework to enable an
agent to measure the integrity of the highest
privileged software (e.g., the hypervisor).

(2) HyperSentry can be invoked without alerting the
hypervisor (i.e., without the hypervisor knowing).

(3) The measurement output can be securely conveyed
to a remote verifier. The hypervisor is not able to alter
or forge the measurement output.

The aforementioned properties make HyperSentry a
good candidate to perform our task, that is, to check if a
running hypervisor is the same as the correct exe code.

Because the TPAM runs in the cloud machine, it may be
modified or compromised by a malicious hypervisor. We
make similar assumptions as in [20] and assume that the
hardware of the cloud machine is trusted. By using a trusted
boot hardware of the Trusted Computing Group [21],
Figure 1. The service-level agreement verification framework.
TPAM, third-party auditing module; VM, virtual machine; VMM,

virtual machine manager.

Security Comm. Networks 2014; 7:492–502 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
the TPAM is examined step by step until all components
of the TPAM are executed. During the trusted boot proce-
dure, the TPAM code and data are copied into the SMRAM
(a designated and lockable memory) and kept from being
accessed or modified, regardless of the process’ privilege
level. Therefore, no software can modify the TPAM code
and data, and the trust in it can be maintained.

The SLA verification may be activated by interrupts
from the Intelligent Platform Management Interface [22]
via an out-of-band channel, which is triggered by the
TPA. The Intelligent Platform Management Interface is a
server-oriented platform management interface directly
implemented in hardware and firmware. Hardware features
can be used to differentiate between interrupts generated
by the out-of-band channel and other methods. Only an in-
terrupt generated by the out-of-band channel may trigger
the TPAM. After that, the TPAM can work securely.

The actual checking of the running hypervisor is
straightforward. After being activated by the outside
TPA, the TPAM computes a hash of the running hypervi-
sor, securely signs the hash, and then sends the signed hash
to the outside TPA for verification.

Service-level agreement testing programs. Traditional
benchmark programs are used to test the performance of
certain hardware (such as CPU and memory), and they
run in a trusted environment. However, in our case, the
VMs run in machines that are controlled by the CSP. In
addition, the CSP controls hypervisors and other resources.
A malicious CSP may change the measurement result or
complete a testing task at a different (more powerful)
machine, without being detected. Hence, the existing
benchmarks cannot be used for our purpose. Similarly,
the existing SLA measurement techniques cannot be used
to verify SLA in an untrusted cloud because the cloud
may modify the measurement results and hence make
SLA violations undetectable. In our work, we design spe-
cial testing programs (also called testers) that can defend
various attacks from an untrusted cloud while still being
able to detect SLA violations.

A CSP is very powerful and has complete control of its
resources, including all the physical machines, hypervi-
sors, VMs, and routers within the cloud. Hence, it is a chal-
lenging task to detect SLA violations by an untrusted
cloud. To address the challenge, we propose two novel
ideas. The first idea is to exploit the time difference be-
tween some fundamental operations, on which a CSP can-
not cheat. For example, we may utilize the difference of the
access time to physical memory and hard drive. The phys-
ical memory access time ranges from 2 to 70 ns. On the
other hand, the hard drive access time is about 3 to 5ms
(for a 10 000-rpm hard drive) [23], which is in the order
of 106 larger than the physical memory access time. This
is the basic idea of our access-time-based (ATB) algorithm
(in Section 5.1).

The second idea is to suddenly increase the workload
on the VM, which makes the required resource close to
495



Verifying cloud SLA by a third-party auditor H. Zhang et al.
the SLA parameter, and then we measure the response time
of the workload. For example, suppose the available phys-
ical memory of a VM should be 2GB, and the VM runs a
Web application. We can suddenly increase the number of
Web requests, with a total memory requirement close to
2GB. If less memory is allocated by the cloud, then the re-
sponse time will be much longer. The measurement result
is compared with a benchmark result that is obtained under
a similar environment but with the specified SLA param-
eters (e.g., 2-GB memory). If the result measured in the
cloud is similar to the benchmark result, then we consider
the SLA satisfied. If the measurement result is notably
worse (e.g., much longer response time) than the bench-
mark result, then the cloud must be cheating on some
SLAs. Our second algorithm (in Section 5.2) is based on
this idea.

