
A Task Scheduling Algorithm for Multi-core
Processors

Xuanxia Yao, Peng Geng
School of Computer and Communication Engineering

University of Science and Technology Beijing
Beijing, China 100083

yaoxuanxia@163.com, 15261801997@yeah.net

Xiaojiang Du
Department of Computer and Information Sciences

Temple University
Philadelphia, PA, USA, 19122

dux@temple.edu

Abstract—With the widespread use of multi-core processors,
task scheduling for multi-core processors has become a hot issue.
Many researches have been done on task scheduling from various
perspectives. However, the existing task scheduling algorithms
still have some drawbacks, such as low processor utilization rate,
high complexity, and so on. This paper presents a task scheduling
algorithm for multi-core processors, which is based on priority
queue and task duplication. In the proposed algorithm, the
Directed Acyclic Graph (DAG) is used to build a task model.
Based on the model, task critical degree, task reminder, task
execution time and the average communication time are all
considered as the priority metrics. A priority based task
dispatching list is set up by comprehensive analysis and
calculating the priority for each task. Then interval insertion and
task duplication strategies are employed to map tasks to
processors, which can decrease the communication cost, improve
the processor utilization rate and shorten the schedule length.
Our experiments show that the proposed algorithm has better
performance and lower complexity than the existing scheduling
algorithms.

Index Terms—Multi-core Processors, priority, task duplication,
normalized schedule length.

I. INTRODUCTION
Task scheduling for multi-core processors is a key factor on

the performance of the multi-core processors. Most traditional
task scheduling strategies are focused on single-core processor,
and they can't work well for multi-core processors system.
With the widespread use of multi-core processors, designing an
effective task scheduling strategy has been a hot issue [1].

Task scheduling for multi-core processors should meet two
requirements [2], which are load balancing and processor
affinity. Load balancing means making even and full use of the
processors resources in the system. Processor affinity refers to
minimizing the task migration. A processor should allocate
some cache for each task running on it so as to store the
intermediate data or results of them, by which the execution
speed can be improved. But when a task migrates to another
processor, the cache allocated to it by the previous processor
becomes invalid and the current processor has to re-allocate
cache for it, so it is important to avoid task migration as far as
possible.

It seems that the two requirements of task scheduling for
multi-core processors always conflict with each other. On the
one side, to keep load balancing always needs to migrate tasks
from one processor to another, which leads to the loss of
affinity, and on the other side, considering the processor
affinity much or limiting task migration may break load
balancing. How to deal with the relations between the two
requirements is an important and difficult issue in task
scheduling for multi-core processors.

In order to counteract the existing problems in task
scheduling algorithm for multi-core processors, we propose a
new task scheduling scheme based on priority queue and task
duplication, which not only exploits the advantages of the
existing algorithms but also introduces some new ideas to
improve the task dispatching effects for multi-core processors.

The remainder of this paper is organized as follows: In
Section II, we review the related works on task scheduling. In
Section III, the mathematical model, notations and assumptions
are given. In Section IV, we describe the proposed task
scheduling algorithm. In Section V, we make detailed
comparison analyses on the performances among the proposed
algorithm and the two typical existing schemes. Section VI
concludes this paper.

II. RELATED WORKS
At present, task scheduling for multi-core processors is

considered a NP (Non-Deterministic Polynomial) problem and
unable to obtain the optimal solution. The existing scheduling
algorithms can only get the suboptimal solutions based on
some constraints. Heuristic task scheduling algorithms is
generally considered as the most suitable algorithms to find the
suboptimal solutions for NP problems. The commonly used
heuristic algorithms can be classified into three kinds, which
are list based task scheduling algorithm, task-duplication based
algorithm and cluster based.

