
A Performance Prediction Scheme for
Computation-Intensive Applications on Cloud

Hongli Zhang1, Panpan Li1, Zhigang Zhou1, Xiaojiang Du2 and Weizhe Zhang1
1School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China

Email: zhanghongli@hit.edu.cn, {lipan, zhouzhigang, zwz}@pact518.hit.edu.cn
2Department of Computer and Information Sciences, Temple University, Philadelphia, PA, 19122, USA

Email: dux@temple.edu

Abstract—As cloud computing services are gaining popularity,
many organizations are considering migrating their large-scale
computing applications to cloud. Different cloud service
providers (CSPs) may have different computing platforms and
billing methods. Most cloud customers don’t know which CSP is
more suitable for their applications and how much computing
resource should be purchased. To address this issue, in this paper,
we present a performance prediction scheme that allows a cloud
customer to accurately predict computing resource (e.g., running
time) for an application. The proposed scheme identifies
application’s control flow and scaling blocks, constructs a
miniature version program to run in local machines, and then
replays it in cloud to get the performance ratio between local and
cloud. Our real-network experiments show that the scheme can
achieve high prediction accuracy with low overhead.

Index Terms—Cloud computing; performance prediction; cost

I. INTRODUCTION
Cloud computing has gained tremendous popularity in

recent years. A number of large international IT companies
have developed their own cloud platform, e.g., Google App
Engine and Amazon's EC2 and S3 [1, 5]. Many individuals and
organizations outsource their computation and storage to cloud.
Cloud computing creates a new way for IT operation and
management. By using resources from CSPs, cloud customers
can save the cost of purchasing hardware and software systems,
hiring IT personnel, and system operation and maintenance
expenses.

However, given some many different cloud platforms,
choosing the best cloud platform is not a trivial problem.
Different CSPs may offer different service models, such as
platform as a service (PaaS, e.g., Google App Engine [5]), and
infrastructure as a service (IaaS, e.g., Amazon EC2 [1]). In
addition, different CSPs offer different options in pricing,
performance, and feature set. For cloud customers, due to lack
of IT expertise, they don’t have a good idea on how many
cloud resources (e.g., store and computing power) should be
purchased. Answering this question may benefit both cloud
customers and CSPs. For cloud customers, the answer can help
them choose the right CSP and pay the right amount of cloud
resources for their IT tasks. For CSPs, the answer may help
them set up fine-grained charge standard [6].

In this paper, we propose a performance prediction
framework that can accurately predict the cost of customer

applications without migrating them from local to cloud. In our
framework, first, we find the performance scaling blocks in
customer's applications, and then we create a miniature version
of the program. Our prediction framework traces the running of
the miniature version program using a lightweight trace engine,
and then replays it on cloud to get the performance scale ratio
between local and cloud. The replayer hides complex program
logics and platform details, while emulating the performance
equal scaling blocks of the real program on cloud. We
implement the framework and deploy it on Eucalyptus [15].
Taking HPL (High Performance Linpack) benchmark as our
test case [2], the evaluation shows that the proposed framework
can accurately predict the time cost of customer applications
with low overhead.

Our contributions are summarized as follows.
 To the best of our knowledge, this is the first work that

studies the problem of performance prediction for
computation-intensive applications on cloud.

 We present a performance prediction framework,
which can accurately predict the time cost of user
applications on cloud. Our method doesn’t need actual
migration.

 We implement the framework on cloud and the HPL
benchmark tests show that our scheme can accurately
predict the time cost with low overhead.

The rest of the paper is organized as follows. In Section II,
we describe the problem. And then focusing on computation-
intensive application, we provide a performance prediction
framework and give the performance keys model as criterion of
evaluating performance cost in Section III. Section IV and
Section V describe the performance model in detail. We use
experiences to validate the accuracy and lightweight-injected of
the framework in Section VI. Finally, we overview the related
work and give the conclusion of the whole paper in Section VII
and Section VIII, respectively.

