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Abstract—In recent years, several random key pre-
distribution schemes have been proposed for wireless sensor
networks. However, the problem of key and node revocation
has received fewer attentions. In this paper, we present a
novel random key revocation protocol, which is suitable for
large scale networks and removes compromised information
efficiently. The proposed revocation protocol can guarantee
network security and has less memory consumption and com-
munication overhead. With the combination of centralized and
distributed revocations, the protocol achieves both timeliness
and accuracy for revocation. The simulation results show that
our protocol has better performance than existing protocols in
terms of increasing revocation validity and revocation velocity,
and prolonging the network lifetime.
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I. INTRODUCTION

Because sensor nodes have many limitations [1] in the ca-

pacity of communication, symmetric key cryptosystems and

one-way function instead of asymmetric key cryptosystems

are used in wireless sensor networks (WSNs). To ensure

security for information sent among nodes, key management

in WSNs is an important issue.

Key management includes two primary aspects: key dis-

tribution and key revocation. To generate keys for encryp-

tion successfully, several key pre-distribution schemes [2]-

[3] have been proposed. However, key revocation protocol

which refers to securely removing the keys and nodes

that have been compromised has received fewer attentions.

Eschenauer and Gligor [2] proposed a centralized revocation

scheme which needs a base station to broadcast a revocation

message to all of the sensor nodes. The scheme induces

low speed revocation and large communication load for

the base station. A distributed revocation scheme is put

forward by Chan et al. [3], which is suitable only for the

random pairwise scheme. Eldefrawy et al. [4] described

a node revocation scheme based on PKC (Public Key

Cryptography), which has some resource limits to be applied

in WSNs. The group and session key revocation protocols

are proposed in [5]-[7], which are unsuitable for random key

pre-distribution schemes, because the communication key

between two nodes is selected from the key pools randomly

in random key pre-distribution schemes.

In this paper, we present a novel random key revocation

protocol based on a random key pre-distribution scheme with

node clustering in WSNs [8]. The revocation protocol is

suitable for large scale networks and removes compromised

information efficiently. Because the network topology has

two-level hierarchy, we design the revocation protocol from

two aspects: intra-cluster and inter-cluster. For intra-cluster,

the revocation protocol is the combination of the centralized

and distributed revocation with the advantages of timeliness

and accuracy. For inter-cluster, the proposed revocation pro-

tocol can guarantee network security by using less memory

consumption and communication load. In addition, we also

propose a special method to set up secure links for any two

clusters, which is another main contribution of the paper.

The simulation results show that the proposed protocol can

achieve better performance than the previous protocols in

terms of revocation validity, revocation delay, and average

energy consumption.

The remainder of the paper is organized as follows.

Section II discusses our assumptions and the threat model.

In Section III, we describe the proposed protocol from two

aspects: intra-cluster and inter-cluster. Section IV analyzes

the performance of our protocol. Finally, our concluding

remark is exposed in section V.

II. ASSUMPTIONS AND THREAT MODEL

In this paper, our assumptions are given in the following:

1) : Each node in the sub-region possesses ui nodes

which have the right to vote against it. Suppose only w
nodes among the ui nodes are needed to remove a node

from the network. In order to transmit related information

correctly, each node and its voting members share public

key.

2) : Each node must store ui root hash values, the hash

values of uilog2ui brother path nodes, and the ui votes,

because it probably becomes a voting member to the ui

nodes. The contents above are used to verify the truth of

vote.

3) : In order to authenticate other voting members, which

have the voting right to the same node, each node must also

store the IDs of the other voting members.
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4) : The cluster heads are special nodes, which usually

have larger computation and communication capabilities

than the other nodes within the cluster. It remembers the

IDs and key rings of all nodes in the cluster.

5) : Each cluster head shares a private-key with KC
(Key Center), denoted by knx, remembers all path node keys

of the key management tree including their key chains and

manages them by the root node key.

Our threat model is given below:

1) The node in a cluster is compromised:
• The attacker will obtain all the voting information of

the compromised node.

• The attacker has the ability to distort the communica-

tion information sending to the other neighbor nodes.

• The attacker can vote against a valid node by pretending

to be its voting member.