The list based scheduling algorithm can be divided into two
kinds, which are list scheduling with static priorities (LSSP)
and list scheduling with dynamic priorities (LSDP). For LSSP,
tasks are scheduled to the processor that can make it starts
earliest in the order of their priorities which are computed in
advance. For LSDP, the priorities for the unscheduled tasks
should be re-computed after each scheduling. In fact, the

2013 International Conference on Parallel and Distributed Computing, Applications and Technologies

978-1-4799-2418-9/13 $31.00 © 2013 IEEE

DOI 10.1109/PDCAT.2013.47

259

2013 International Conference on Parallel and Distributed Computing, Applications and Technologies

978-1-4799-2418-9/13 $31.00 © 2013 IEEE

DOI 10.1109/PDCAT.2013.47

259

2013 International Conference on Parallel and Distributed Computing, Applications and Technologies

978-1-4799-2418-9/13 $31.00 © 2013 IEEE

DOI 10.1109/PDCAT.2013.47

259

2013 International Conference on Parallel and Distributed Computing, Applications and Technologies

978-1-4799-2418-9/13 $31.00 © 2013 IEEE

DOI 10.1109/PDCAT.2013.47

259

2013 International Conference on Parallel and Distributed Computing, Applications and Technologies

978-1-4799-2418-9/13 $31.00 © 2013 IEEE

DOI 10.1109/PDCAT.2013.47

259

2013 International Conference on Parallel and Distributed Computing, Applications and Technologies

978-1-4799-2418-9/13 $31.00 © 2013 IEEE

DOI 10.1109/PDCAT.2013.47

259

2013 International Conference on Parallel and Distributed Computing, Applications and Technologies

978-1-4799-2419-6/13 $31.00 © 2013 IEEE

DOI 10.1109/PDCAT.2013.47

259

priorities are for task-processor pairs. LSDP is more complex
than LSSP but usually have shorter scheduling length that
LSSP. For instance, ISH [3] needs to analyze whether a task
can be inserted into the free time between the scheduled tasks
on a processors except. The simple list based scheduling
algorithms always can’t provide ideal scheduling length.

In task-duplication based scheduling algorithms, in order to
decrease the communication time between tasks on different
processors, some tasks may be duplicated redundantly on the
processors that their successor tasks are assigned to after they
have been assigned to the different processors, which can
further shorten the total scheduling length. Compared with the
list based scheduling algorithms, the task-duplication based
scheduling algorithms usually have shorter scheduling length
and higher complexity. TDS [4] should be the earliest task-
duplication scheduling algorithm, which duplicates the
predecessors of a critical task to its processor so as to make the
task complete earlier. The key factor to shorten the scheduling
length is to determine which tasks should be duplicated.

Cluster-based scheduling algorithms usually include two
stages, which are mapping and scheduling. In mapping stage,
the tasks are mapped into different clusters according to the
specified policy. In scheduling stage, the tasks in a same cluster
are scheduled to the same processor. MD [5] and DSC [6] are
typical ones. In order to short the scheduling length, they all try
to make the critical tasks be assigned to the same processor as
possible.

In this paper, we try to take advantage of LSDP and task-
duplication scheduling to shorten the total scheduling length.

III. THE MATHEMATICAL MODEL, NOTATIONS AND
ASSUMPTIONS

A. DAG Based Task Model
Since the relationship among tasks can be described clearly

by a DAG [7], we adopt a DAG to model the tasks in our paper.
In order to facilitate description, we use a five-tuple to denote a
DAG G, which is G = (T, E, C, W, V). The meaning of each
element in the five-tuple is given as following.

• T is the collection of the vertices in graph G, which is
denoted by T={Ti|1�i�n}, here n=|T| is the total
number of the tasks. Each vertex Ti represents one task.

• E is the collection of the directed edges in graph G,
which is denoted by E={Ei,j|1�i,j�n}. The directed
edge Ei,j between vertex Ti and Tj indicates that task Ti
must be done before starting task Tj. We call that Tj is
the successor of Ti and Ti is the predecessor of Ti. |E| is
the total number of the directed edges.

• C is the collection of the communication costs, which
is denoted by C={Ci,j|1�i,j�N} and Ci,j represents the
communication cost from task Ti to Tj.

• W is the collection of tasks’ execution time which is
denoted by W={Wi|1�i�n}, where Wi is the execution
time of task Ti.

• V is the collection of the tasks’ critical degree, which is
denoted by V={Vi|1�i�n,1�i�3},where Vi represents
task Ti’s critical degree. If task Ti is a critical task, its Vi

will be assigned to be 3, which is the highest critical
degree value, and if Ti is on a path directed to a critical
task, its Vi should be set 2. Other, the critical degree of
task Ti is 1. In this paper, we use the critical degree as a
key factor to measure a task’s priority.

