

PPBD: A Piracy Preventing System for BT DHT
Networks

Hongli Zhang, Jiantao Shi, Lin Ye

School of Computer Science and Technology
Harbin Institute of Technology

Harbin, China
Email: {zhl, shijiantao, yelin}@pact518.hit.edu.cn

Xiaojiang Du
Dept. of Computer and Information Sciences

Temple University
Philadelphia, PA, USA
Email: dxj@ieee.org

Abstract—In this paper, we study several important issues that
can be used to prevent pirated content propagation in BitTorrent
(BT) Distributed Hash-Tables (DHT) networks. We design a
system called PPBD to stop pirated content propagation by
utilizing several attacking methods. First, the system can
efficiently deal with massive concurrent connections to reduce
bandwidth consumption, schedule peers to cooperate and
optimize the protection methods according to clients. Second, we
construct two mathematical models for BT DHT attacks, and we
theoretically analyze the system performance. Third, we take into
account some countermeasures of different BT clients and make
corresponding optimizations of our PPBD system. Our real-
world experiments show that: (1) our system can extend the
download duration at least three times by the fake-block
attacking method and it is more effective in a small swarm; (2)
DHT index poison and routing pollution methods can limit the
sharing swarm to a small swarm.

Keywords- Peer-to-peer networking; BitTorren; DHT; piracy
prevention

I. INTRODUCTION
With the ability to leverage participating users’ uplink

bandwidth, Peer-to-Peer (P2P) is a powerful and effective
model for file sharing applications. Unfortunately, illegal users
may use P2P to disseminate copyrighted materials without
owners’ permission. Some reports point that 75% of the piracy
content occupying Internet traffic is created by BT clients [1].
Those piracy contents include movies, music, games and
software, and the abuses not only hurt the financial interest of
media industries, but also harm the legal use of P2P
technologies. Therefore, preventing the spread of piracy
content in P2P systems is an important issue. Many countries
have taken administrative means to protect copyright in P2P
file-sharing systems. As a result, there were shutdowns of some
well-known trackers sites (e.g., BT@China_Union [2]) and
manual deletions of pirated contents (e.g., Mininova [3]).
These approaches do not really work well. A ‘trackerless’
support is added by most popular P2P applications. It uses
Distributed Hash-Tables (DHT) technique to realize a fully-
decentralization network and introduces “trackerless” torrent,
which allows clients to use torrent files that do not have a
working BT tracker [23]. Without a central component to be
monitored and controlled in BT DHT, it became more difficult
to prevent pirated content. Some ISPs choose providing
infringement detection services to find out pirated content and
warn illegal users via emails. However, most users choose to

ignore such warnings. A report given in [4] shows that traffic
generated by BT software resumes quickly, and the sales of the
corresponding copyrighted materials drop significantly, which
indicates that the piracy issues in BT networks is very serious.

From technical aspects, some new digital right management
(DRM) mechanisms and copyright-protected P2P systems [9-
11] have been designed. However, few of them have been
deployed in practical applications. It needs a huge investment
to online upgrade an Internet application system and whether
users will accept the new models is unknown. Besides, some of
the new systems also face the challenges of security issues such
as collusion attacks. Recent years, some industries use index
and content poisoning to resist illegal file sharing [5-6].
However, there is no efficient method to prevent piracy in
existing BT DHT. In this paper, we design a Piracy Preventing
system for BT DHT (PPBD) system. Our goal is to stop pirated
file sharing propagation in the system without modifying its
current architecture, nor affecting its legal users. The main idea
of PPBD is trying to disrupt the process of pirate getting
copyright-protected files in BT DHT systems. We insert some
peers in the DHT system to intercept announcement and
querying message flows of real peer indexes pointing to source
peers of pirate content. We also pollute content blocks of pirate
content to consequently extend the download time. PPBD
system can effectively increase the probability of selecting our
fake peers and decrease the probability of selecting real source
peers during peer selection. The contributions of this paper are
summarized below:

1) We design the PPBD system that can delay the
propagation of piracy contents in BT DHT network without
modifying the existing network architectures and protocols.
Real experiments show that the system can limit the content
sharing swarm of a pirated content to a small size and
significantly increase peer download duration.

2) We construct a mathematical model for the fake-block
method and a polar coordinate ID space model for the DHT
pollution methods. These models are used to analyze the
effectiveness and efficiency of PPBD. Our analytical results
match the real-network experiments very well. Given a swarm
size, the model can estimate peers’ demands and bandwidth
cost to achieve a target delay. The analytical results also guide
the design and deployment of PPBD.

3) We optimize the protection mechanisms for popular BT
clients by considering their different implementations. Our
system can identify the type of a BT client and adjust the
protection method accordingly. The optimization can

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

1806

significantly improve system performance and reduce resource
consumption.

II. BACKGROUD

A. BitTorrent Preliminaries
A BT system consists of four parts, including torrent index,

peer index, seeds and leechers. A torrent is the meta data that
stores description information of the content. A torrent index is
a set of ongoing torrents that are collectively organized in the
form of torrent websites. These website allow users to upload
their torrents and provide tracker services. A peer index is a set
of peers that participate in the distribution of a specific file.
The basic function of a peer index is to track the status of peers
that are currently active, and act as a rendezvous point for all
peers. Depending on their download states, peers are classified
into two types: seeds and leechers. A seeder is a peer that holds
a complete file and uploads it to others selflessly. A leecher is a
peer that has download part of a file. A leecher provides part of
the file to some peers and meanwhile it downloads the rest of
the file from other peers. To encourage collaboration among
peers, Cohen [25] proposes a ‘Tit-for-Tat’ incentive
mechanism to prevent selfish ‘free-riding’ behaviors. That
scheme is implemented by the Choke/Unchoke messages. A
peer gives preference to higher bandwidth peers that have
uploaded to it before.