The third-party auditor server. The TPA server plays a
centric role in the auditing framework. It controls the
SLA verification process. When the TPA server wants to
test a cloud, it triggers the TPAM, which checks the integ-
rity and correctness of the hypervisor. Then, the TPA
server runs the SLA testing programs. After finishing the
tests, it will record and analyze the time difference to give
a proof on whether the SLA has been violated.
5. SERVICE-LEVEL AGREEMENT
VERIFICATION ON MEMORY SIZE

In this section, we present two effective algorithms that can
verify (test) the available memory size of a VM.

5.1. The access-time-based memory testing

For any SLA violation on VM resources to be detected, the
key is to design effective testing programs (testers) for dif-
ferent resources (such as CPU and memory) according to
their usage characteristics. An SLA between a cloud and
a user may have several aspects, such as memory size,
CPU speed/frequency, storage size, network bandwidth,
response time, system uptime, and packet loss.

In our current work, we study one of the important SLA
aspects—memory size. We design effective algorithms
that can detect if the cloud actually allocates a VM the
memory size as specified in the SLA. It is normal for a
cloud to dynamically allocate physical memory to a VM
because this is the way the cloud operates. For example,
if a user leases a VM (say VM1) with a 2-GB memory size,
it does not mean that the cloud has to allocate a 2-GB
memory to VM1 all the time. The cloud may allocate only
the amount of memory (may be less than 2GB) needed by
VM1. However, when the applications in VM1 require
more memory, the cloud should allocate more memory to
VM1 immediately, up to the maximum value (e.g., 2GB
in this example). The preceding cloud behavior is consid-
ered normal, and the SLA is satisfied.
496 Sec
We consider it an SLA violation if the following hap-
pens: in the SLA, VM1 is specified with a 2-GB memory.
When VM1 is running, the hypervisor also tells VM1 (and
the user) that its maximum memory is 2GB. However, the
hypervisor sets the actual maximum memory of VM1 to
1.5GB. This means that VM1 will never obtain more than
the 1.5-GB physical memory, no matter how many pro-
cesses are running in VM1. Hence, when the workload in
VM1 increases, the computations in VM1 will need more
time than should be. That is, all the computations in
VM1 suffer from performance degradations. Our goal is
to detect such cheating by the cloud.

Note that we should consider the usable memory size in
a VM, that is, it excludes the memory used by the VM and
other system software. As is well known, the usable mem-
ory size is very important for application performance
because less usable physical memory will cause more
memory page faults, which means more swapping opera-
tions between the physical memory and the hard disk.
And this significantly increases the access/computation
time because the hard drive access time (3 to 5ms) is much
larger than the physical memory access time (2 to 70 ns).
We design our Algorithm #1 on the basis of the aforemen-
tioned access time difference, and we refer to our
Algorithm #1 as the ATB algorithm.

DenoteM as the maximum memory size that is usable by
user applications. From our experiments in Amazon EC2, we
observe that inmany cases the size ofmemory used by all the
applications in a VM is less than M. We will not be able to
detect if there is any SLA violation on memory size if the
memory usage is not close to the value of M. From the pre-
ceding observation, we design the ATB algorithm such that

• first, it tries to use a memory size of (or close to) M;
• second, to defeat any cheating from the hypervisor,
the algorithm must have computations based on actual
access (e.g., read) to the physical memory;

• the computation result should not be predictable by
the hypervisor (unpredictable); otherwise, the hyper-
visor could precompute the result;

• the computation result should be verifiable by the out-
side TPA (verifiable).

From the preceding requirements, we design an effec-
tive testing algorithm, as presented in the following:

(1) The TPA server creates an array R of size M.
(2) The TPA server sets the value of each element of R

(a simple case is R[i] = i).
(3) The TPA server uploads the array R to VM1. This

means that VM1 creates the array R and sets the
same value for each element.

(4) When the TPA server wants to test the cloud, it gen-
erates a random number r and sends r to VM1.

(5) Immediately after finishing the sending, the TPA
server records the time t1.

(6) VM1 randomly selects N array elements (details
given in the following) and computes the sum of
urity Comm. Networks 2014; 7:492–502 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Table I. Comparison of execution time with full and partial-
memory access.