B. Notations
In order to describe the algorithm clearly, we define some

notations as following.
• pred(Ti)={Tj|Ej,i E} is the collection of Ti’s

predecessors, |pred(Ti)| represents the number of Ti’s
predecessors.

• succ(Ti)={Tj|Ei,j E} is the collection of Ti’s successors,
|pred(Ti)| represents the number of Ti’s successors.

• est(Ti) is the earliest starting time of task Ti in the DAG
based task graph, if pred(Ti) is null, est(Ti) is 0, else
est(Ti)=max{Cj,i+est(Tj)+Wj| Tj pred(Ti)}.

• lst (Ti) is the latest starting time of task Ti in the DAG
based task graph, if succ(Ti) is null, lst(Ti)=est(Ti), else
lst(Ti)=min{est(Tj)-Ci,j| Tj succ(Ti)}-Wi.

• EFT (Ti,Pi): the earliest completion time of task Ti on
processor Pi when both the interval insertion and task
duplication strategies are not adopted.

• EFTinsert (Ti,Pi): the earliest completion time of task Ti
on processor Pi when the interval insertion strategy is
adopted.

• EFTcopy (Ti,Pi): the earliest completion time of task Ti
on processor Pi when task duplication strategy is
adopted.

• EFTall (Ti,Pi): is the earliest time that processor Pi
completes all the tasks dispatched on it before Ti being
mapped to it.

• EST (Ti,Pi): the earliest starting time of task Ti on
processor Pi.

• SPT (Ti,Pi): the waiting time of task Ti on processor Pi.
• PSTj,i represents the prescheduling time from task Tj to

Ti, PSTj,i = Wj+Cj,i , Tj is the predecessor of Ti .
• P is the collection of processors, which is denoted by

P={Pi|1�i�p}, Pi represent processor i. p=|P| is the
number of processors.

• TRi is the remainder of Ti, which is calculated by TRi

=est(Ti)-lst(Ti). The smaller the TRi, the more urgent Ti.

C. Constraints and Assumptions
In order to describe our scheduling strategy, we give the

constraints and make assumptions as following.
• Each DAG only has one entry node and one exit node.

If there is more than one entry node, a null node
should be added as these entries’ predecessor. The
computation and communication overheads of the null
node are all zero. If there are more than one exit nodes,
take the same approach to do with it.

• The FCFS(First Come First Service) strategy is taken
on a processor after the tasks are assigned to it. Any
task is not allowed to preempt the time slot.

260260260260260260260

• All the processors are homogeneous and have the
same performance. In addition, they can communicate
with each other.

• A task can’t send message to its successors until it has
been completed. If a task and its successor task are on
the same processor, the communication cost between
them is zero.

• A task can’t start until all of its predecessors have
been completed and it has received the messages from
all of them.

• The current scheduling task refers to the task that will
be scheduled immediately. The ready task refers to the
task that its predecessor tasks have been scheduled.
Since the predecessor tasks of a ready task may be
duplicated, we don’t consider whether they have been
completed or not in the task mapping stage.

• There are enough processors available, which means
the number of processors is many enough.

IV. THE ALGORITHM DESCRIPTION

A. Priority Calculation
Different task scheduling algorithms have different

methods and metrics to measure the task’s priority. For
example, the remainder of the ready task is used as a metric to
compute the priority in each scheduling so as to realize
dynamical priority [8]. In addition, the average computation
cost and communication cost are always used as important
parameters to calculate the task priority [9]. In this paper, we
consider the task’s priority from multiple aspects. For one thing,
we introduce a concept of the task critical degree, which is used
to indicate how much the task can contribute to reduce the
length of tasks scheduling. The greater, the contribution more,
its priority should be higher. For another, not only the task
remainder but also the computation or execution time and the
average communication time are all introduced into measuring
a task’s priority. The reason is that a task’s computation and
communication costs are all critical factors to advance the
earliest starting time of its successor tasks. Based on these
considerations, the priority of a task can be calculated by Eq.1.