The BT protocol has acquired some new features over time,
and the ‘trackerless’ support is the most important protocol
extension [23]. DHT technique is used to decentralize the index
service. Every peer is responsible to index a group of torrent.
Currently almost all clients have implemented the DHT feature,
and the DHT network can provide as many source peers as the
tracker does. DHT network is based on the Kademlia protocol
[24]. Content is identified by infohash that is stored in the
torrent. Each peer has a globally unique ID (160 bits). The
XOR distance is used to compare two peers or a peer and an
infohash for closeness. Every peer is only in charge of torrents
close to it and maintains a routing table containing some other
contacts. Peers in the routing table are stored by several K-
Buckets, which are organized in a binary tree. Contents are
only published to the closest peers. There are four RPC
messages used in the DHT protocol: Ping, Find_node,
Get_peers and Announce_peer.

Figure 1 shows the flow of downloading a file in the BT
DHT system. At the beginning, Peer 89 wants to download a
pirated file. Peer 51 owns the file and the file’s infohash is 15.
After peer 51 initiates its routing table, it sends get_peers to
peer 43, which is the closest node in peer 51’s routing table.
And then, Peer 43 responses to peer 14. Peer 14 is in the
tolerance zone of the file and responses a value to Get_peers
query. The value is the contact information of peer 51. At the
end, peer 89 sends announce_peer to peer 14 and starts
downloading from peer 51. In the next Section, we will
describe how PPBD system prevents piracy propagating in the
DHT network, according to the flow shown in Figure 1.
B. Utilizing Attack Methods

1) The Fake-block Attack Method. To support parallel
transmissions, content in BT is divided into pieces, and each
piece is further divided into blocks (usually 16). A piece
corresponds to a bit in the Bitfield message. A block is the

tracker

DHT Network

peer 101

peer 77

peer 89
querying node

1.1:peers re
quest

1.2:Get_peers

2:Announce_peer
1.0:Get_peers

0:Find_node
3:content block request infohash=15

peer 65
peer 51

source peer peer 43

peer 11

peer 14
peer 20

tolerance zone

Figure 1. Content query working flow in BT DHT network

smallest unit of data transmission. After all blocks of a piece
are downloaded, the client calculates a SHA-1 hash of the
entire piece and compares it with the hash value stored in the
torrent file. An attacker can launch the fake-block attack in
which it provides a fake block. This attack causes the hash
check of the piece fails, and then the client has to discard the
entire piece. Our idea is to intentionally disseminate fake
blocks to leechers, causing more hash check failures. This
approach can waste the bandwidth of users that share piracy
content and increase their download time. However, the fake-
block attack method consumes bandwidth because one needs to
upload fake blocks.
2) The DHT Index Poisoning Method. Peer index is used to
help new peers bootstrap into the swarm. The index poisoning
is to prevent leechers from obtaining available IP/port pairs of
source peers. One approach is to poison the peer discovery
mechanisms with fake IP/port pairs. A peer will have to spend
a lot of time connecting to other peers. If most IP/port pairs on
the peer index are poisoned. New peers can hardly bootstrap
into the target swarm. However, our poison approach does not
use fake IP/port but some real light weight clients. Index
poisoning method increases the probability of our fake peers
being connected. To perform a successful DHT index poison,
we need to find out all the peer indexes that are in charge of
the target torrent and poison all of them.
3) The DHT Routing Pollution Method. DHT Routing
pollution aims to prevent a peer from finding correct peer
indexes in the DHT network. The idea is to add many fake
contacts (Sybils) into other peers’ routing table. These Sybils
are well designed to be close to the target file. In the DHT
design, peer indexes are within a distance to the published file.
This distance is called ’tolerance zone’ and is identified by the
first 8 bits (most significant) of the target file’s infohash. If
enough Sybils are inserted into the network and the routing
tables of most peers in the tolerance zone are polluted,
eventually Find_node query operations initiated by other peers
will return our Sybils instead. Through routing pollution,
attackers can control a subset of the ID space and perform
other attacks (e.g., “Eclipse” attack [20] and DDos attack [16-
17], etc). The search process in BT DHT is iterative, so the
routing pollution method needs to pollute fewer peers than the
index poison method.
C. Related Work

Recently, there have been some researches to prevent
copyright infringement in P2P systems, including piracy

2013 Proceedings IEEE INFOCOM

1807

detecting [7-8], encryption methods for new architectures [12-
13]. Few of them have been deployed in real applications,
because these methods require significant changes to current
software implementations. Some researchers propose using
poison and pollution methods to resist piracy in BT like P2P
networks. The basic idea is to reduce the availability of
copyright content by disturbing the process of publishing,
indexing and downloading. Yoshida et al. [14] apply content
poisoning to one of the popular P2P file sharing applications in
their local country. Wang et al. [15] proposed a copyright
protection method in P2P networks by constructing false pieces
with authentication collision and evaluated their work by
simulations. Compared with other methods, this kind of
approach requires more overhead, especially bandwidth. How
to reduce the traffic cost needs further investigation. Most of
the copyright content protection researches on BT system did
not consider the new implementation of distributed tracker. In
the DHT network there is no central component, it is more
difficult to control. Although there are some proposed
attacking methods in DHT, few are realized and evaluated in
real world BT systems. The attacking methods including Sybil
attack [19], eclipse attack [20] and routing attack [21].
Urdaneta et al. [18] systematically analyzed those attacking
techniques. Compare to another popular DHT networks, eMule
KAD [22], few work evaluated the effectiveness of these
attacks in BT DHT. Since the designs of BT clients are
miscellaneous, to design an effective attacking method against
piracy content carrying peers is a challenge work.

