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Abstract—With the widespread use of multi-core processors, 
task scheduling for multi-core processors has become a hot issue. 
Many researches have been done on task scheduling from various 
perspectives. However, the existing task scheduling algorithms 
still have some drawbacks, such as low processor utilization rate, 
high complexity, and so on. This paper presents a task scheduling 
algorithm for multi-core processors, which is based on priority 
queue and task duplication. In the proposed algorithm, the 
Directed Acyclic Graph (DAG) is used to build a task model. 
Based on the model, task critical degree, task reminder, task 
execution time and the average communication time are all 
considered as the priority metrics. A priority based task 
dispatching list is set up by comprehensive analysis and 
calculating the priority for each task. Then interval insertion and 
task duplication strategies are employed to map tasks to 
processors, which can decrease the communication cost, improve 
the processor utilization rate and shorten the schedule length. 
Our experiments show that the proposed algorithm has better 
performance and lower complexity than the existing scheduling 
algorithms. 

Index Terms—Multi-core Processors, priority, task duplication, 
normalized schedule length. 

I. INTRODUCTION 
Task scheduling for multi-core processors is a key factor on 

the performance of the multi-core processors. Most traditional 
task scheduling strategies are focused on single-core processor, 
and they can't work well for multi-core processors system. 
With the widespread use of multi-core processors, designing an 
effective task scheduling strategy has been a hot issue [1]. 

Task scheduling for multi-core processors should meet two 
requirements [2], which are load balancing and processor 
affinity. Load balancing means making even and full use of the 
processors resources in the system. Processor affinity refers to 
minimizing the task migration.  A processor should allocate 
some cache for each task running on it so as to store the 
intermediate data or results of them, by which the execution 
speed can be improved. But when a task migrates to another 
processor, the cache allocated to it by the previous processor 
becomes invalid and the current processor has to re-allocate 
cache for it, so it is important to avoid task migration as far as 
possible.  

It seems that the two requirements of task scheduling for 
multi-core processors always conflict with each other. On the 
one side, to keep load balancing always needs to migrate tasks 
from one processor to another, which leads to the loss of 
affinity, and on the other side, considering the processor 
affinity much or limiting task migration may break load 
balancing. How to deal with the relations between the two 
requirements is an important and difficult issue in task 
scheduling for multi-core processors. 

In order to counteract the existing problems in task 
scheduling algorithm for multi-core processors, we propose a 
new task scheduling scheme based on priority queue and task 
duplication, which not only exploits the advantages of the 
existing algorithms but also introduces some new ideas to 
improve the task dispatching effects for multi-core processors. 

The remainder of this paper is organized as follows: In 
Section II, we review the related works on task scheduling. In 
Section III, the mathematical model, notations and assumptions 
are given. In Section IV, we describe the proposed task 
scheduling algorithm. In Section V, we make detailed 
comparison analyses on the performances among the proposed 
algorithm and the two typical existing schemes. Section VI 
concludes this paper. 

II. RELATED WORKS 
At present, task scheduling for multi-core processors is 

considered a NP (Non-Deterministic Polynomial) problem and 
unable to obtain the optimal solution.  The existing scheduling 
algorithms can only get the suboptimal solutions based on 
some constraints. Heuristic task scheduling algorithms is 
generally considered as the most suitable algorithms to find the 
suboptimal solutions for NP problems. The commonly used 
heuristic algorithms can be classified into three kinds, which 
are list based task scheduling algorithm, task-duplication based 
algorithm and cluster based.  

The list based scheduling algorithm can be divided into two 
kinds, which are list scheduling with static priorities (LSSP) 
and list scheduling with dynamic priorities (LSDP). For LSSP, 
tasks are scheduled to the processor that can make it starts 
earliest in the order of their priorities which are computed in 
advance. For LSDP, the priorities for the unscheduled tasks 
should be re-computed after each scheduling. In fact, the 
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priorities are for task-processor pairs. LSDP is more complex 
than LSSP but usually have shorter scheduling length that 
LSSP. For instance, ISH [3] needs to analyze whether a task 
can be inserted into the free time between the scheduled tasks 
on a processors except. The simple list based scheduling 
algorithms always can’t provide ideal scheduling length. 