Sample rate Δtfull (s) Δtpartial (s) Δtpartial/Δtfull

1/10 0.622 7.648 12.296
1/20 0.314 3.824 12.178
1/30 0.213 2.554 11.991
1/40 0.160 1.925 12.031
1/50 0.129 1.552 12.031
1/100 0.068 0.778 11.441
1/200 0.036 0.389 10.806
1/500 0.017 0.156 9.176
1/1000 0.011 0.079 7.182

Verifying cloud SLA by a third-party auditorH. Zhang et al.
the N elements. This means that VM1 needs to read
the N elements from the physical memory. If the
cloud does not allocate sufficient physical memory
(e.g., M) to VM1, then some of the array elements
will not be stored in the physical memory (but
rather in the hard disk). This will cause a much
longer access time.

(7) As soon as the computation is done, VM1 returns
the result (i.e., the sum) to the TPA server. The
TPA server verifies if the result is correct.

(8) The TPA server records the time t2 when it receives
the result.

(9) From the times t1 and t2, the TPA can figure out the
computation time in VM1 (details given in the
following), and then the TPA can determine if the
cloud actually allocates a size of M physical
memory to VM1.

In the preceding algorithm, there are two issues that
need to be further explained: the selection of N random
elements (Step 6) and how to figure out the computation
time in VM1 (Step 9).

First, we give two trivial approaches to generate the
random indexes. In Approach #1, when the TPA wants to
test the cloud, it randomly generates N indexes and sends
the N indexes to the TPAM in the cloud. However, the
number of indexes may be large (e.g., could be 50 million).
This approach may introduce a large communication over-
head. Hence, we will not use Approach #1.

In Approach #2, when the TPA wants to test the cloud, it
randomly generates a seed and sends it to the TPAM. The
TPAM uses the seed and a prestored function to generate N
random indexes of array R. However, the hypervisor is able
to see the function (stored in physical memory or hard drive),
and it can compute the N random indexes when it sees the
random seed. Then, the hypervisor can move all the N array
elements (corresponding to the N random indexes) into the
physical memory before the computation starts. The afore-
mentioned cheating makes the computation fast enough,
and the TPA will not be able to find out any SLA violation.
Hence, Approach #2 does not work.

Next, we present our solution to this problem. To select
N elements randomly and efficiently, we use the random
number r as the index of the first element and determine
the next index from the value of the current element. In
general, the nth index is based on the value of the (n� 1)th
element R[n� 1]. Specifically, to achieve random memory
testing, we determine the nth index by

nth index ¼ f n� 1ð Þth indexþ lowest k

�bit of R n� 1½ �gmod Mð Þ

where k satisfies 2k� 1≤M< 2k� 1 andM is the size of the
array. The lowest k-bit of the (n� 1)th element R[n� 1] may
be considered as a “random” number between 0 and 2k� 1.

In the preceding method, one has to read the value of
the (n� 1)th element to generate the nth index. The testing
Security Comm. Networks 2014; 7:492–502 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
program in VM needs to read the value anyway. However, it
would be very costly for the hypervisor to generate all the in-
dexes using the preceding method because the method
requires the hypervisor to read all the N elements, which is
equivalent to our test. And if some of the N elements are
not in the physical memory (i.e., in hard drive), it will take
the hypervisor a much longer time to complete the index
generation, which makes any cheating of the hypervisor
detectable.

Next, we discuss the second issue (Step 9). The test
time Δt = t2� t1 includes the round-trip time (RTT) be-
tween the TPA server and VM1, plus the computation time
of the test in VM1. As we know, the RTT may have some
variations, and this is a noise to our measurement. We use
the following approach to reduce the effect of the RTT
noise: if the computation time is much larger than the
RTT, then the variation of RTT will have little effect on
the measurement result. In [19], the authors measured the
RTT of four major CSPs (Amazon, Google, Microsoft,
and Rackspace) and found out that the RTT is less than
200ms. If the computation time is in the order of several
seconds, then the variation of the RTT does not affect the
correctness of our decision (i.e., if there is an SLA violation)
at all. We will show this by our experimental data in the
following.