III. SYSTEM DESIGN
Figure 2 illustrates the architecture of our PPBD system,

which includes several components: database, TCP session
manager, DHT Sybil manager and some action engines.
Database is a storage container for information of pirates, such
as infohash and ip/port pairs of DHT peers. If the user wants to
prevent the propagation of a pirated file, a torrent infohash can
be submitted to the database via the user interface. The TCP
session manager handles incoming and outgoing connections
and controls fake-block pollution process. The DHT Sybil
manager handles incoming and outgoing UDP messages and
controls poison and polluting processes over BT DHT. The two
managers are front-end schedulers that dispatch work load to
several backend clients. To prevent our clients from being
blacklisted, the TCP session manager changes their IP/Ports
periodically. The DHT Sybil manager is in charge of allocating
DHT ids and IP/Port pairs to our Sybils, which conduct DHT
routing pollution. We have a lot of IP/Port addresses available
for the above purposes. The actual action engines include fake-
block polluting engine, DHT crawler, index poison engine and
routing pollution engine.
A. DHT Polluting Methods

The objectives of DHT polluting methods are:
1. Creating many lightweight ‘Sybils’. These Sybils can

perform fake-block polluting. Announcing IP/port pairs of
these Sybils in the DHT network through broadcast. Increasing
the probability of these Sybils being selected by other leechers
and make fake-block pollution method more effective.

2. Creating some routing pollution peers close to the target
file. Inserting these peers in the routing table of other actual
peer indexes. Attract most query messages dropping into these

TCP Session Manager

Fake Block

DHT ID Space

target info hash Sybil peers
legitimate peers

fake peers

Database

DHT Sybil Manager

Routing Pollution Index Poison
Crawler

attacking peers

legitimate peers

Controlled swarm

Figure 2. PPBD system architecture

peers. Decrease the probability of choosing other source peers
and make fake-block pollution more successful.

 In the design of PPBD, we define four important peer sets:
1. Random Peer Set: This set is created by the DHT

crawler and contains tens of thousands peers. These peers
cover every zone of the DHT ID space. They are the initial
peer set for index poison and routing pollution procedures.

2. Critical Peer Set: This set is created through the index
poison process. Peers in this set are crucial for get_peers and
announce_peers queries as showed in Figure 1. These peers’
routing tables contain most peer indexes of the target file.

3. Index Peer Set: This set is also created through the
index poison process. Peers in the set are peer indexes of the
target file and are within the tolerance zone.

4. Tolerance Peer Set: This set is created by DHT crawler.
In the set, each peer ID having a 10-bit common prefix with the
target infohash. The zone of tolerance peer set is larger than the
zone of critical peer set.

Before causing further DHT pollutions, we need to know
enough peers in the DHT networks. We use a DHT crawler to
collect the information. The crawler is a modified BT client. It
enters the DHT network with a random selected peer ID and its
initial entries are obtained from some torrent files. The crawler
sends find_node messages of random selected target key to
known peers. The message flow is showed in Figure 1. We use
some special designs to decrease the frequency of received
UDP messages and to avoid heavy CPU usage during crawling.

Index poison: In the index poison process, we also need
some crawling work to create the critical peer set and the index
peer set. The message type in this stage is get_peers. The
detailed algorithm is given in Procedure 1. The termination
condition of the ‘while’ loop is no new peers being found
within 15 seconds. Two types of response messages are
received in this module: NODE or INDEX. The first type of
message contains nodes of next hop. The crawler iteratively
sends get_peers messages to these nodes. The second type of
message contains information of source peers. That indicates
the correspondent node is a peer index. The crawler inserts the
correspondent node into the Index Peer Set and inserts its
previous node to the Critical Peer Set. The last action of this
procedure is to send poisoned announce_peer messages to
critical peers and peer indexes. We need to poison both types
of peers, because some kinds of clients do not stop searching
actions after they get fake sourcing peers from a critical node,
and still send find_node messages to get closer peers. A token
argument needs to be included in the announce_peer message,
because the peer index verifies whether the same peer has

2013 Proceedings IEEE INFOCOM

1808

previously sent a get_peers message. Value of the token is the
same as the corresponding argument in get_peers response
message. Thus, our index poison process needs to save all the
received token values in get_peers response messages.

Procedure 1: IndexPoisonAttack
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

get RandomPeerSet from DHT crawler;
CriticalPeerSet ← Φ;
IndexPeerSet ← Φ;
Target ← target infohash;
for p RandomPeerSet do

send Get_peers(Target) Message to p;
while (received response message within timeval)
 q ← source peer of the message
 type ← responded type tag;

if type = NODES then // returns 8 DHT node
 iNode[]← received DHT nodes
 for i←1 to 8 do

 send Get_peers(Target) Message to iNode[i];
 iNode[i].previous ← q;

else //Type = INDEX
 send Find_node(target) message to q;
 if q.previous IndexPeerSet
 CriticalPeerSet.insert(q.previous);
 IndexPeerSet.insert(q);

for p IndexPeerSet CriticalPeerSet do
 send Annouce_peer(Sybil IDs) to p;

Routing Pollution: DHT routing pollution attack includes
active pollution method and passive pollution method. In both
methods, we create several fake Sybil clients. Each Sybil client
has a 140 to 110 bit distance to the target infohash. The
distances are sufficient to make our Sybil clients closest to the
target file.

The active pollution process starts after the crawler creates
a tolerance peer set. Our fake clients send Ping messages to
peers in the tolerance peer set periodically. If the victim’s k-
bucket in charge of the fake peer is not full, we can
successfully insert the fake peer to it. If that k-bucket is full, we
also have chance to insert the fake peer into the backup bucket
at the same level. The backup buckets have 8 positions too. If
some offline peers in real bucket are kicked off during refresh,
our fake peers will promote into real bucket. After a sufficient
time, the routing tables of most peers in tolerance peer set will
be polluted. These fake peers will attract enough queries. Then,
we can start passive pollution process.