II. THE PROBLEM STATEMENT
Our goal is to predict the cost (e.g., running time) of

computation-intensive user applications when they run in an
IaaS cloud platform, such as Amazon EC2 [1]. We focus on
computation-intensive applications because they are one of the
most popular types of computing applications running on the
cloud. Nowadays, many customers choose to run their
applications on cloud platforms because it saves money. A user

978-1-4673-3122-7/13/$31.00 ©2013 IEEE

IEEE ICC 2013 - Communication and Information Systems Security Symposium

1957

just leases computing and storage resources with the pay-as-
you-go manner [3, 4, 6].

However, there are some challenges: (1) Cloud computing
environments vary widely cross platforms, even for the same
application, the running time may be very different on different
cloud platforms. Some existing research achievements look at
the problem from the application layer: determining the
running time only based on the number of loops, which is not
accurate. (2) Computation-intensive applications are diverse,
and the running time of different applications may vary a lot.
Even for the same application, the running time is nonlinear of
the input data size. (3) Many factors affect computing cost, and
the OS could shield the details. Therefore, it's difficult to
measure influence of each factor in an application [9, 14].

In addition, to ensure accurate prediction of application
performance by not introducing heavy additional overhead, the
injected code to our framework should be lightweight.

III. THE SYSTEM ARCHITECTURE
Motivated by the aforementioned challenges and design

rationales, we design a performance prediction framework
consisting of three components: the decomposition engine, the
control flow extractor, and the data flow extractor. Figure 1
illustrates the performance prediction framework.

Figure 1. Architecture of the performance prediction framework

The function of the decomposition engine is simple. It
translates a computation-intensive application to a simple,
formally specified intermediate language and then provides a
set of core utilities for common static analysis on the
intermediate language. It is like a distributor that divides a
computation-intensive application into two parts: control flow
and data flow.

The control flow extractor is a static analyzer for the entire
system, which enables the entire-system monitoring and finds
the performance equal scaling blocks based on lexical analysis
and syntax analysis. The data flow extractor is a dynamic
analyzer, and it compares the time cost of each aspect between
local and cloud. First, the data flow extractor executes the
miniature program in local, and then replays it on cloud.
Through this, we get the performance difference between local
and cloud, in terms of CPU, memory, hard disk, and
communications [7].

In this framework, we adopt the performance driver
architecture, which transforms a software structure model to a
performance model. The performance model contains two
components: a platform-independent model and a platform-
dependent model. The platform-independent model focuses on
logic view, which is independent of the concrete

implementation and platform support. While the platform-
dependent model shows the underlying technology and the
related platform-based implementation details. We use the
following performance key model as the final performance
prediction model: = + (> 0, > 1) (1)

where denotes the performance prediction value of the
program, is the time cost of the miniature program executed
in local environment, is the communication cost, is the
difference degree between local and cloud, is the scaling
coefficient between the real program and the miniature
program. In the following, we will present the measurement
method for (in Section IV and V) and (in Section V).

IV. PERFORMANCE MODEL EXTRACTION
The control flow is the output of the decomposition engine

component, and it is used to get the platform-dependent model
and the platform-independent model. Below we describe each
part in details.

A. Lexical Analysis and Syntax Analysis
Lexical Analysis: The purpose of lexical analysis is to

identify words in a sentence and mark them with syntactic
tagging. We use the GNU GCC compiler as our lexical
analyzer. In the prototype system, we capture the interim result
strings of the _cpp_lex_direct function and we use string
matching to identify performance-related words (e.g., while, for,
switch), which are stored as records in a small database [11, 12].

Syntax Analysis: The syntax analysis is to check words
given by the lexical analysis and verify whether a given
sequence of symbols is a correct sentence. In this phase, we
rewrite the c_parser_translation_unit function, which grasps
the input of every performance-related word, and appends it to
the corresponding record in the database .