We run real experiments to evaluate the effectiveness of
the aforementioned ATB algorithm. The experiments were
conducted in a small cloud at the Harbin Institute of Tech-
nology. XEN [24] was used as the hypervisor. In the
experiments, we run two test scenarios: (i) the cloud allo-
cates the exact memory size as specified in the SLA; and
(ii) the cloud allocates less memory than specified in the
SLA, which means some VM memory operations will
have to access the hard disk. The results are reported in
Table I, where the sample rate refers to the rate of sampling
the array R (for example, a sample rate of 1/10 means the
algorithm randomly selects 1/10 elements from the array).
The sample rate is used to control the number of elements
to be accessed, which in turn controls how large the com-
putation time will be. Δtfull is the test time (Δt) recorded
under Scenario 1 (i.e., full-memory access); and Δtpartial
is the test time recorded under Scenario 2 (i.e., with 50%
memory access and 50% hard drive access).
497



Table III. Comparison of execution time for different
percentages of memory cheating (sample rate = 1/10).

Percentage of
memory cheating Δtfull (s) Δtpartial (s) Δtpartial/Δtfull

50 0.624 7.683 12.313
40 0.889 4.387 4.935
30 0.517 3.693 7.143
20 0.827 2.765 3.343
10 0.790 1.853 2.346

Verifying cloud SLA by a third-party auditor H. Zhang et al.
We run each test five times to eliminate the random
influences from other applications in the VM. From Table I,
we can see the big difference of the execution time
between the full-memory access and the partial-memory
access. The partial-memory access time is about 7 to
12 times of the full-memory access time. Table I also
shows that we can control the length of the computation
time by varying the sample rate. When the sample rate is
1/50, the difference between Δtfull and Δtpartial is larger
than 1 s. Given that RTT is less than 200ms, all the tests
with sample rate higher than 1/50 are able to detect if full
physical memory is available (i.e., if SLA is satisfied).
The actual RTT in our experiments is less than 1ms.

In general, if there is a big difference between the two
times, Δtfull and Δtpartial, then our ATB algorithm is able to
detect if the cloud allocates sufficient memory to the VM.

We also study the effectiveness of our algorithm when a
cloud performs different levels of cheating. The level of
cheating refers to the percentage of memory that is not pro-
vided to the VM. A small percentage of memory cheating
may not be easily detected because it only causes a small
performance degradation for the user. We run experiments
for various percentages of memory cheating, and we report
the results in Table II, where the sample rate is 1/100.

Table II gives the execution time for different memory
cheating percentages, varying from 50% to 10%. Columns
2 and 3 list the execution time under full-memory access
and partial-memory access, respectively. As one can
expect, the smaller the cheating percentage, the less is the
difference between the two access times. For example, when
the memory cheating percentage is 50%, the partial-memory
access time is about 12 times of the full-memory access time.
However, when the memory cheating percentage is 10%, the
difference becomes smaller, only 2.33 times or 106ms.

By using a high sample rate, our ATB algorithm is able
to detect even a small percentage of memory cheating. In
Table III, we present the results when the sample rate is
1/10. As we can see, even for the 10% memory cheating,
the difference between Δtfull and Δtpartial is more than 1 s,
which is large enough for us to tell a memory cheating
(an SLA violation).

5.2. The resource exhaustion testing

In this subsection, we present another approach that can
test the size of VM memory allocated by the cloud. Many
Table II. Comparison of execution time for different percentages
of memory cheating (sample rate=1/100).

Percentage of
memory cheating Δtfull (s) Δtpartial (s) Δtpartial/Δtfull

50 0.068 0.778 11.441
40 0.089 0.440 4.944
30 0.053 0.324 6.113
20 0.083 0.279 3.361
10 0.080 0.186 2.325

498 Sec
users lease cloud to run Web services. This approach is
designed for Web services running on cloud. The basic idea
is to estimate the VM memory size from the number of
simultaneous connections and the corresponding response
times. When a Web server receives a user request, it con-
sumes certain system resource (such as memory) to process
the request. As the number of simultaneous requests
increases, more system resource will be consumed. When
the number of simultaneous requests reaches a threshold
(denoted as rt) at which the system resource is exhausted,
new user requests will be put into a queue or even dropped.
As a result, we will observe much longer response times
for the new requests and/or dropped requests. Basically, we
want to find out the relationship between the available
memory size and the number of simultaneously supported
requests. Then, we can estimate the available VM memory
size by the number of simultaneously supported requests.