* ,
succ()

* ,succ()

1 1
* * , 0

1
+

| succ() |
priority() =

1
* , = 0

1
+

| succ() |

Ci j
j Ti

Ci jj Ti

V TRi iTRi Wi TiTi
V TRi i

Wi Ti

�
∈

�
∈

≠
�
�
�
�
�
�
�
�
�

 (1)

According to the definition for task critical degree in
section 2.1, obtaining the critical tasks and critical paths are the
perquisites of getting a task’s critical degree. So it is necessary
to find out the critical tasks and critical paths of the given task
graph using the existing critical path algorithm so as to get the
critical degree of each task node before using the Eq.1 to
compute the priority of a task. Due to space limitations, it is not
described here.

It is obvious that the task with the highest priority in the
ready task queue should be chosen as the current scheduling
task.

B. Interval Insertion and Task Duplication
Interval insertion means to insert the current scheduling

task into the free time interval of a processor. For this purpose,
it should check whether there is a free time interval greater than
the execution time of the current scheduling task on a processor
in current task mapping state, if yes, the interval insertion
strategy may be used. To be sure, the interval insertion
strategy has two premises, one is that the predecessor task of
the current scheduling task has completed, the other is that
there is no dependency relation between the inserted task and
the waiting task on the processor.

Task duplication strategy is mainly used to deal with the
communication delay among the tasks on different processors.
This delay is very common in embedded systems. Since there
is no communication cost among tasks on the same processor,
duplicating the tasks with heavy communication cost to the
same processor can reduce the communication cost among
them, which is a method to use computation for
communication.

Currently, most of the existing tasks scheduling algorithms
use only one of the two strategies. For instance, HEFT [10]
only adopts the interval insertion strategy, which may lead to
the tasks that the interval insertion strategy can’t use on them
are unable to be scheduled well. In addition, since interval
insertion can’t decrease the communication costs caused by the
tasks on different processors, the total time completion time
can only be shortened limitedly. OSA [11] only adopts the task
duplication policy, which can decrease the communication
costs effectively, but can’t avoid generating the redundant tasks.
These the redundant tasks may not only be unable to shorten
the total tasks completion time, but also waste the processor
resources.

C. Task Mapping
Since the interval insertion strategy and task duplication

strategy have their own advantages and disadvantages
respectively, we try to combine the two strategies to advance
the total completion time. The basic idea is computing a task’s
earliest completed time for different strategies (including
neither of them being used) and then choosing one that has the
earliest completion time to schedule the task. For this purpose,
the following steps should be done.

Step 1. The earliest completion time of task Ti on processor
Pi is computed by Eq. 2 when neither of the two strategies is
used.

EFT(Ti,Pi)=EFT(Tj,Pj)+Cj,i+Wi (2)

Here, Tj is the task with maximum costs (including
execution time and communication cost) of all its predecessor
tasks, and Pj is the processor that Tj is scheduled to.

Step 2. If the interval insertion strategy can be used to
schedule Ti on Pi, EFTinsert(Ti,Pi) is computed by Eq.3,
otherwise, it is set to �. Tj in Eq.3 is the latest task
communicating with Ti.

261261261261261261261

EFTinsert(Ti,Pi)
=MAX{ EFT(Tj,Pj)+Cj,i , EFTall(Ti,Pi)}+ Wi (3)
Step 3. For the task Ti to be scheduled to processor Pi,

SPT(Ti,Pi) is calculated by Eq.4. If it is less than a threshold,
EFTcopy(Ti,Pi) is set to be and go to step 5. Otherwise,
check whether there is a Ti’s predecessor task Tj with
maximum sum of execution time and communication can meet
the Inequality 5 and 6 or not, if yes, it indicates that the task
duplication strategy can be used to duplicate Ti’s predecessor
task to processor Pi, and the Tj with the maximum critical
degree is chosen to be duplicated. Otherwise, EFTcopy(Ti,Pi) is
set to be and go to step 5.