In task-duplication based scheduling algorithms, in order to 
decrease the communication time between tasks on different 
processors, some tasks may be duplicated redundantly on the 
processors that their successor tasks are assigned to after they 
have been assigned to the different processors, which can 
further shorten the total scheduling length. Compared with the 
list based scheduling algorithms, the task-duplication based 
scheduling algorithms usually have shorter scheduling length 
and higher complexity. TDS [4] should be the earliest task-
duplication scheduling algorithm, which duplicates the 
predecessors of a critical task to its processor so as to make the 
task complete earlier. The key factor to shorten the scheduling 
length is to determine which tasks should be duplicated.  

Cluster-based scheduling algorithms usually include two 
stages, which are mapping and scheduling. In mapping stage, 
the tasks are mapped into different clusters according to the 
specified policy. In scheduling stage, the tasks in a same cluster 
are scheduled to the same processor. MD [5] and DSC [6] are 
typical ones. In order to short the scheduling length, they all try 
to make the critical tasks be assigned to the same processor as 
possible.  

In this paper, we try to take advantage of LSDP and task-
duplication scheduling to shorten the total scheduling length. 

III. THE MATHEMATICAL MODEL, NOTATIONS AND 
ASSUMPTIONS  

A. DAG Based Task Model 
Since the relationship among tasks can be described clearly 

by a DAG [7], we adopt a DAG to model the tasks in our paper. 
In order to facilitate description, we use a five-tuple to denote a 
DAG G, which is G = (T, E, C, W, V). The meaning of each 
element in the five-tuple is given as following. 

• T is the collection of the vertices in graph G, which is 
denoted by T={Ti|1�i�n}, here n=|T| is the total 
number of the tasks. Each vertex Ti represents one task. 

• E is the collection of the directed edges in graph G, 
which is denoted by E={Ei,j|1�i,j�n}. The directed 
edge Ei,j  between vertex Ti and Tj indicates that task Ti 
must be done before starting task Tj. We call that Tj is 
the successor of Ti and Ti  is the predecessor of Ti. |E| is 
the total number of the directed edges. 

• C is the collection of the communication costs, which 
is denoted by C={Ci,j|1�i,j�N} and Ci,j represents the 
communication cost from task Ti to Tj. 

• W is the collection of tasks’ execution time which is 
denoted by W={Wi|1�i�n}, where Wi is the execution 
time of  task Ti. 

• V is the collection of the tasks’ critical degree, which is 
denoted by V={Vi|1�i�n,1�i�3},where Vi represents 
task Ti’s critical degree. If task Ti is a critical task, its Vi 

will be assigned to be 3, which is the highest critical 
degree value, and if Ti is on a path directed to a critical 
task, its Vi should be set 2. Other, the critical degree of 
task Ti is 1. In this paper, we use the critical degree as a 
key factor to measure a task’s priority. 

B. Notations 
In order to describe the algorithm clearly, we define some 

notations as following. 
• pred(Ti)={Tj|Ej,i E} is the collection of Ti’s 

predecessors, |pred(Ti)| represents the number of Ti’s 
predecessors. 

• succ(Ti)={Tj|Ei,j E} is the collection of Ti’s successors, 
|pred(Ti)| represents the number of Ti’s successors. 

• est(Ti) is the earliest starting time of task Ti in the DAG 
based task graph, if pred(Ti) is null, est(Ti) is 0, else 
est(Ti)=max{Cj,i+est(Tj)+Wj| Tj pred(Ti)}. 

• lst (Ti) is the latest starting time of task Ti in the DAG 
based task graph, if succ(Ti) is null, lst(Ti)=est(Ti), else 
lst(Ti)=min{est(Tj)-Ci,j| Tj succ(Ti)}-Wi. 

• EFT (Ti,Pi): the earliest completion time of task Ti on 
processor Pi when both the interval insertion and task 
duplication strategies are not adopted.  