The threshold rt is an important parameter that affects
the accuracy of the test. rt may be obtained as follows: In
our own computer, we set up a VM with the same config-
uration as the one that will run in the cloud. Then, we vary
the number of simultaneous requests and record the
number of successful connections and the response times.
We can also use a system tool to monitor the usage of
the system resource (e.g., memory). From the preceding
data, we will be able to determine the value of rt.

The main advantage of the resource exhaustion test is
that the test is stealthy to the cloud. That is, the cloud does
not know that it is being tested because the number of user
requests varies all the time. It is very natural to have many
user requests at the same time. This feature makes the test
very effective.

We design real experiments to evaluate the performance
of the resource exhaustion test. We set up an Apache Web
server (version 2.2.3) [25] to run Web applications and
response to user requests. To handle many simultaneous
requests, we set the “ServerLimit” of the Apache server
to a large number—1000—which means that the Apache
parallel connection limit is 1000. This value is large
enough such that Apache will not limit the number of con-
nections before the memory does. To test memory size, we
use a dynamic Web page (PHP page) instead of a static
page (html only) because the latter does not consume much
VM memory. In our experiments, the PHP page declares
an array and consumes about 8-MB memory when it is
successfully processed.
urity Comm. Networks 2014; 7:492–502 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Table IV. Comparison of connection time with 1-GB memory.

Connections Connection time (ms)
Memory
exhaustedNumber Rate Success (%) Minimum Maximum Average

100 100 100 152.1 3 919.7 2 405.8 No
110 110 100 86.5 4 233.0 2 622.9 No
120 120 100 110.2 4 677.3 2 910.9 No
130 130 100 246.0 6 165.2 3 454.0 No
140 140 100 88.0 34 349.2 11 268.0 Yes
150 150 100 62.9 67 378.3 19 343.1 Yes
160 160 100 154.3 59 729.8 16 464.1 Yes

100 110 120 130 140 150 160
0

10

20

30

40

50

60

70

tim
e 

(s
)

Number of Connections

 Maximum Connection Time
 Average Connection Time

Figure 2. Comparison of connection time for a virtual machine
with 1-GB memory.

Table V. Success rate for different maximum test cycles with
1-GB memory.

Number of
connections

Maximum test cycle (s)

10 (%) 20 (%) 30 (%) 40 (%)

130 100.00 100.00 100.00 100.00
140 62.14 74.29 85.00 100.00

Verifying cloud SLA by a third-party auditorH. Zhang et al.
We use httperf [26] as the client-side tool, which is a
scalable client workload generator to send concurrent
hypertext transfer protocol requests to the Web server.
Because each PHP page consumes about 8-MB memory,
httperf does not need to generate a large number of
requests at the same time. For example, a test with 200
parallel requests will consume about 1.6-GB memory.

To study the impact of different memory sizes on Web
service performance, we run tests under two scenarios, that
is, a VM with 1-GB memory and a VM with 512-MB
memory. Table IV gives experimental results using a VM
with 1-GB memory. In Table IV, from left (column) to
right, the results include the number of connections
requested, the request rate (per second), the success rate,
the connection time (i.e., the Transmission Control Protocol
connection lifetime), including the minimum, maximum,
and average values, and whether the memory is exhausted
(yes or no). The success rate means the percentage of
requests that have been successfully processed. The requests
are sent at a rate of 100 to 160 requests per second.

In this set of experiments, we allow the test cycle (i.e.,
the response time) to be as long as it could be, that is, we
do not set a limit for the response time. Because of this,
all the user requests were successfully processed.

Table IV shows that all the requests are processed (all
the success rates are 100%), which indicates that no con-
nection is discarded because of Apache or httperf connec-
tion limits. The connection time is basically the response
time (the http lifetime). Hence, in the rest of the paper,
we use the term connection time instead of response time.
When the memory is not exhausted (i.e., when the number
of connections are no more than 130), the average connec-
tion time is less than 3.5 s. When the memory is exhausted
(i.e., the number of connections is larger than or equal to
140), the average connection time dramatically increases
(larger than 11 s), and the maximum connection times are
larger than 34 s. We also plot the average and maximum
connection times in Figure 2, where the x-axis is the num-
ber of connections.