2) The cluster head node is compromised:
• Using the connection with other cluster head nodes, the

attacker can transmit false information to other clusters

and the nodes in its cluster.

• The corresponding path nodes keys of the key manage-

ment tree will be compromised, which can threaten the

connection between the other two clusters.

III. CLUSTER-BASED RANDOM KEY REVOCATION

PROTOCOL

The centralized approach and the distributed approach

are the two most popular key revocation approaches in

recent years. We propose a new key revocation protocol,

which combines the advantages of the two approaches and is

suitable for large scale networks with hierarchical structure.

Because the network topology is two-level hierarchical, the

protocol is composed of two parts: intra-cluster and inter-

cluster protocols.

A. Revocation Protocol in a Cluster

1) Preparation to Revocation: Before deployed in the

sub-region Zi(η), every node has selected mi keys to store

in its key ring from the sub-key pool Si(η) [8]. To revoke

nodes and keys which are compromised, a node must store

some additive information which is described as follows.

a): Each node must store IDs of ui nodes which have

the right to vote against it. When two neighboring nodes set

up a secure link with each other, they exchange their IDs.

If the ID of one node belongs to the set of IDs stored in

other node, it becomes a voting member of that node with

valid voting right.

b): Each vote is a special code. The ui votes which vote

against the same node are calculated by a hash function, the

outcome of which generates a Merkle tree [9]. Each of the

ui nodes uses the root hash value and the hash values of

the log2ui brother path nodes from the root to a leaf to

authenticate a vote corresponding to the leaf node.

c): The memory consumption to every node for voting

can be calculated by (1), and the space complexity is

O(uilog2ui).

Smer = {u2
i (ID)+ui(root)+ui log 2ui(path)+ui(vote)}(1)

2) Vote Mechanism: To describe the vote mechanism, we

use Fig.1 as an example.
a): To prevent widespread release of the revocation

keys by the compromised nodes, we require that only the

voting members of node A have the right to vote against A.

Each vote is encrypted by A using kA, and can be used only

by the decrypting of A, which inhsures a direct connection

with A.
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Figure 1. Voting relationship among nodes

As shown in Fig. 1, after the shared-key discovery phase,

nodes B, C, D and E become voting members of node A,

and they have the right to vote. When the vote begins, A
sends kA to B, C, D and E to decrypt their votes. Without

loss of generality, we suppose that node D wants to vote

against A, D broadcasts its vote kD and path hash values

after encrypted by kA, as depicted in Fig.2.
b): When the voting members of A receive the mes-

sage, they will calculate the information stored from the

message, and compare the results with the root hash value

stored in their memory. If they are equal, the voting members

update flags to indicate that A is voted once. If a flag indi-

cates w votes, the voting member will send this information

to its cluster head node.

rootA

kBC kDE

kD kEkCkB

ui

Figure 2. Voting Merkle tree

For example, as shown in Fig. 2, B, C and E receive the

message from D. They find out that D is a voting member of
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A like themselves; then, they compute the message to prove

validity of the vote and update their flags. The computation

process is denoted by (2), where H( ) is a hash function,

which is used to compute rootA by vote kD and path hash

values from D. | is the connection symbol, which is used to

adjoin two neighbor path hash values.

rootA = H(H(· · ·H(H(kD)|H(kE))))(2)

c): A voting member will broadcast a vote message

every Δt time to ensure that the vote message can be sent

to the destination. If other voting members receive the vote

message, they will reply to it, so the broadcast will be over.

We prescribe that the revocation decision and execution

occur within a bounded time period Δd(Δd >> Δt). The

whole life of the network is divided into a large number of

time periods. Within every period Δd, if there is insufficient

number of sensor nodes agreeing that a node is to be

revoked, then the revocation decision returns to a negative

result, which avoids the erroneous votes that can accumulate

over the networks lifetime and result in the revocation of a

legitimate node.

3) Revocation Mechanism: The revocation mechanism is

the last step of our scheme to revoke nodes in a cluster. If a

voting member finds that its vote flag of node A comes up

to w, it will cut off the link with A and inform the cluster

head.

If the cluster head confirms node A as being com-

promised, it will broadcast a single revocation message

containing a signed list of mi key IDs of the key ring to

be revoked and the compromised node ID to the nodes

in seven hexagonal sub-regions related to node A. Each

node that can decrypt the message using the public cluster

key, removes the link with node A, and checks whether its

key ring includes the revoked keys. If the revoked keys are

included, the compromised keys are removed.