• EFTinsert (Ti,Pi): the earliest completion time of task Ti 
on processor Pi  when the interval insertion strategy is 
adopted.  

• EFTcopy (Ti,Pi): the earliest completion time of task Ti 
on processor Pi  when task duplication strategy is 
adopted.  

• EFTall (Ti,Pi): is the earliest time that processor Pi 
completes  all the tasks dispatched on it before Ti being 
mapped to it. 

• EST (Ti,Pi): the earliest starting time of task Ti on 
processor Pi.  

• SPT (Ti,Pi): the waiting time of task Ti on processor Pi.  
• PSTj,i represents the prescheduling time from task Tj to 

Ti, PSTj,i = Wj+Cj,i , Tj is the predecessor of Ti . 
• P is the collection of processors, which is denoted by 

P={Pi|1�i�p}, Pi represent processor i. p=|P| is the 
number of processors. 

• TRi is the remainder of Ti, which is calculated by TRi 

=est(Ti)-lst(Ti). The smaller the TRi, the more urgent Ti. 

C. Constraints and Assumptions 
In order to describe our scheduling strategy, we give the 

constraints and make assumptions as following. 
• Each DAG only has one entry node and one exit node. 

If there is more than one entry node, a null node 
should be added as these entries’ predecessor. The 
computation and communication overheads of the null 
node are all zero. If there are more than one exit nodes, 
take the same approach to do with it. 

• The FCFS(First Come First Service) strategy is taken 
on a processor after the tasks are assigned to it. Any 
task is not allowed to preempt the time slot. 
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• All the processors are homogeneous and have the 
same performance. In addition, they can communicate 
with each other. 

• A task can’t send message to its successors until it has 
been completed. If a task and its successor task are on 
the same processor, the communication cost between 
them is zero. 

• A task can’t start until all of its predecessors have 
been completed and it has received the messages from 
all of them. 

• The current scheduling task refers to the task that will 
be scheduled immediately. The ready task refers to the 
task that its predecessor tasks have been scheduled. 
Since the predecessor tasks of a ready task may be 
duplicated, we don’t consider whether they have been 
completed or not in the task mapping stage. 

• There are enough processors available, which means 
the number of processors is many enough. 

IV. THE ALGORITHM DESCRIPTION 

A. Priority Calculation 
Different task scheduling algorithms have different 

methods and metrics to measure the task’s priority. For 
example, the remainder of the ready task is used as a metric to 
compute the priority in each scheduling so as to realize 
dynamical priority [8]. In addition, the average computation 
cost and communication cost are always used as important 
parameters to calculate the task priority [9]. In this paper, we 
consider the task’s priority from multiple aspects. For one thing, 
we introduce a concept of the task critical degree, which is used 
to indicate how much the task can contribute to reduce the 
length of tasks scheduling.  The greater, the contribution more, 
its priority should be higher. For another, not only the task 
remainder but also the computation or execution time and the 
average communication time are all introduced into measuring 
a task’s priority. The reason is that a task’s computation and 
communication costs are all critical factors to advance the 
earliest starting time of its successor tasks. Based on these 
considerations, the priority of a task can be calculated by Eq.1. 
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        (1) 

According to the definition for task critical degree in 
section 2.1, obtaining the critical tasks and critical paths are the 
perquisites of getting a task’s critical degree. So it is necessary 
to find out the critical tasks and critical paths of the given task 
graph using the existing critical path algorithm so as to get the 
critical degree of each task node before using the Eq.1 to 
compute the priority of a task. Due to space limitations, it is not 
described here. 

It is obvious that the task with the highest priority in the 
ready task queue should be chosen as the current scheduling 
task. 

B. Interval Insertion and Task Duplication 
Interval insertion means to insert the current scheduling 

task into the free time interval of a processor.  For this purpose, 
it should check whether there is a free time interval greater than 
the execution time of the current scheduling task on a processor 
in current task mapping state, if yes, the interval insertion 
strategy may be used.  To be sure, the interval insertion 
strategy has two premises, one is that the predecessor task of 
the current scheduling task has completed, the other is that 
there is no dependency relation between the inserted task and 
the waiting task on the processor. 