The reason for this large increase is given in the follow-
ing. When more requests come in, more memory is needed
by the Apache server to handle the requests. Before the
VM memory is exhausted, the requests can be successfully
handled in a short time because there is still physical
memory available to the VM. However, when the memory
Security Comm. Networks 2014; 7:492–502 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
is exhausted, the Apache server is not able to process any
more request, and it has to put the new requests in a queue.
Only after some existing requests have been processed and
the corresponding memory have been released, the Apache
server can start processing the new requests. This causes a sig-
nificant increase of average (and maximum) connection time.

Note that the minimum connection time is not a good
base for determining the available VMmemory size because
the client requests are handled one by one at the Apache
server side, even if the requests come in at the same time.
Hence, the first client request can always be processed
quickly, no matter how many parallel requests are sent.

In a different set of experiments, we set the maximum test
cycle (i.e., the response time) to a given value, and we record
the success rate. The results are reported in Table V. As we
can see, when there are 140 user connections requested
499



Table VI. Comparison of connection time with 512-MB memory.

Connections Time (ms)

Number Rate Success (%) Minimum Maximum Average Memory exhausted

30 30 100 45.4 731.3 258.2 No
40 40 100 39.7 1 425.3 510.0 No
50 50 100 45.1 2 154.3 758.0 No
60 60 100 45.3 2 732.1 1 093.5 No
70 70 100 46.2 53 139.3 20 658.7 Yes
80 80 100 45.4 82 959.3 39 964.8 Yes
90 90 100 58.6 90 308.4 28 290.9 Yes
100 100 100 55.9 142 034.4 54 297.7 Yes
110 110 100 72.2 117 761.1 34 881.8 Yes
120 120 100 63.4 303 454 163 314.7 Yes
130 130 100 46.9 212 886.9 104 220.7 Yes
140 140 100 68.3 257 316.2 113 667 Yes
150 150 100 87.9 440 457.6 225 931.6 Yes
160 160 100 141.9 425 082.6 211 940.9 Yes

Table VII. Success rate for different maximum test cycle with
512-MB memory.

Number
ofconnections

Maximum test cycle (s)

10 (%) 20 (%) 30 (%) 40 (%)

60 100.00 100.00 100.00 100.00
70 52.86 57.14 62.86 68.57

0 10 20 30 40
0%

20%

40%

60%

80%

100%

 Number of Connections = 130
 Number of Connections = 140

C
D

F

Connection Time (s)

Figure 3. The distribution of connection time with 1-GB memory.
CDF, cumulative distribution function.

Verifying cloud SLA by a third-party auditor H. Zhang et al.
(VM memory is exhausted), the success rate varies from
62% to 100%, depending on the maximum test cycle. The
shorter the test cycle, then the smaller is the connection
success rate. This means if the application has a limit on
the response time, then some user requests will be dropped
when the memory is not sufficiently large. Hence, the
connection success rate may also be used to detect SLA
violations on memory size.

We want to see if the preceding results apply to different
memory sizes. Hence, in another experiment, we measure
the connection time in a VM with a 512-MB memory. The
results are reported in Table VI.When the number of parallel
connections is larger than 70, the VM memory is exhausted.
We observe similar results as in Table IV. That is, when the
VM memory is exhausted, the average (and maximum)
connection time dramatically increases. In a different set of
experiments, we set the maximum test cycle to a given value
and compare the success rate. The results are reported in
Table VII, which are similar to those in Table V. That is,
the success rate decreases when the maximum test cycle
becomes smaller.

Figure 3 plots the cumulative distribution function
(CDF) of the connection time of a VM with 1-GB memory,
for 130 and 140 connections. As we can see, the CDFs
under the two cases are quite different. Figure 3 shows
the following: (i) when the number of connections is 130,
100% of the connections are successfully processed within
500 Sec
7 s; and (ii) when the number of connections is 140, only
58.6% of the connections are processed within 7 s.

Figure 4 plots the CDF of the connection time of a VM
with 512-M memory, for 60 and 70 connections. Figure 4
shows similar results as in Figure 3: (i) when the number of
connections is 60, 100% of the connections are success-
fully processed within 4 s; and (ii) on the other hand, when
the number of connections is 70, only 38.5% of the con-
nections are processed within 4 s.