SPT(Ti,Pi)= EFT(Ti,Pi) - Wi - EFTall(Ti,Pi) (4)

Wj<SPT(Ti ,Pi) (5)

EFT(Tj,Pi)<EST(Ti,Pi) (6)

Step 4. EFTcopy(Ti,Pi) is calculated by Eq.7, where Task Tk
is the task with the second-most prescheduling time in Pred(Ti)
and Pk is processor that Tk is dispatched to. Let Tj be the
current task to be scheduled on Pi and go back to step 3.
EFTcopy�Ti,Pi�

�
��
�
��

EFT�Tk,Pk�+Ck,i+Wi,
	
 Tk has not sent data to Ti after Tj is completed� 	

EFT
Tj,Pi�+Wi,		

	�	has not sent data to	��	after	��	is completed��

(7)
Step 5. Choose the scheduling strategy corresponding to

the smallest one among EFT(Ti,Pi), EFTcopy(Ti,Pi) and
EFTinsert(Ti,Pi) to be scheduling strategy for scheduling task Ti
to Pi.

D. Algorithm Description
For the sake of clarity, we describe the proposed task

scheduling algorithm according to its execution steps as
following.

Step 1. If there is a ready task in the task list, add it to the
ready task list, otherwise, go to step 5;

Step 2. Compute the priority for each task in the ready task
list and choose the task Ti with the highest priority to schedule.

Step 3. For each Pi , on which the task Ti’s mapping
computing have not been done, perform the five steps in the
subsection of task mapping.

Step 4. Choose the processor Pi where task Ti has the
earliest completion time to be the Ti’s executing processor.
That is to say scheduling task Ti to processor Pi.

Step 5. If all tasks have been scheduled, stop, otherwise, go
back to step 1.

E. Time Complexity Analysis
According to the function of the proposed task scheduling

algorithm, it can be divided into two phases, they are priority
computing phase and the task mapping phase. In order to
obtain the time complexity of the algorithm, we analyze the
two phase’s time complexity respectively.

In priority computing phase, the most complicated
computations are finding the critical path, computing the
execution time and the average communication time of these
tasks. For a directed acyclic task graph with n vertices and e
edges, the time complexity to find its critical path is O(n+e).
And in order to compute the execution time and the average
communication time of these tasks in the task graph, we need
to traverse all the vertices and edges in it, the time complexity
for graph traversal is O(d·n), here, d is the biggest in-degree of
a node in the DAG. Accordingly, the time complexity of
priority computing phase is O(n+e)+O(d·n).

In task mapping phase, there are mainly three things to do.
One is to compute the earliest completion time of a task on a
processor without using any of the two strategies, whose time
complexity isO (d·n). The other is to compute the earliest
completion time of a task on a processor when using interval
insertion strategy, whose time complexity of this step is also
O(d·n). The rest one is to compute the earliest completion time
of a task on a processor when using task duplication strategy,
which is different from the former two. Since it necessary to
check recursively whether there is a current task’s predecessor
can be duplicated to the processor, the time complexity of this
stage should be O(m·d·n), here m is the number of recursion m,
which is equal to the DAG’s layers. Accordingly, the time
complexity of the task mapping on a single processor is
O(2·d·n+m·d·n). In the worst case, m is equal to the number of
the tasks n, and the time complexity will be O(2·d·n +d·n2), that
is O(n2). Let p be the number of the processors, the total time
complexity of task mapping phase is O(p·n2), which can also be
denoted by O(n2).

To sum up, the proposed algorithm’s time complexity is
O(d·n)+ O(n+e)+ O(n2), that is O(n2).

V. PERFORMANCE ANALYSIS
In order to analyze and evaluate the performance of the

proposed algorithm objectively, we use the TDS and CPFD [12]
task scheduling algorithms for reference and make comparison
analyses among our algorithm and them from three aspects. In
addition, for the sake of easy description, the proposed
algorithm is denoted by PQTD in this section.

A. Scheduling Analysis Based on a Given Task Graph
We make the task graph shown in Fig.1 as an example to

analyze and compare the scheduling results of the three task
scheduling algorithms.

In Fig.1, there are ten task nodes, the number inside the
node is its identification and the number beside the node
represents the execution time of the task. In addition, the
directed edge from node i to node j indicates that task j
shouldn’t start until task i is completed, and the number on the
directed edge is the communication time from one task to the
other.

We schedule the tasks in Fig.1 using TDS, CPFD and
PQTD respectively. The scheduling results of the three
algorithms are shown individually in Fig.2, Fig.3 and Fig.4.
For easy understanding, the scheduling results figures are
explained as following.