The passive pollution gets good pollution performance by
responding to external queries. All the four UDP messages are
preceded in passive pollution procedure. The detailed process
is given below:

1. Ping: Just copy the token field in the coming message,
set our fake peers as sourcing peers and send back the Ping.

2. Find_node: When receiving find_node message, our
client will check the target_id argument firstly. If the target is
one of our fake peer indexes, then copy all the fields in the
incoming message to the response message. Set our Sybil
nodes as the closest nodes and send the response message
backward. Otherwise, just discard the message

3. Get_peers: The treatment of get_peers is complex and is
illustrated in Figure 3. Node P is our attacking peer contained

 T: target ID (inforhash) Q: query peer
 B: best legitimate peer P:poison peer Si: assist sybil peers

21102160 2140 2130 0

Q B P SK S2 S1 S0
T

Get_peers message

Figure 3. Working flow of treating get_peers messages during DHT index
poison procedure

in the routing table of another active peer. Node Q initiates a
query. When node B receives the query message, it will tell

Q that P is a closer node Then Q will iteratively send get_peers
to P. Since P is ours, we can control rest of the query flow. We
select 8 closer peers in Sybil peers pool and reply to Q. The
query is iteratively sent to those Sybils. If the Sybils are close
enough, they act as peer indexes and responds get_peers
messages with many forged sourcing peers. The pollution can
insert many attacking peers into other active peers’ routing
tables and impact their peer selection procedures.

4. Announce_peers: Directly reply the messages. If the
infohash is in our treatment list, send the ip/port of the source
peer to fake-block pollution action engine.

Good passive polluting performance needs adequate work
of active polluting. When sufficient peers are polluted by active
pollution process, most of the query flows drop into our
attacking peers. Many our Sybil peers insert into routing tables
of other peers. In our real world experiment, we see that only
several minutes after active polluting start, our passive
polluting peers have received a large amount of get_peers
queries. This indicates that our method is very effective.
B. Fake-block Algorithm

Procedure 2: FakeBlockAlgorithm
1.
2.
3.
4.
5.
6.
7.

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

if tcp connection is actively established then
 send Handshake Message;
 while true do
 if received handshake+Bitfield Message then
 Send All-1 Bitfield Message;
 break;
if tcp connection established by other peers

and received Handshake Message then
 Send handshake+All-1 Bitfiled message;
while true do

if received interested message then
 send Unchoke Message;
 break;
if received requested Message then

if the requested block has been uploaded then
 Send Choked Message;
 Wait (timeval);
 Send Unchoked Message;

else
 send fake block data;

Procedure 2 lists our fake-block polluting algorithm. At the
beginning, we conduct a Sybil attack by registered many
forged lightweight clients on peer indexes in the DHT network,

2013 Proceedings IEEE INFOCOM

1809

to attract TCP connections with other peers. Meanwhile, our
client also actively initiates connections to other leechers. To
let other peers accept the active connections, our clients can’t
act as a seed, and we only set ALL-1 bits in the Bitfield.

The clients only try to pollute one block of each piece at
other peers. This is implemented differently depending on the
client types. For example, if the client is the type of uTorrent,
which always tries to download the whole piece from a single
sourcing peer, we can extract the block number in the received
request message and only pollute the first block in the piece. If
the block number is not the first, we regard it as already being
polluted. If the client is BitSpirit, which is prone parallel
requesting within a piece, we save the recent uploading history
to judge which block has been uploaded. We use
choke/unchoke messages to realize the pollution.

IV. THEORETICAL ANALYSIS

A. Analysis of DHT Polluting Methods
To achieve good DHT polluting performance, we need to

know that which nodes in DHT networks should be polluted.
To illustrate the design ideas of our PPBD system, some
theoretical analyses are given via a polar coordinate DHT ID
space model, which is showed in Figure 4.

In this model, infohash of the piracy content is placed at the
center of the circle. Diameter of the circle is the binary length
of peer ID (160 in BT DHT). All peers locate in the circle.
They can be separated to two groups by the edge of index zone.
Only peers within index zone can be in charge of indexing
source peers of the target content. This is because through
publishing and retrieving operations, the querying peer
iteratively finds the closest peers. For example, if some peer
initiates a query and the closest peer in its routing table to the
target is peer c, it starts the query to c for closer peers. If c tells
that peer b is the closest peer. The query is sent to b and then
iteratively sent to peer a. If peer a has no closer peer to
recommend, announce_peer message is sent to peer a. The core
of our pollution work is to find out all the peers on the edge of
the index zone (e.g. peer b) and to insert our forged peers into
these peers’ routing table. In real word, there are some special
implementations that make the job to be a challenge. The
details are given in Section III.

Another job of DHT routing pollution method is to choose
appropriate peer IDs for fake peers. If the IDs are not close
enough, the control methods does not take effect. On the other
hand, if the peers are too close, they are likely to be suspected
by other peers. Assume the ID space contains 2m peers in total.
The length of the ID is 160. In get_peers and announcing_peer
queries, 2k closest nodes are selected as peer indexes. The size
of the k-bucket is also 8. If all peers are evenly distributed in
the ID space, the distance of two adjacent peers is

160 1602 / 2 2m m . Then the closest peer to the target will have
m same bits prefix with the target ID. In this paper, we call the
peer with a distance of 160-m bits as the target. If our fake peer
has a distance closer than 160-m, our peer is closest to the
target. In real world, there almost several million peers in the
DHT network, that is to say m is between 20 and 24. Then the
closest peer has a distance of 136 to 140 bits to the target.
Hence, the best choice of our peer distance to the target is
around 130 bits.

160

c
b

a

target ID
index zone

XOR distance

DHT ID space

160

160

160

Figure 4. A polar coordinate model of BT DHT ID space

Moreover, each k-bucket of a DHT peer only has 8
positions. If the peer is very far from the target id, the k-bucket
that the target ID falls into is also in charge of a large amount
of IDs, then it becomes more difficult to insert a fake peer in
the k-bucket. In our PPBD system, we have made some system
optimization based on the above analysis.
B. Modeling of the Fake-block Method

In this subsection, we present a stochastic model for
quantitative analyzing the relationship between the real impacts
of fake-block method and the bandwidth consumed by the
attack. We also list some important factors that impact on the
pollution effectiveness. In our model, we don’t consider the
impact of the specific system architecture and network
heterogeneity. We assume that each peer has the same
bandwidth and computation capability, and peers arrive
according to a Poisson process. A node leaves the swarm as
soon as it finishes downloading and does not abort until it
obtains the entire file. Our research focuses on the stable period
in the propagation, which means that a swarm is in its
equilibrium state when the number of peers is stable.