The preceding experimental results and discussions
show that the resource exhaustion test is very effective in
detecting an SLA violation on VM memory size.
5.3. Security analysis

For the ATB memory testing algorithm (in Section 5.1),
one cheating that a CSP could do is to migrate the VM to
another machine that has sufficient physical memory when
urity Comm. Networks 2014; 7:492–502 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



0 10 20 30 40 50 60
0%

20%

40%

60%

80%

100%

 Number of Connections = 60
 Number of Connections = 70

C
D

F

Connection Time (s)

Figure 4. The distribution of connection time with 512-MB
memory. CDF, cumulative distribution function.

Verifying cloud SLA by a third-party auditorH. Zhang et al.
the CSP detects such a test. However, according to [27]
and [28], even at a fast bandwidth, a VM migration takes
about 5–10 s, with a downtime of about 0.3–1.5 s. Recall
that our ATB algorithm takes less than 0.9 s to complete
(for full-memory access). Hence, a VM migration will be
detected because of the large delay. Note that a cloud is
allowed to do normal VM migrations when some resource
at a machine is running out. However, if a cloud always
migrates a VM when the VM is being tested by the TPA,
then it is a strong indication of cloud cheating.

A malicious cloud may launch other attacks on the ATB
algorithm. For example, if the cloud does not allocate size
M of physical memory to VM1, during a test, it may use
only array elements in the physical memory for the compu-
tation. However, the computation result will not be correct
because the outside TPA server knows which array ele-
ments should be used for computation and it knows the
correct result. Hence, this attack can be easily defeated.

It is harder for a cloud to launch attacks on the resource
exhaustion test (in Section 5.2) because the test is similar
to normal usages of the Web application.

To sum up, our memory testing algorithms can defeat
various cheating/attacks from an untrusted cloud.
6. CONCLUSIONS

In this paper, we proposed a flexible and scalable frame-
work that utilizes a TPA for cloud SLA verification. Under
the framework, we designed two effective testing algo-
rithms that can detect an SLA violation on VM memory
size. The ATB memory testing algorithm utilizes the dif-
ference of the access time to physical memory and hard
drive. The resource exhaustion test is to suddenly increase
the number of user requests to the VM, which makes the
required memory close to the SLA parameter. Then, we
can determine if there is an SLA violation from the re-
sponse times of the user requests. Using real experiments,
we demonstrated that the two algorithms can effectively
detect cloud SLA violations on VM memory size. Also,
Security Comm. Networks 2014; 7:492–502 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
we showed that our algorithms can defend various attacks
from a malicious cloud.
ACKNOWLEDGEMENT

This research was supported in part by the China National
Basic Research Program (973 program) under grants
2011CB302605 and 2007CB311101, the China National
High Technology Research and Development Program
(863 program) under grants 2010AA012504 and
2011AA010705, and the US National Science Foundation
under grants CNS-0963578, CNS-1002974, CNS-1022552,
and CNS-1065444, as well as the US Army Research Office
under grant W911NF-08-1-0334.
REFERENCES

1. Lai Y, Lai C, Hu C, Chao H, Huang Y. A personalized
mobile IPTV system with seamless video reconstruction
algorithm in cloud networks. International Journal of
Communication Systems 2011; 24(10):1375–1387.

2. Lai C, Chang J, Hu C, Huang Y, Chao H. CPRS: a
cloud-based program recommendation system for digital
TV platform. Future Generation Computer Systems
2011; 27(6):823–835.

3. Amazon EC2, http://aws.amazon.com/ec2/
4. Google App Engine, www.google.com/enterprise/

appengine/
5. Opencrowd cloud taxonomy, www.opencrowd.com/

views/cloud.php
6. IBM Cloud, www.ibm.com/cloud-computing/us/en/
7. Microsoft Azure, www.microsoft.com/windowsazure/
8. Amazon EC2 Instance Types, aws.amazon.com/ec2/

instance-types/
9. Shaikh A, Greenberg A. Operations and management

of IP networks: what researchers should know. ACM
SIGCOMM Tutorial Session, 2005

10. Martin J, Nilsson A. On service level agreements for
IP networks. Proceedings of the 21st Annual Joint
Conference of the IEEE Computer and Communica-
tions Societies, 2002; 855–863.