262262262262262262262

Fig.1 A task graph

In Fig.2, Fig.3 and Fig.4, the abscissa represents the
scheduling length and the ordinate represents the processors
used. The denotation of “TX/Y” represents a task node, where X
denotes the identification of the task and Y is the execution
time of it. The directed connection between two task nodes
means the end task node couldn’t begin until the starting point
task finished. For the sake of clarity, only the dependence
relationships that need long communication time are labeled. In
addition, the task node with shadow is a duplicated task.

It can be seen from Fig.2, Fig.3 and Fig.4 that our
scheduling length is 24, which is the same as CPFD’s but is
less than the TDS’s 30. In addition, TDS and CPFD all need 6
processors while our algorithm only needs 5. If the two aspects
are taken into consider together, our algorithm is better than the
other two.

Fig.2 TDS Scheduling Result

Fig.3 CPFD Scheduling Result

Fig.4 PQTD (The Proposed Algorithm) Scheduling Result

B. Scheduling Analysis Based on Random Task Graphs
In order to make an objective evaluation of the algorithm

more generally, we make the random task graphs with 10 to 20
task nodes and the CCR(Communication to Computation Ratio)
[13] being equal to 0.1, 0.5, 1, 2, 3 and 5 as the scheduling
examples to analyze their scheduling results. At the same time,
NSL (Normalized Schedule Length) [14] is employed as a key
factor to evaluate the performance, because NSL is the ratio of
the critical path length and scheduling length, which can reflect
the improvement in the scheduling performance well.

The results of the three scheduling algorithms on the
random task graphs with different CCR are shown in Fig. 5.

Fig.5 The Scheduling Results on the Random Task Graphs with Different

CCR

The three algorithms are all based on task duplication, that
is to say that they all use task-duplication strategy to decrease
the communication cost and accordingly shorten the task
scheduling length, so the communication cost has great impact
on their scheduling performances [15]. As shown in Fig 5, the
NSLs of the three algorithms didn't have an observably
improvement when the CCR is 0.1, which means the
performance didn't improve significantly and can’t reflect the
advantage of multi-core processors. However, with the increase
of CCR, all the three scheduling algorithm's performance are
all improved significantly. Especially, the improvements of our
algorithm and CPFD are much faster than TDS's. And the
proposed algorithm's performance is a little higher than
CPFD’s with the increase of CCR. The main reason is that TDS
algorithm only considers merging the best predecessor and not
taking the other predecessors into account, and at the same time,
only task duplication strategy is used in CPFD, there may be
some free time that are suitable for use interval insertion
strategy with the increasing of CCR, which may lead to lose
some opportunities to have a shorter scheduling length [16]. In
the proposed algorithm, not only the task duplication strategy
but also the interval insertion strategy is taken into account,

1
1.5

2
2.5

3
3.5

4

0.1 0.5 1 2 3 5

N
SL

CCR

CPFD

TDS

Ours

263263263263263263263

which can utilize the free time better, so it has a higher
performance than CPFD.

C. Comparison in Time Complexity
Since time complexity is also an important criterion to

assess the performance of an algorithm, we made a comparison
in time complexity among the three task scheduling algorithms,
which is shown in Table I.

TABLE I. COMPARISON IN TIME COMPLEXITY

Algorithm Time Complexity

TDS O(n2)

CPFD O(n4)
PQTD(Our algorithm) O(n2)

The time complexity of TDS is from literature [4] and the
time complexity of CPFD is from literature [12].

It can be seen from Table I that the time complexity of our
scheduling algorithm is same as TDS’s but is much lower than
CPFD’s.

VI. CONCLUSION
Most existing task scheduling algorithms have the problems

of low processor utilization rate and/or high complexity. In this
paper, based on priority queue and task duplication, we
proposed a new task scheduling algorithm to deal with the
problems. We make two contributions. The first contribution is
that we introduce the concepts of critical degree as an
important metrics to calculate a task’s priority, which can
reflect the importance of a task well. In addition, the existing
priority metrics such as task remainder, the average
communication cost and the execution time are all integrated
into computing a task’s priority, which makes the priority of a
task objective and accurate. The second contribution is that we
integrate the interval insertion strategy and task duplication
strategy to map a task to a processor, which can take full uses
of the processors resources and shorten the scheduling length.
The comparison experiments showed that the proposed
algorithm has lower time complexity and better performance
than two popular scheduling algorithms.