We assume that there are n peers including seeds and
leechers in the swarm sharing a given file F , which is
containing piracy content. F is divide into s pieces, and iF is
the thi piece of F . The size of each piece is p . One piece is
further divided into l blocks. Piece is the smallest content
integrity-checking unit, while block is the smallest file
transmission unit.. A seeder has all the s pieces, while a
leecher only has a part of them. New peers arrive according to
a Poisson process with a rate of . The downloading
bandwidth of each peer is db . The number of sources is
sufficient to allow every peer to saturate download bandwidth.
After the swarm is stabilized, k fake-block polluting peers with
a total upload bandwidth total

attackb join and launch fake-block
pollution method. The polluting peers claim they have all s
pieces of F , and assume that they have sufficient bandwidth to
accept requests from the other peers. At time t , the number of
legitimate copies of piece iF is normal

ic and the number of

polluted copies of piece iF is attack
ic .

We introduced an indicator to evaluate the effectiveness of
fake-block pollution method on a single peer.

Definition 1 Delay Ratio: Delay Ratio is defined by
/delay attack normalR t t , where normalt is the download time of a

peer without fake-block pollution, and attackt is the download

2013 Proceedings IEEE INFOCOM

1810

time of a peer in the same swarm when there is a fake-block
pollution. A larger value of delayR indicates more serious

polluting impact. If delayR is very large, it means the peer can
hardly finish the download.

Before calculating this indicator and analyzing the impact
factors of it, we need to define two more parameters as follows:

Definition 2 (Piece Parallelism Degree): If the blocks of
one piece are downloaded from different sources, the Piece
Parallelism Degree is .

Definition 3 (Polluted Bandwidth Ratio): The bandwidth a
peer acquired from polluting peers is denoted as attack

db , the
consumed bandwidth for discarded pieces due to hash failures
is denoted as polluted

db , the ratio /polluted attack
ddb b is defined

as the Polluted Bandwidth Ratio.
From the assumptions of our model, we can get the

following theorems.
Theorem 1. When the swarm is in its equilibrium state, the

total number of normal peers in the swarm is stable. The value
is given by:

d

p
n s

b

Proof. If there is no fake-block pollution in the swarm, the
downloading time of a peer is given by:

normal
d

p
t s

b

Where s p denotes the size of the file F . In the
assumption of the model, new peers arrive according to a
Poisson process with a rate of , we have

() /t
normaldn t dt n dt t . When the swarm reaches its

equilibrium state, it satisfies () / 0dn t dt . The number of peers
at time t is t

normaln t . Using equation (2), we have
Theorem 1.

Theorem 2. The value of delayR is given by:

/ 2()
/ 2delay

k n
R

n

Proof. Firstly, we present some important equations:
In the equilibrium state, the number of peers that have a

specific piece is given by:
2/21 nnnn s

From our assumption, new peers arrive according to a
Poisson process, so the numbers of peers at different
accomplishing degree are the same all the peers can be grouped
to 1s groups according to their accomplishing degree. The

total number of piece copies is 0 1 2
s
i

i n s n
s

. The piece

selection strategy in BT makes all copies from different piece
evenly distributed, as shown in equation (4).

The bandwidth consumed by the pieces completely
downloaded from legitimate peers is given by:

/ 2()
/ 2

normal
d normal d d

n
b p b b

k n

In our model, all the polluting peers claim having all the
pieces. Using equation (4), the probability of selecting a normal

peer during peer selection is (/ 2) / (/ 2)n k n , and the
probability to acquire a entire piece from normal peers satisfies

[(/ 2) / (/ 2)]normalp n k n . Hence, we get the equation (5).
The download time of a peer with fake-block pollution is

give by:

attack normal
d

p
t s

b

Using equation (2) and equation (6), Theorem 2 can be
proved.

Theorem 3. The largest value of is equal to l , to
perform successful fake-block pollution, the attackers’
bandwidth satisfies as follows:

/ 2(1 ())
/ 2

total d
attack

bn
b n

k n l

Proof. According to BT content integrity-checking method,
the polluting effectiveness when there is only one block in each
polluted piece is the same with the polluting effectiveness
when the forged polluting clients accept all the block requests
from other peers. Hence, if we only polluted one block of a
piece the value of is equal to the number of blocks in a piece,
this is the best result of all the choices.

Equation (3) indicates the fake-block polluting
effectiveness. This requires that the bandwidth contributed by
all the polluting peers must satisfy at least one block request of
a polluted piece. The bandwidth consumed by the pieces not
completely downloaded from other normal peers is polluted

db , it
is equal to normal

d db b . The polluting bandwidth evenly

allocated to each downloading peer is /total
attackb n , only if it is

larger than total
attackb the fake-block polluting will get the best

effectiveness. From equation (5), the correctness of equation (7)
is proved.

Below, we list several factors that impact the fake-block
pollution effectiveness.

1. The popularity of the file: Equation (7) implies that the
more the downloading peers, the wider the bandwidth is
required. In the equilibrium state, the total number of peers is
proportional to the peers’ Poisson arrival rate , which
directly reflects the popularity of the file. Therefore, it is more
difficult to obtain the best pollution effectiveness for a popular
file. In the BT system, the popularity of a swarm cannot be
changed. In the design of our PPBD system, we use some DHT
polluting methods to prevent directly connections between
other peers. The probability of selecting a valid source peer is
greatly decreased.