11. Cloud computing use cases whitepaper, version 4.0, July
2, 2010, http://opencloudmanifesto.org/resources.htm

12. Haeberlen A. A case for the accountable cloud.
Proceedings of the 3rd ACM SIGOPS International
Workshop on Large Scale Distributed Systems and
Middleware, 2009; 52–57.

13. Brandic I, Emeakaroha VC, Maurer M et al. LAYSI: a
layered approach for SLA-violation propagation in
self-manageable cloud infrastructures. Proceedings of
34th Annual IEEE Computer Software and Applica-
tions Conference Workshops, 2010; 366–370.
501

http://aws.amazon.com/ec2/
http://www.google.com/enterprise/appengine/
http://www.google.com/enterprise/appengine/
http://www.opencrowd.com/views/cloud.php
http://www.opencrowd.com/views/cloud.php
http://www.microsoft.com/windowsazure/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://opencloudmanifesto.org/resources.htm


Verifying cloud SLA by a third-party auditor H. Zhang et al.
14. Sommers J, Barford P, Duffield N, Ron A. Multi-
objective monitoring for SLA compliance. IEEE-ACM
Transactions on Networking 2010; 18(2):652–665.

15. Goldburg S, Xiao D, Tromer E, Barak B, Rexford J.
Path-quality monitoring in the presence of adversaries.
Proceedings of the 2008 ACM SIGMETRICS on Mea-
surement and Modeling of Computer Systems, 2008;
193–204.

16. Serral-Gracià R, Yannuzzi M, Labit Y, Owezarski P,
Masip-Bruin X. An efficient and lightweight method
for Service Level Agreement assessment. Computer
Networks 2010; 54(17):3144–3158.

17. Gill P, Ganjali Y, Wong B, Lie D. Dude, where’s that
IP? Circumventing measurement-based IP geolocation.
Proceedings of the 19th USENIX Conference on Secu-
rity, 2010; 241–256.

18. Wang GH, Eugene Ng TS. The impact of virtualiza-
tion on network performance of Amazon EC2 data
center. Proceedings of the 29th IEEE Conference on
Computer Communications, 2010; 1163–1171.

19. Li A, Yang X, Kandula S, Zang M. CloudCmp:
comparing public cloud providers. Proceedings of the
10th Internet Measurement Conference, 2010; 1–14.

20. Azab AM, Ning P, Wang Z, Jiang X, Zhang X,
Skalsky NC. HyperSentry: enabling stealthy in-context
measurement of hypervisor integrity. Proceedings of
502 Sec
the 17th ACM Conference on Computer and Communi-
cations Security, 2010; 38–49.

21. Trusted Computing Group, www.trustedcompu-
tinggroup.org/

22. IPMI—Intelligent Platform Management interface
specification v2.0. http://download.intel.com/design/
servers/ipmi/IPMIv2_0rev1_0.pdf

23. http://en.wikipedia.org/wiki/Hard_disk_drive#Access_
time

24. Xen Hypervisor, www.xen.org
25. Apache, httpd.apache.org/
26. httperf, www.hpl.hp.com/research/linux/httperf/
27. Akoush S, Sohan R, Rice A, Moore AW, Hopper A.

Predicting the performance of virtual machine migra-
tion. Proceedings of the 18th Annual Meeting of the
IEEE International Symposium on Modeling Analysis
and Simulation of Computer and Telecommunication
Systems, 2010; 37–46.

28. Zhao M, Figueiredo RJ. Experimental study of virtual
machine migration in support of reservation of cluster
resources. Proceedings of the 2nd International Work-
shop on Virtualization Technologies in Distributed
Computing, 2007; 51–58.

29. Feng Z, Bai B, Zhao B, Su J. Redball: throttling shrew
attack in cloud data center networks. Journal of Internet
Technology 2012; 13(4):667–680.
urity Comm. Networks 2014; 7:492–502 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0.pdf
http://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0.pdf
http://en.wikipedia.org/wiki/Hard_disk_drive#Access_time
http://en.wikipedia.org/wiki/Hard_disk_drive#Access_time
http://www.xen.org
http://www.hpl.hp.com/research/linux/httperf/