Task duplication strategy is mainly used to deal with the 
communication delay among the tasks on different processors. 
This delay is very common in embedded systems. Since there 
is no communication cost among tasks on the same processor, 
duplicating the tasks with heavy communication cost to the 
same processor can reduce the communication cost among 
them, which is a method to use computation for 
communication. 

Currently, most of the existing tasks scheduling algorithms 
use only one of the two strategies. For instance, HEFT [10] 
only adopts the interval insertion strategy, which may lead to 
the tasks that the interval insertion strategy can’t use on them 
are unable to be scheduled well. In addition, since interval 
insertion can’t decrease the communication costs caused by the 
tasks on different processors, the total time completion time 
can only be shortened limitedly. OSA [11] only adopts the task 
duplication policy, which can decrease the communication 
costs effectively, but can’t avoid generating the redundant tasks. 
These the redundant tasks may not only be unable to shorten 
the total tasks completion time, but also waste the processor 
resources.  

C. Task Mapping 
Since the interval insertion strategy and task duplication 

strategy have their own advantages and disadvantages 
respectively, we try to combine the two strategies to advance 
the total completion time. The basic idea is computing a task’s 
earliest completed time for different strategies (including 
neither of them being used) and then choosing one that has the 
earliest completion time to schedule the task. For this purpose, 
the following steps should be done. 

Step 1. The earliest completion time of task Ti on processor 
Pi is computed by Eq. 2 when neither of the two strategies is 
used. 

EFT(Ti,Pi)=EFT(Tj,Pj)+Cj,i+Wi                     (2) 

Here, Tj is the task with maximum costs (including 
execution time and communication cost) of all its predecessor 
tasks, and Pj is the processor that Tj is scheduled to.  

Step 2. If the interval insertion strategy can be used to 
schedule Ti on Pi, EFTinsert(Ti,Pi) is computed by Eq.3, 
otherwise, it is set to �. Tj in Eq.3 is the latest task 
communicating with Ti. 
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EFTinsert(Ti,Pi) 
=MAX{ EFT(Tj,Pj)+Cj,i , EFTall(Ti,Pi)}+ Wi                    (3) 
Step 3. For the task Ti to be scheduled to processor Pi, 

SPT(Ti,Pi) is calculated by Eq.4. If it is less than a threshold, 
EFTcopy(Ti,Pi) is set to be  and go to step 5. Otherwise, 
check whether there is a Ti’s predecessor task Tj with 
maximum sum of execution time and communication can meet 
the Inequality 5 and 6 or not, if yes, it indicates that the task 
duplication strategy can be used to duplicate Ti’s predecessor 
task to processor Pi, and the Tj with the maximum critical 
degree is chosen to be duplicated. Otherwise, EFTcopy(Ti,Pi) is 
set to be  and go to step 5.   

SPT(Ti,Pi)= EFT(Ti,Pi) - Wi - EFTall(Ti,Pi)            (4) 

Wj<SPT(Ti ,Pi)                                        (5) 

EFT(Tj,Pi)<EST(Ti,Pi)                                  (6) 

Step 4. EFTcopy(Ti,Pi) is calculated by Eq.7, where Task Tk 
is the task with the second-most prescheduling time in Pred(Ti) 
and Pk is  processor that Tk is dispatched to. Let Tj be the 
current task to be scheduled on Pi and go back to step 3. 
EFTcopy�Ti,Pi�

�
��
�
��

EFT�Tk,Pk�+Ck,i+Wi,
	
 Tk has not sent data to Ti after Tj is completed� 	

EFT
Tj,Pi�+Wi,		

	�	has not sent data to	��	after	��	is completed��

 

(7) 
Step 5. Choose the scheduling strategy corresponding to 

the smallest one among EFT(Ti,Pi), EFTcopy(Ti,Pi) and 
EFTinsert(Ti,Pi) to be scheduling strategy for scheduling task Ti 
to Pi. 

D. Algorithm Description 
For the sake of clarity, we describe the proposed task 

scheduling algorithm according to its execution steps as 
following. 