2. The number of polluting peers: From equation (3), we
can see that more polluting peers can generate a larger delay
ratio, but meanwhile may decrease the upload bandwidth of
each fake-block polluting peer. It is very important to select an
appropriate value of k .

3. The piece parallelism degree: Equation (3) also shows
that the fake-block pollution can obtain a larger delay ratio
with a larger value of . This factor is decided by the design
of the specific BT client. Some client tends to download the
whole piece from one peer, while some client tends to take a
parallel download strategy.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

2013 Proceedings IEEE INFOCOM

1811

4. The polluted bandwidth ratio: A larger value achieves
higher effectiveness. If the piece parallelism is low, it is better
to upload a few fake blocks of the same piece to increase .
Thus, the optimal choice is to only upload one block of a single
piece.

V. EXPERIMENTAL RESULTS

A. Experimental Environment
We set up both public and semi-public environments to

evaluate our system. The public environment is mainly used by
DHT experiments and consists of several servers with public
IPs that can be connect directly by users from outside and the
users in the same networks. Each server hosts several modified
DHT clients, which can conduct passive routing pollution. The
other behaviors of those clients are just like normal DHT peers,
processing incoming messages and maintaining k-buckets of
their local routing tables. In the public network, we also placed
some lightweight clients with DHT index poison and active
routing pollution behaviors. However, it is improper and illegal
to directly control public torrents. In order to evaluate the
effectiveness of PPBD system over a swarm of controlled
torrent, we designed a semi-public environment. We placed a
private tracker and several modified DHT Sybil peers in our
internal networks that can be accessed locally by our own
clients and cannot be connected from outside. We placed
several servers with public IPs and each server hosts thousands
of lightweight clients behaving as fake-block peers. These
clients only registered on our local trackers. As a result, these
fake-block clients can only be discovered by the BT clients in
our local network. We placed another two normal BT clients in
the local network to compare the difference downloading
performances between fake-block pollution and non-pollution
scenarios. For non-pollution scenarios, one client is installed a
filtering (blacklist) function to reject connections with the fake
tracker and DHT Sybil peers. The fake-block method may
cause a long time to download a file. This makes the
measurement inconvenient. We cannot always download the
whole file. Instead, we defined an indicator to estimate the
download speed. The indicator is defined by:

duration

percentage

T
TD

D

durationT is the download time recorded in the test and percentageD
is the percentage of the content that has been downloaded. The
equation can be used to estimate the downloading speed of the
rest content that has not been finished yet.
B. Evaluation of DHT Polluting Methods

We evaluate DHT polluting methods in the public
experiment environment. The clients on the experimental
servers are modified versions of BT software. They don’t have
the capabilities to download and upload, to share pieces and to
join any swarms. The client will respond to every message on
the DHT serving port as a normal DHT peer, the only
difference is the client will take passive routing pollution to
attract queries from other peers. When receiving get_peers
messages, they will respond with the registered information of
peers honestly, thus they will not impact the downloading
performances of other peers. We placed 20 Sybils in the

network. The swarm of this torrent is estimated to including
about 1000 peers. We have made several evaluations.

Attracting Announcements. To illustrate our Sybils’
abilities of attracting peer announcements, every hour we use
the crawler to select 20 closest peers to the target infohash. Use
another client to send get_peers queries to those nodes as well
as our Sybil nodes. We recorded the number of source peers
carried by response messages. In order to reduce the traffic, the
response message sending by our modified client only returns
one UDP packet including 50 source peers. That means if there
are more peers registering on our Sybil client, we will only
select 50 of them. The experiment result is showed in Figure 5.
At the beginning, the real peer indexes returned a lot of source
peers. Three hours after our Sybils entering the network, more
sourcing peers are returned by our nodes. After about ten hours,
our Sybils attract most registrations. Through the experiment,
our nodes did not control the entire list of peers for the target
torrent even when they stayed alive for over 24 hours. There
are several reasons. First, new nodes join the network all the
time. We can’t pollute all of their routing tables. Second, peer
publishing strategies of clients are different. Some tend to
publish information on the peers returned by get_peers
responses, but not the closet peers in the tolerance zone. Then,
some index peers will not drop into our polluting area.

Controlling Query Progress. In this experiment, we use
uTorrent client in public network to perform get_peers
operation to see how many our Sybil nodes are included in
returned peer indexes and how many source peers are acquired
from real peer indexes. Every hour, we initiated 100 queries for
the target torrent, and recorded the average percentage of our
Sybil nodes among all the responding peers. The result is
showed in Figure 6. At the beginning, the percentage is
increasing rapidly. After about 2 hours, the percentage reached
about 55. After 5 hours, the percentage remained steady at
between 75 and 85. The percentage kept at a high value during
the rest of our experiment. We have also using a modified
client to see how many sourcing peers returned by the other
peer indexes. The querying results responded from our Sybil
peers are filtered. Table 1 shows the results responded from
real peer indexes, the returned peers are no more than 120. The
longer our Sybil nodes stayed in the network, the fewer peers
were returned. That is to say, even if some real peer indexes
can be found, only a few source peers are returned and only a
small part of them can be connected.