Algorithm 1 Extracting scaling basic block algorithm
Input: SC, the source code of application
Output: < sbbi, di >

sbb, scaling basic block; di , the input of sbbi
1:while(SC)
2: do lexical analysis
3: getting loop block
4: sbb ← loop block
5: SBBs ← SBBs ∪ sbb
6:end while
7:while(SBBs)
8: do syntax analysis
9: getting di of sbbi
10: <sbbi, di >
11: end while

Algorithm 1 shows the pseudo-code of extracting scaling
basic blocks. The algorithm includes two main steps. Line 1-6
find loop blocks by scanning the application source code (i.e.,
lexical analysis). Based on the communication pattern, line 7-
11 extract the dataset scale about each basic block, and denotes
it as <sbbi, di>. Consequently, by lexical analysis and syntax
analysis, performance-dependent but semantics-independent
model can be built. Outputs of lexical analysis and syntax
analysis only describe each separate performance block of the
application, but don’t have the context information of the
blocks.

1958

B. Dependence Analysis
In compiler theory, dependence analysis produces

execution-order constraints between statements and
instructions. Broadly speaking, a statement S2 depends on S1 if
S1 must be executed before S2. In general, there are two
classes of dependencies: control dependence and data
dependence [11].

Dependence analysis determines whether or not it is safe to
reorder or parallelize statements. There are two main
application dependences.

Control dependence: Control dependence is a situation in
which a program’s instruction executes if the previous
instruction evaluates in a way that allows its execution. Loop
dependence is the most important, because the size of a loop
structure determines the main time cost in a parallel
computation program. Loop dependence analysis is to
determine whether statements within a loop body form
dependence, with respect to array access, modification,
induction, reduction, private variables, simplification of loop-
independent code and management of conditional branches
inside the loop body.

Data dependence: Data dependence is a situation where
the attributes of data (e.g., input/output size, type, memory
location, data function) affect the program. Through data
dependence analysis, we can get the time cost of each aspect
(e.g., CPU, memory, hard disk, communication) for executing
the program, and the performance different between local and
cloud.

The goal of dependency analysis is to find the system core
structures, frequent patterns. Control dependence analyzes
solutions based on static analysis and uses source-code-based
data in the form of execution traces. An execution trace can be
a function, procedure, or method being called. Execution traces
are collected using techniques such as source code
instrumentation, platform profiling, and compiler profiling.
Most techniques and tools for execution trace analysis are
designed for specific paradigms and even specific
programming languages. While data dependence analysis
solutions are based on dynamic analysis and execute the
miniature version of the program, which is obtained by control
dependence analysis. Through control dependence analysis, we
can get the time cost which is proportional to that of the real
program, and use the replayer to get the run-time environment
differences between local and cloud.

V. PERFORMANCE EQUAL SCALING METRIC
Computation-intensive applications place unique and

distinct demands on computing resources. In this section, we
present an efficient method to predict the processing time of an
application on cloud by performance equal scaling instead of
actual migration.

A. Computation Proportional Scaling
Large computation-intensive applications running on cloud

are often hard to monitor for a variety of reasons. Several
technical challenges still exist. First, the platforms themselves
are complex systems of heterogeneous nodes, and the platforms
differ widely among themselves. Second, because of the
heterogeneity, virtual machines (VMs) make resource access
on cloud by virtualization of heterogeneous resources.

Due to virtualization, important factors of running time,
such as memory size, memory frequency, and hard disk speed,
can’t be measured directly. We divide the factors into three
classes: CPU-related factors, memory-related factors and IO-
related factors. These factors affect computation time in
different ways. The combined effect of these factors on
computation time is hard to determinate. In cloud, VMs and
host OSs shield the factors from customers. Hence, we have to
measure cloud resources using trace ideas by running the
application in real environment. To get the performance of an
application, the first method that comes to mind is to replay it
on cloud with small dataset and count the system calls.
However, this method is not feasible because there are too
many system calls to collect, which would severely affect
system performance.