ACKNOWLEDGMENT
This work is supported by Chinese National Scholarship

Fund and Chinese National High Technology Research and
Development Program 863 under Grant No. 2012AA121604,
as well as the US National Science Foundation (NSF) under
grants CNS-0963578, CNS-1022552, and CNS-1065444.

REFERENCES
[1] Ya-Shu Chen, Han Chiang Liao, and Ting-Hao Tsai, “Online

Real-Time Task Scheduling in Heterogeneous Multicore

System-on-a-Chip,” IEEE Transactions On Parallel and
Distributed Systems, 2013,24(1):118-130.

[2] Wu Jia-Jun, “Research On Task Scheduling for Multi-core and
Multi-thread processor[PHD. Thesis],” Institute of Computing
Technology of the Chinese Academy of Sciences, 2006.

[3] El-Rewinin H, Lewis T G, and Ali H H, “Task Scheduling in
Parallel and Distributed Systems,” Englewood Cliffs, New
Jersey Prentice Hall , 1994, 401-403.

[4] DARBHA S, and AGRAWAL D P, “Optimal Scheduling
Algorithm for Distributed-memory Machines,” IEEE
Transactions on Parallel and Distributed Systems, 1998, 9(1):87-
95.

[5] MY WU, Dgajski D, and Hypertool, “A programming Aid for
Message-Passing Systems,” IEEE Transactions on Parallel and
Distributed Systems, 1990,1(3):330-343.

[6] Yang T and Gerasoulis A, “Scheduling Parallel Tasks on An
Unbounded Number of Processors,” IEEE Transactions on
Parallel and Distributed Systems, 1994,5(9):951-967.

[7] Ahamd I, and Ranka S, “Using game theory for Scheduling
Tasks on Multi-core Processors for Simultaneous Optimization
of Performance and Energy,” IEEE International Symposium on
Parallel and Distributed Processing, 2008:2645-2650.

[8] Meng Xian-Fu, Yan Ling-ling, and Liu Wei-Wei, “Research on
Task Scheduling Algorithm in Grid Computing Systems based
on Dynamic Task Priority,” Journal of Dalian University of
Technology, 2012,52(2):277-284.

[9] Li Jing-Mei, and Jin Sheng-Nan, “Research on Static Task
Scheduling based on Heterogeneous Multi-core Processors,”
Computer Engineering and Design, 2013,34(1):178-184.

[10] Topcuoglu H, Hariri S, and Wu M Y, “Task scheduling
algorithms for heterogeneous processor,” In: Proceedings of the
Heterogeneous Computing Workshop, San Juan, Puerto Rico,
1999.3-14.

[11] Park C-I and Choe T-Y, “An Optimal Scheduling Algorithm
based on Task Duplication,” IEEE Transactions on Computers.
2002 51(4):444-448.

[12] Ahmad I, and Kwork Y, “On Exploiting Task Duplication in
Parallel Programs Scheduling,” IEEE Transactions on Parallel
and Distributed Systems, 1998,9(9):872-892.

[13] Ruan You-Lin, Liu Gan, Zhu Guang-xi, and Lu Xiao-feng,
“Duplication Based Scheduling Algorithm for Dependent Tasks,”
Chinese Mini-Micro Systems, 2005,26(3):335-339.

[14] Lan Zhou, and Sun Shi-Xin, “An Algorithm of Allocating Tasks
to Multiprocessors Based on Dynamic Critical Task,” Chinese
Journal of Computers, 2007,30(3):454-462.

[15] Xu Cheng, Zhao Lin-Xiang and Yang Zhi-Bang, “Scheduling
Algorithm of Multiple-processor Based on Task Clustering and
Duplication,” Application Research of Computers, 2012,29
(8):2931-2934.

[16] Meng Xian-Fu, and Liu Wei-Wei, “A DAG Scheduling
Algorithm Based on Selected Duplication of Precedent Tasks,”
Journal of Computer-Aided Design & Computer Graphics,
2010,22(6):1056-1062.

264264264264264264264