4) Performance Analysis: In a cluster, the revocation

protocol combines centralized revocation and distributed

revocation. At first, nodes distribute their votes and deal

with the compromised links by themselves which has the

advantage of good timeliness. Then the cluster head node

can remove captured keys if necessary, which has good

accuracy and can prevent adversary from extending invasion.

B. Revocation Protocol between Clusters

1) Setting up Communication between Any Two Cluster
Heads: To connect all cluster heads efficiently, we set up

a hierarchical structure of symmetric keys, called a key
management tree. As depicted in Fig.3, the tree has 2

dimensions. However, the dimension of the tree can be

changed at will.

Each leaf in the tree is a cluster head which is managed

by its father node. The father node is managed by its father,

so a key management tree is established. All father nodes

are called path nodes, except the root node, and denote the

path node keys and the root node key by kpathx and kroot,
respectively.

path

1,4

root

n8n7n6n5

path

7,8

path

5,6

n4n3n2n1

path

3,4

path

1,2

path

5,8

Figure 3. Key management tree

The key management tree can reduce the communication

load of KC. All cluster head nodes can set up communica-

tion links by themselves. Each leaf node stores a set of keys

of the path nodes which lie on the path from the root to

itself, and all keys of the path nodes possess their own ID.

When the communication setup phase begins, each cluster

head broadcasts the IDs of the stored keys which are called

ID-Ring to the other nodes. The process of negotiating

communication key between two neighboring heads can be

realized in the following steps.
a): If two neighboring nodes have the same stair father

node, they can communicate with each other. They will

encrypt a link key by the stair father node key and exchange

it within the scope of the transmission radius.
b): There are some neighboring nodes with different

stair fathers which have not set up links with each other. We

will search the same secondary father node for themselves.

They will encrypt a link key by the secondary level father

node key and exchange it within the radius of transmission

to communicate with each other.
c): This method can be used similarly to the root node,

until all neighboring nodes are connected with others.

Taking Fig.3 for instance, we depict the concrete process

of setting up communication links as follows.
a): If n3 and n4 are neighbors: To connect with each

other, they first broadcast their ID-Ring within the range

of transmission, which are

ID− Ring3 = {n3, IDpath3,4, IDpath1,4, IDroot},
ID− Ring4 = {n4, IDpath3,4, IDpath1,4, IDroot}.

We can see that n3 and n4 have the same stair father

node IDpath3,4, so n3 can use kpath3,4 to encrypt their

communication key k3,4 and transmit it to n4.Then they can

use k3,4 to encrypt the following data.
b): If n1 and n4 are neighbors: To connect with each

other, they broadcast their ID-Ring within the range of

transmission, which are

ID− Ring1 = {n1, IDpath1,2, IDpath1,4, IDroot},
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ID− Ring4 = {n4, IDpath3,4, IDpath1,4, IDroot}.
We can see that n1 and n4 have the same secondary

father node IDpath1,4, so n1 can use kpath1,4 to encrypt

their communication key k1,4 and transmit it to n4. Then

they can use k1,4 to encrypt the following data.

c): If n2 and n5 are neighbors: To connect with each

other, they broadcast their ID-Ring within the range of

transmission, which are

ID− Ring2 = {n2, IDpath1,2, IDpath1,4, IDroot},
ID− Ring5 = {n5, IDpath5,6, IDpath5,8, IDroot}.

We can see that n2 and n5 have different father nodes

except for the root, so n2 can use kroot to encrypt their

communication key k2,5 and transmit it to n5. Then they

can use k2,5 to encrypt the following data.

All the neighboring nodes can establish connections with

each other by themselves. Although this method increases

the memory consumption and communication load for each

node, it can reduce the burden of KC greatly and can be

used to renew the compromised keys as described in the

next section.

2) Renewing Keys Stored in the Cluster Head: In this

section, we will discuss how to insure security when some

heads are captured.

a) Key chain: To avoid being captured by adversaries,

we assume that every node key is composed of a key chain.