Polluting Routing Tables. Since there are only eight
positions in each k-bucket, a Sybil peer can’t always be
inserted into the routing table. In this experiment, we will show
the efficiency of polluting routing tables. Two DHT zones are
selected and the nodes are crawled in every thirty minutes. We
made a modification of the crawler to enable it record whether
a Sybil peer is inserted in given peer’s routing table. There are
about 6000 peers in zone 1 and 3500 peers in zone 2. The result
is showed in Figure 7. In the initial two hours, the polluted
peers are less than 40 percent. After three hours, the
percentages of polluted peers in both zones are stable and zone
2 has a better result than zone 1. The polluting is more efficient
in a small zone. The polluting method can’t pollute all the
peers in either zone. That is mainly because peers join and
leave the network all the time. Only the k-buckets of a peer
stayed in the DHT for a long time will fully split and our Sybils

(8)

2013 Proceedings IEEE INFOCOM

1812

0 200 400 600 800 1000 1200 1400 1600
0

10
20
30
40
50
60
70
80
90

100
110
120
130

 returned by our peers
 returned by other peers

nu
m

be
r

of
 s

ou
rc

e
pe

er
s

Duration (min)

Figure 5. Returned source peers by peer indexes’
response messages

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f s
yb

il
pe

er
s

time (hour)

Figure 6. Percentage of PPBD Sybil peers in
peer indexes’ responses

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f p
ol

lu
te

d
pe

er
s

time (min)

 zone 1
 zone 2

Figure 7. Effects on polluting Routing tables of
peers in two DHT zones

TABLE I. NUMBER OF NORMAL AVAILABLE PEER INDEXES ACCESSED
BY GET_PEERS OPERATIONS

Duration (hours) 2 4 6 16 20 24
Peer indexes 3 4 3 8 5 3

Sourcing peers 102 113 87 92 64 51

TABLE II. COMPARISON OF DOWNLOAD TIME (BITCOMET)

Name Movie 1
Size 196.25MB

Scenarios Non-attack attack

Ratio (fake-block / normal) 0 ≈2 ≈7 ≈11

TD 1.93 11.6 15.17 41.56
Rdelay n/a. 6.01 7.86 21.53

TABLE III. COMPARISON OF DOWNLOAD TIME (BITSPIRIT)

Name Movie 2

Size 519.25MB
Scenarios Non-attack attack

Ratio (fake-block / normal) 0 2
TD 2.02 +∞

Rdelay n/a. +∞
will be easily inserted. Despite this, our pollution method will
pollute over 60 percent of DHT peers and that is enough.
C. Evaluation of fake-block pollution

In this subsection, we evaluate the fake-block pollution
from three aspects, the number of the fake-block polluting
peers, the type of the client and the swarm size.

The Number of Polluting Peers. Experimental results are
abstained from the swarms having amount of actual outside
peers. Table 2 and Table 3 present the contrast of downloading
time between fake-block pollution enabled scenario and non-
pollution scenario of different clients types. The results show
that fake-block pollution can extend the downloading time to at
least six times (11.6/1.93) and bring serious performance
degradation. We compared the polluting effects of different
ratios between malicious peers and legitimate peers. From
Table 3, we can see that the more fake-block polluting peers
exist, the longer the delay will be.

Different BT Client Type. Table 2, Table 3 and Figure 9
are the results from BitComet, BitSpirit and uTorrent clients.
The results indicate that, BitSpirit is more vulnerable to fake-
block pollution. The main reason is that BitSpirit is prone to
multiple in parallel requesting blocks of one piece from many
peers, which makes the probability of getting fake blocks from
polluting peers higher. The fake-block polluting toward
BitComet can also have a good result even if its parallel degree

is not high. uTorrent is the fastest client to finish the download
among them with no more than five times duration of normal
situation. It is because uTorrent uses a more progressive
method to get a better downloading performance. uTorrent
stops a connection if there are few activities of low traffic, and
this increases the difficulties to control it. It needs more
attacking bandwidth if we try to keep pollution connections,
which has a side effect to make our clients more likely being
blacklisted. That is why in Figure 9, the downloading speed is
faster at the later phase of the experiment.

Swarm Size. Our study also shows that the factor of
swarm size can influence the effects of attack behaviors.
Swarm size is defined as the total number of peers sharing the
same resource in BT, which indicates the popularity of a torrent.
A large swarm size means that many users are interested in the
corresponding torrent, and makes it harder to perform a
successful pollution because a peer can connect with many
other valid peers and get sufficient bandwidth. We consider
two different swarms: a small swarm (697.03 MB) with around
500 seeds and 800 peers in total, and a large swarm (699.72
MB) with about 4000 seeds and 7000 peers. Figure 8 shows the
results of TD using uTorrent in these two swarms. We can
make the following observations. First, compared with the
smaller swarm, the larger one has a short download time with a
higher download rate, regardless of whether the swarm is under
polluting or not. Second, our system can increase the peer
download duration at least three times for both small and large
swarms. Third, the larger swarm is more difficult to control.
Figure 9 demonstrates the parallel download progress in
normal and polluted uTorrent clients, and it shows an apparent
delay in the polluted one. We have also evaluated BitSpirit to
see the difference between smaller and larger swarms. In both
cases, the polluted client can only obtain a small number of
useful blocks in a long period of time, which means BitSpirit is
more vulnerable to fake-block polluting method. As a result,
DHT pollution methods can limit the swarm size and fake-
block pollution has a good effect on a small swarm. That
means our PPBD system can effectively prevent piracy
propagation in BT DHT network.

Moreover, we have estimated the bandwidth usage of our
system to control different client. The outbound traffic of
successful fake-block pollution is around 100 KB/s and it is
higher than inbound traffic which is around 60 KB/s, because
the outbound traffic is responsible for uploading fake blocks to
victim clients. BitSpirit and Vuze consume more bandwidth
than uTorrent, implying that our system cannot pollute many
blocks in uTorrent. uTorrent can download the resource more

2013 Proceedings IEEE INFOCOM

1813

Small Large
0

1

2

3

4

TD

Swarm Size

 Normal
 Pollution

Figure 8. TD with different swarms using uTorrent

0 50 100 150 200 250
0

20

40

60

80

100

D
ow

nl
oa

d
Pe

rc
en

ta
ge

Download Time

 Normal
 Pollution

Figure 9. Parallel download progress of uTorrent

quickly as expected. The outbound traffic of DHT attack for a
zone is varied at different attacking phases. The crawler will
consume more bandwidth. The outbound traffic and inbound
traffic are both around 200 KB/s. After the pollution is start,
the inbound traffic is 40 KB/s and the outbound traffic is
100KB/s. That is because our peers attract enough query flows
and the response message is larger than the query message.