As stated in section IV, the scaling block, to a certain extent
determines the computation of an application. However,
scaling block only describes the logical structure of an
application, which is not related to the actual running
environment and dataset scale. In this case, we need to build a
performance model that is related to the cloud environment,
and we call it the context-sensitive performance model. We run
an application with small dataset scale in local and then replay
it on cloud, and then we can get the performance scale ratio
between local and cloud.

The context-sensitive performance model is based on a
workload-independent ratio, which extracts parameters from
the comparison between running in the local and cloud with a
small dataset scale. The purpose of replaying in cloud is to get
the impacts from practical parameters of the cloud.

B. Communication Cost
Most computation-intensive applications use the Message

Passing Interface (MPI) framework for achieving their parallel
computation on different VMs [2, 10]. The communication
overhead is only related to the amount of socket
communications, and it doesn’t depend on the dataset scale of
the application.

Compared to the computation cost, the communication cost
is much easier to predict. The communication cost typically
includes latency and bandwidth, which are determined by the
network being used. There are many existing programs to
monitor MPI message communications. MPI communication
and network latency are not related to the dataset scale.
Because all MPI communications use socket, we only need to
monitor socket communications on cloud platform. We also
know the run-time environment difference between local and
cloud; hence we can predict the communication cost on cloud.

C. Performance Prediction
We need to predicate both the computation and

communication cost.
Computation: By lexical analysis and syntax analysis, we

can get the performance miniature version of an application.
However, the dataset scale of application has different effects
on each block. Hence, we need to obtain the relationship
between dataset scale and the input of each basic scaling
performance block. The solution is based on the coverage test
technique. It makes static analysis on the source code, which is
inserted with stub code at the beginning and end of each
function.

1959

Communication: As mentioned earlier, we only need to
monitor the MPI socket communications of all VMs when
replay the application in cloud with small scale dataset. MPI
socket has almost the same cost while running with large scale
dataset [2]. Hence, it doesn’t need monitor MPI socket on local
platform, because local and cloud network environments are
different. Our goal is to predict the application performance in
cloud, so we need to run the application using the cloud
network rather than the local network. Therefore, MPI
communication monitoring must be done by running the
application in cloud with small scale dataset.

VI. EVALUATION
To evaluate the performance of our strategy, we run real

computation-intensive applications in both local platform and
cloud platform, and we compare the results between the two
platforms.

A. HPL Benchmark Case
As a computation-intensive application, HPL is a Linpack

benchmark package widely used in massive cluster system
performance test [2]. The HPL algorithm is designed to solve a
linear system by LU factorization with row partial pivoting. N
is the order of coefficient matrix A. We use an open source
cloud Eucalyptus [15] the cloud platform, which contains 32
virtual machines sharing 4 physical machines, and the
bandwidth of inter-network in cloud is 100MB. The local
platform is a PC with Intel T5500 CPU, 2G RAM and 7200
RPM hard-disk. In the following subsections, we run a serial of
experiments with different dataset scales.

B. Detailed Analysis
1) Platform-related Factor Difference

First we compare the performance difference between the
local and cloud platforms. There are three key factors that are
critical to computation performance on a specific platform:
CPU-related factor, memory-related factor and I/O-related
factor. We use a suite of benchmark applications that test
various aspects of the computing infrastructure offered by
cloud. There are traditional computation performance
benchmark suites for measuring the three factor, such as the
busy-loop, memory-intensive benchmarks, and I/O benchmarks.
We inject timing function to HPL and replay it in cloud [12],
and then we can obtain the performance ratios between local
and cloud by dynamic analysis.

Figure 2. Performance difference between local and cloud

From Figure 2, we can see that the CPU and memory
related performance ratios between the two platforms are quite
different. While, I/O related performances on the two platforms
are almost the same. Parameter is the difference degree
between local and cloud, and it is determined as follows: = + + (2)

where , and denote the ratio of three
performance-dependent factors between local and cloud
respectively. While , and denote the
proportion of three factors in the application, respectively.