We must change the compromised keys after the capture

action has happened. The nodes in the tree are able to

authenticate a renew message and use it for their new node

key. We use a hash function H( ) to form a node key chain,

which is expressed in (3). The received key is the correct

one if the result of the key computed by H( ) is equal to

the former one.

ki = H(ki+1), 0 ≤ i ≤ n− 1 (3)

b) Renewing compromised keys: Every cluster head

stores a set of keys of the current path nodes from the

root to itself, called Set-Key. If a head is compromised,

other nodes connected with it will remove the links. All

keys belonging to the heads Set-Key are captured, so we

must renew them to the other nodes which can use the keys

to set up new links. These keys must be securely sent to the

related nodes, except for the compromised node. We assume

that patha is a path node lying on the path from the root

to the compromised node, and pathb is its child node. The

principle of renewing keys is as follows:

• If pathb is a leaf node, KC will use a private key with

pathb to encrypt the next key of patha, and then send

it to pathb. The method is the same for the other child

nodes of patha except for the compromised node.

• If pathb is an internal tree node and belongs to the

compromised path, KC will use the next key of pathb

to encrypt the next key of patha, and then send it to

the corresponding child leaf nodes of pathb except for

the compromised node.

• If pathb is an internal tree node but dose not belong to

the compromised path, KC will use a current key of

pathb to encrypt the next key of patha, and then send

it to the corresponding child leaf nodes of pathb.

Taking Fig. 3 for instance, we depict the detailed process

of renewing compromised keys as follows. If n5 has been

captured, its ID-Ring includes IDpath5,6, IDpath5,8 and

IDroot, so KC must renew the keys of these path nodes

for each corresponding head node.

• For path5, 6, its child node is leaf n5 and leaf n6. n5 is

compromised, so KC will send the next key of path5, 6
to n6(Ek6{knext5,6}).

• For path5, 8, its child node is path5, 6 and path7, 8.

path5, 6 accords with (2), so KC will send the mes-

sage (Eknext5,6{knext5,8}) to path5, 6’s child node n6.

path7, 8 accords with (3), so KC will send the message

(Ekcur7,8{knext5,8}) to path7, 8’s child nodes n7 and

n8.

• For root, its child node is path1, 4 and path5, 8.

path1, 4 accords with (3), so KC will send the message

(Ekcur1,4{kroot(next)}) to path1, 4’s child leaf nodes n1

∼ n4. path5, 8 accords with (2), so KC will send the

message (Eknext5,8{kroot(next)}) to path5, 8’s child leaf

nodes n6 ∼ n8.

Every leaf node can use its corresponding key to decrypt

the received message, and use H( ) to authenticate whether

the new key is the correct one for the key chain.

c) Revoking communication to compromised nodes:
When a compromised node is removed from the whole tree,

all head nodes previously connected with it must detach

links with it. Because revocation can induce some nodes

to have no affiliation to their neighboring nodes, the setting

up communication phase will restart. They use new path

keys to establish new communication links, and generate the

new link-keys. This process is accomplished automatically,

unrelated to KC.

3) Performance Analysis: Among clusters, all of the

heads can establish connections by storing a set of keys

of path nodes, independent from KC. Since remembering

all node keys to set up connections is avoided, the storage

consumption is low. The scheme of renewing keys stored in

the cluster node head can improve performance by reducing

the complexity and the number of re-keying messages. For

the complexity of re-keying messages, we use the symmetry

encryption algorithm which has lower complexity than a dig-

ital signature, and our key management tree has better secure

performance than the dissymmetrical encryption algorithm.

As to the number of re-keying messages, KC only needs

to broadcast
logdimγ∑

i=1

(dimi − 1) messages (where dim is the
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dimension of tree, γ is the number of clusters), instead of

γlogdimγ messages, to set up a connected network, which

can reduce the communication load greatly.

IV. SIMULATION AND ANALYSIS

In this section, we compare our revocation protocol with

the basic revocation protocol [2] and the pairwise key

revocation protocol [3] in terms of increasing revocation

validity and velocity and prolonging the lifetime of the

network. The performance of these protocols is simulated

in NS2 for the region with 1000×1000 square units.

A. Revocation Validity

When nodes are compromised, we can use the revocation

protocol to ensure the normal operation of the network.

The revocation validity is measured by packet loss rate.