VI. CONCLUSION
Piracy contents are prevailed over BT networks. It does not

change the situation by shutting down tracker sites or deleting
pirated content, because most popular BT clients have
‘trakerless’ support by equipping DHT technique. In this work,
we proposed PPBD, a effective copyright protection system for
BT DHT networks. The study focused on exploiting some
vulnerabilities of BT system, including the fake-block method,
the DHT index poison method and the routing pollution. These
methods can interfere peer selection of BT clients, and delay
download progress of pirates. We carried out theoretical
evaluations by analyzing and modeling the behaviors of PPBD
and concluded that: (1) the index poison and routing pollution
methods over DHT can prevent illegal peers from finding
available peer indexes; (2) the fake-block method can delay
content propagation in the swarm. Furthermore, we performed
real-world experiments of different swarms for existing torrents
to evaluate the efficiency of PPBD, using different client types.
Our experimental results show that: (1) only using the fake
block method, our system can prolong the download time more
than three times; (2) the index poison and routing pollution
methods in DHT networks can limit the swarm to a small size.
Hence, our copyright protection system is effective for most
clients to prevent piracy in DHT environment.

ACKNOWLEDGMENT
This research was supported in part by the China National

Basic Research Program (973 Program) under grants
2011CB302605, the China National High Technology
Research and Development Program (863 Program) under
grant 2010AA012504 and 2011AA010705; and by the US

National Science Foundation (NSF) under grants CNS-
0963578, CNS-1022552, and CNS-1065444.

REFERENCES
[1] Envisional. An Estimate of Infringing Use of the Internet. [Online].

Available: http://documents.envisional.com/docs/EnvisionalInternetUsa
geJan2011.pdf

[2] http://bt.btchina.net/
[3] http://www.mininova.org/
[4] DMR 2011 [Online]. Avaliable: http://www.ifpi.org/content/section_res

ources/dmr2011.html
[5] J.Liang et al., “The Index Poisoning Attack in P2P File-Sharing

Systems” IEEE INFOCOM, 2006.
[6] J.Liang, R. Kumar, Y. Xi, K.W. Ross. “Pollution in P2P File Sharing

Systems”, IEEE INFOCOM 2005, Miami, March 2005
[7] J.Mee, P.A.Watters, “Detecting and Tracing Copyright Infringements in

P2P Networks,” ICN/ICONS/MCL 2006.
[8] K.P. Chow, K.Y. Cheng, L.Y. Man, Pierre K.Y. Lai, Lucas C.K. Hui,

C.F. Chong, K.H. Pun, W.W. Tsang, H.W. Chan, S.M. Yiu, “BTM - An
Automated Rule-based BT Monitoring System for Piracy Detection,” .
ICIMP 2007.

[9] D.Tsolis, S.Sioutas, A.Panaretos, I.Karydis, K.Oikonomou,
“Decentralized digital content exchange and copyright protection via
P2P networks,” Computers and Communications (ISCC), 2011

[10] Q.Qiu, Z.Tang, Y.Y.Yu, “A decentralized authorization scheme for
DRM in P2P file-sharing systems,”.Consumer Communications and
Networking Conference (CCNC), 2011

[11] X. Zhang, D. Liu, S. Chen, Z. Zhang, and R. Sandhu, “Towards Digital
Rights Protection in BitTorrent-like P2P Systems,” 15th SPIE/ACM
Multimedia Computing and Networking (MMCN’08),

[12] Y.Y.Chen, J.K.Jan, Y.Y.Chi, M.L.Tsai, “A Feasible DRM Mechanism
for BT-Like P2P System,” International Symposium on Information
Engineering and Electronic Commerce (IEEC), 2009

[13] X.S.Lou, K.Hwang, "Collusive Piracy Prevention in P2P Content
Delivery Networks", IEEE Transactions on Computers, July 2009.

[14] M. Yoshida, S. Ohzahata, A. Nakao, and K. Kawashima, “Controlling
File Distribution in The Share Network Through Content Poisoning,”
AINA 2010

[15] C. Wang and C. Chiu, ”Copyright Protection in P2P Networks by False
Pieces,” international conference on Autonomic and trusted computing,
2011.

[16] K.E.Defrawy, M.Gjoka, A.Markopoulou, “BotTorrent: misusing
BitTorrent to launch DDoS attacks,” the 3rd USENIX workshop on
Steps to reducing unwanted traffic on the internet, 2007.

[17] K.C.Sia, “DDoS Vulnerability Analysis of BitTorrent Protocol,”.
UCLA:Techical Report, 2006.

[18] G.Urdaneta, U.Pierre, M.V.Steen , “A survey of DHT security
techniques,” ACM Computing Surveys, Volume 43 Issue 2, 2011

[19] J. R .Douceur, “The Sybil attack.” the 1st International Workshop on
Peer-to-Peer Systems, Germany, 2002

[20] E.Sit, R.Morris, “Security considerations for peer-to-peer distributed
hash tables,” the 1st International Workshop on Peer-to-Peer Systems,
Germany, 2002

[21] A.Singh et al. “Eclipse attacks on overlay networks: Threats and
defenses,” IEEE INFOCOM, 2006.

[22] M.Steiner, T.En-Najjary, E. W. Biersack, “Exploiting KAD: possible
uses and misuses,” ACM SIGCOMM Computer Communication
Review, 2007

[23] Azureus (now called Vuze) Bittorrent Client , [Online]. Available:
http://azureus.sourceforge.net/plugin_details.php?plugin=mlDHT

[24] P.Maymounkov, D.Mazieres, “Kademlia: A peer-to-peer information
system based on the xor metric.,” IPTPS 2002.

[25] Cohen, ”Incentives build robustness in BitTorrent,” the first Workshop
on Economics of Peer-to-Peer Systems, 2003.

2013 Proceedings IEEE INFOCOM

1814

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