Step 1.  If there is a ready task in the task list, add it to the 
ready task list, otherwise, go to step 5;  

Step 2. Compute the priority for each task in the ready task 
list and choose the task Ti with the highest priority to schedule. 

Step 3. For each Pi , on which the task Ti’s mapping 
computing have not been done, perform the five steps in the 
subsection of task mapping. 

Step 4. Choose the processor Pi where task Ti has the 
earliest completion time to be the Ti’s executing processor. 
That is to say scheduling task Ti to processor Pi. 

Step 5.  If all tasks have been scheduled, stop, otherwise, go 
back to step 1. 

E. Time Complexity Analysis 
According to the function of the proposed task scheduling 

algorithm, it can be divided into two phases, they are priority 
computing phase and the task mapping phase. In order to 
obtain the time complexity of the algorithm, we analyze the 
two phase’s time complexity respectively. 

In priority computing phase, the most complicated 
computations are finding the critical path, computing the 
execution time and the average communication time of these 
tasks. For a directed acyclic task graph with n vertices and e 
edges, the time complexity to find its critical path is O(n+e). 
And in order to compute the execution time and the average 
communication time of these tasks in the task graph, we need 
to traverse all the vertices and edges in it, the time complexity 
for graph traversal is O(d·n), here, d is the biggest in-degree of 
a node in the DAG. Accordingly, the time complexity of 
priority computing phase is O(n+e)+O(d·n). 

In task mapping phase, there are mainly three things to do. 
One is to compute the earliest completion time of a task on a 
processor without using any of the two strategies, whose time 
complexity isO (d·n).  The other is to compute the earliest 
completion time of a task on a processor when using interval 
insertion strategy, whose time complexity of this step is also 
O(d·n). The rest one is to compute the earliest completion time 
of a task on a processor when using task duplication strategy, 
which is different from the former two. Since it necessary to 
check recursively whether there is a current task’s predecessor 
can be duplicated to the processor, the time complexity of this 
stage should be O(m·d·n), here m is the number of recursion m, 
which is equal to the DAG’s layers. Accordingly, the time 
complexity of the task mapping on a single processor is 
O(2·d·n+m·d·n). In the worst case, m is equal to the number of 
the tasks n, and the time complexity will be O(2·d·n +d·n2), that 
is O(n2). Let p be the number of the processors, the total time 
complexity of task mapping phase is O(p·n2), which can also be 
denoted by O(n2). 

To sum up, the proposed algorithm’s time complexity is 
O(d·n)+ O(n+e)+ O(n2), that is O(n2). 

V. PERFORMANCE ANALYSIS 
In order to analyze and evaluate the performance of the 

proposed algorithm objectively, we use the TDS and CPFD [12] 
task scheduling algorithms for reference and make comparison 
analyses among our algorithm and them from three aspects. In 
addition, for the sake of easy description, the proposed 
algorithm is denoted by PQTD in this section. 

A. Scheduling Analysis Based on a Given Task Graph 
We make the task graph shown in Fig.1 as an example to 

analyze and compare the scheduling results of the three task 
scheduling algorithms.  

In Fig.1, there are ten task nodes, the number inside the 
node is its identification and the number beside the node 
represents the execution time of the task. In addition, the 
directed edge from node i to node j indicates that task j 
shouldn’t start until task i is completed, and the number on the 
directed edge is the communication time from one task to the 
other. 

We schedule the tasks in Fig.1 using TDS, CPFD and 
PQTD respectively. The scheduling results of the three 
algorithms are shown individually in Fig.2, Fig.3 and Fig.4.  
For easy understanding, the scheduling results figures are 
explained as following. 
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Fig.1 A task graph 

In Fig.2, Fig.3 and Fig.4, the abscissa represents the 
scheduling length and the ordinate represents the processors 
used. The denotation of “TX/Y” represents a task node, where X 
denotes the identification of the task and Y is the execution 
time of it. The directed connection between two task nodes 
means the end task node couldn’t begin until the starting point 
task finished. For the sake of clarity, only the dependence 
relationships that need long communication time are labeled. In 
addition, the task node with shadow is a duplicated task. 