The serviceability and extendibility of the three revocation

protocols are discussed. The number of nodes in the network

is from 1000 to 5000, and the 802.11 MAC protocol with

1Mbps is used. If there are fifty compromised nodes which

are located randomly in different places and can not forward

the normal packets, we will execute revocation protocols. By

sending 1000 data packages, the packet loss rate is simulated

and Fig.4 shows the simulation results of the average of 100

trials.
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Figure 4. Packet loss rate with the variety of network scale

As shown in Fig.4, we can see that the packet loss rate

of the basic protocol is the smallest. This is because the

basic protocol is a centralized revocation method based on

the control node. It has the strengths of timeliness and

veracity. With the increased network scale, we can see that

the curve rises slowly. This is because more nodes need to

be controlled, so the revocation effect is slightly low. The

packet loss rate of the pairwise key protocol which belongs

to the distributed revocation method is higher than that of

the basic protocol. Despite halfway revocation, this protocol

has good revocation effect and speed in partial region. The

compromised nodes are arranged more sparsely with the

increased network scale, which has little effect on packets,

and thus the loss rate declines. Our protocol integrates the

advantages of the centralized method and the distributed

method, referring to the issue of key update to the cluster

node, and its loss rate performance is in the middle. For

large network scale, our methods efficiency is close to that

of the basic protocol.

B. Revocation Delay

The revocation delay is defined as the time interval from

the moment when the revocation starts to the time when

the uncompromised correlative nodes receive revocation

messages. The number of nodes in the network is from

1000 to 5000 and the 802.11 MAC protocol with 1Mbps

data rate is used. Suppose there is a compromised node

whose position is uncertain. We simulate and compare the

revocation delay of the three revocation protocols. As show

in Fig.5, the simulation results are the average of 100 trials.

Figure 5. Revocation delay with the variety of network scale

We can observe from Fig.5 that the revocation delay

of the basic protocol is the longest and gets longer with

increasing network scale. This is because the basic protocol

is a centralized revocation method in which the control node

broadcasts revocation messages to every node belonging

to its scope of management, so the revocation speed is

slow, and the revocation delay is longer with increased node

number. The pairwise key protocol adopts the distributed

revocation method which has better revocation effect in

partial region. The impact of network scale on it is small.

Because the revocation is done by the nodes themselves,

the revocation speed is fast. Our protocol uses the distributed

revocation to the partial region and the centralized revocation

to the whole region. Based on a random key pre-distribution

scheme which sets up sub-key pools, the revocation is

performed to the correlation region only, and the broadcast

scope of revocation messages and delay are smaller than

those for the basic protocol, but are higher than the pairwise

key protocol.

C. Average Energy Consumption

To evaluate the lifetime of the network, the average

energy consumption to revoke a single node using revocation

protocols is examined. Suppose that the energy of every node

is 1J , and the energy consumption of sending or receiving
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one packet is 0.0001J . The simulation results are shown

in Fig.6, where we can see that the energy consumption in

the pairwise key protocol is the smallest. This is because it

only revokes partially and does not broadcast the revocation

massages to the whole network. With the increased network

scale, the number of nodes rises, and it leads to the decline in

average energy consumption. Therefore, the average energy

consumption of the basic protocol is the biggest and that

of our protocol, which combines the centralized and the

distributed revocation, is in the middle. Because centralized

KC revocation is closely related to the corresponding region

instead of the larger scope. The average energy consumption

of our protocol declines with the increased network scale.

Figure 6. Average energy consumption with the variety of network scale

V. CONCLUSION

We describe a novel random key revocation protocol,

which is suitable for large scale networks and useful to

remove the compromised secret information. According to

the analysis of performance, for intra-cluster, the revocation

protocol is a combination of the centralized and the dis-

tributed revocation with the advantages of timeliness and

veracity, and for inter-cluster, the revocation protocol can

guarantee network security with less storage consumption

and communication load. Furthermore, a method to set up

a secure link between any two cluster nodes using a key

management tree is also proposed. The simulation results

show that our protocol can achieve better performance than

previous protocols in revocation validity, faster revocation

speed and better balanced ability to node energy consump-

tion. Based on the comprehensive analysis and comparison,

our protocol is an optimum one.
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