It can be seen from Fig.2, Fig.3 and Fig.4 that our 
scheduling length is 24, which is the same as CPFD’s but is 
less than the TDS’s 30. In addition, TDS and CPFD all need 6 
processors while our algorithm only needs 5. If the two aspects 
are taken into consider together, our algorithm is better than the 
other two. 

 
Fig.2 TDS Scheduling Result 

 

Fig.3 CPFD Scheduling Result 

 

Fig.4 PQTD (The Proposed Algorithm) Scheduling Result 

B. Scheduling Analysis Based on Random Task Graphs 
In order to make an objective evaluation of the algorithm 

more generally, we make the random task graphs with 10 to 20 
task nodes and the CCR(Communication to Computation Ratio) 
[13] being equal to 0.1, 0.5, 1, 2, 3 and 5 as the scheduling 
examples to analyze their scheduling results. At the same time, 
NSL (Normalized Schedule Length) [14] is employed as a key 
factor to evaluate the performance, because NSL is the ratio of 
the critical path length and scheduling length, which can reflect 
the improvement in the scheduling performance well.  

The results of the three scheduling algorithms on the 
random task graphs with different CCR are shown in Fig. 5. 

 
Fig.5 The Scheduling Results on the Random Task Graphs with Different 

CCR 

The three algorithms are all based on task duplication, that 
is to say that they all use task-duplication strategy to decrease 
the communication cost and accordingly shorten the task 
scheduling length, so the communication cost has great impact 
on their scheduling performances [15]. As shown in Fig 5, the 
NSLs of the three algorithms didn't have an observably 
improvement when the CCR is 0.1, which means the 
performance didn't improve significantly and can’t reflect the 
advantage of multi-core processors. However, with the increase 
of CCR, all the three scheduling algorithm's performance are 
all improved significantly. Especially, the improvements of our 
algorithm and CPFD are much faster than TDS's. And the 
proposed algorithm's performance is a little higher than 
CPFD’s with the increase of CCR. The main reason is that TDS 
algorithm only considers merging the best predecessor and not 
taking the other predecessors into account, and at the same time, 
only task duplication strategy is used in CPFD, there may be 
some free time that are suitable for use interval insertion 
strategy with the increasing of CCR, which may lead to lose 
some opportunities to have a shorter scheduling length [16]. In 
the proposed algorithm, not only the task duplication strategy 
but also the interval insertion strategy is taken into account, 
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which can utilize the free time better, so it has a higher 
performance than CPFD. 

C. Comparison in Time Complexity 
Since time complexity is also an important criterion to 

assess the performance of an algorithm, we made a comparison 
in time complexity among the three task scheduling algorithms, 
which is shown in Table I. 

TABLE I.  COMPARISON IN TIME COMPLEXITY 

Algorithm Time Complexity  

TDS O(n2) 

CPFD O(n4) 
PQTD(Our algorithm) O(n2) 

The time complexity of TDS is from literature [4] and the 
time complexity of CPFD is from literature [12]. 

It can be seen from Table I that the time complexity of our 
scheduling algorithm is same as TDS’s but is much lower than 
CPFD’s. 

VI. CONCLUSION 
Most existing task scheduling algorithms have the problems 

of low processor utilization rate and/or high complexity. In this 
paper, based on priority queue and task duplication, we 
proposed a new task scheduling algorithm to deal with the 
problems. We make two contributions. The first contribution is 
that we introduce the concepts of critical degree as an 
important metrics to calculate a task’s priority, which can 
reflect the importance of a task well. In addition, the existing 
priority metrics such as task remainder, the average 
communication cost and the execution time are all integrated 
into computing a task’s priority, which makes the priority of a 
task objective and accurate. The second contribution is that we 
integrate the interval insertion strategy and task duplication 
strategy to map a task to a processor, which can take full uses 
of the processors resources and shorten the scheduling length. 
The comparison experiments showed that the proposed 
algorithm has lower time complexity and better performance 
than two popular scheduling algorithms. 
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