Figure 3. Performance factor proportion of HPL

To evaluate the predication performance of our method, we
deploy the HPL benchmark with different dataset scales on
local and then replay it in cloud. Figure 3 shows the percentage
of every factor in HPL. The result in Figure 3 is obtained by
using a few small scale datasets, i.e., the × HPL
benchmark, where = {4000, 4100, … ,6000}.

For different orders of the coefficient matrix A, HPL
requires different running time to execute the matrix LU
decomposition. The floating-point execution time varies when
problem size changes. Computation-intensive applications tend
to consume a lot of memory. When there is not enough
memory, other programs that reside in memory have to be
swapped out to the hard disk. To reduce the effect of memory
swapping, we set the page swap rate under small datasets the
same as that under large datasets.

Figure 4. Computation cost of HPL on local and replaying in cloud

Figure 4 plots the running time of HPL on local and cloud
platforms using . The results show that: when the dataset
is small, the application running time in cloud is larger than
that on local. This is consistent with theoretical analysis: when
the dataset is small, the communication cost is the majority of
the overall cost. Different from local platform, the cloud
platform runs an application in several VMs, and hence the
communication cost becomes the bottleneck. When dataset
increases, the computation cost becomes the major cost.
Because cloud has more computing power, the application
running time in cloud is smaller than that on local.

Parameter is the scaling coefficient between a real
program and its miniature program, and is given by = (∈) (3)

In our test, the communication cost only includes the
MPI cost. The computation cost has a nonlinear relationship
with the dataset size. The lexical analysis component can

1960

extract the performance skeleton. For different applications, the
dataset size has different effects on scaling blocks.

2) Performance Prediction and Accuracy
In this subsection, we evaluate how the prediction accuracy

changes under datasets with different scales. For this purpose,
we predict the running time and communication time on the
cloud for each dataset, and then we also use experiments to
measure the time. We use datasets to predict the
performance of = 15000 and = 30000 and check
the accuracy of equation (1).

Figure 5 plots the real and predicted running time of HPL
on . The baseline is the actual performance overhead of
HPL with dataset on cloud. Figure 5 shows that our
scheme can accurately predict the HPL performance, and the
error is in the range of 5.09%~1.43% when = 15000 as
shown in Figure 5(a), while 4.07%~0.98% when =30000 as shown in Figure 5(b). There are two reasons for this
good result. First the cloud replayer uses the same performance
model and issues the same network MPI calls as the application
on local. Second, our scheme extracts the ratios of CPU usage,
memory usage and I/O usage before replaying on cloud. We
also find that the prediction inaccuracy decreases when the
dataset scale gets closer to . It is interesting to note that
the prediction accuracy depends on the datasets used for
prediction. The closer the small dataset scale to the large one,
the higher the accuracy.

(a) = 15000 (b) = 30000

Figure 5. Performance prediction inaccuracy by

To sum up, the experimental results show that our scheme
can accurately predict the performance of computation-
intensive applications on cloud with small dataset scale.

VII. RELATED WORK
Li et al. [7] propose using architecture independent

characteristics to find the most similar benchmarks, which are
used to predict the performance of CPU-intensive applications
across a large collection of CPU types. On the other hand, our
work captures the active running time using lightweight
technique, and we use performance scaling block to predict the
running time on cloud.

In [8], Li et al. compares performance of multiple CSPs.
This work focuses on how much cloud computation a client
should buy, and it tries to predict the performance of
computation-intensive applications. Our work uses the
performance equal scaling strategy instead of simulations to
predict the running time on cloud. Four popular commercial
cloud providers are compared in [13], which finds that the
performance and costs of various CSPs differ significantly.

VIII. CONCLUSION
In this paper, we presented a performance prediction

scheme for computation-intensive applications on cloud. We
identified and addressed two key challenges: (1) how to find
the application performance scaling blocks, and (2) how to
predict computation-intensive application performance using
small dataset scale. Our real-network experiments showed that
the scheme can achieve accurate predictions with low overhead.
Our performance prediction scheme could help a cloud
customer estimate the cost of running a computation-intensive
application on cloud without actually deploying it.

ACKNOWLEDGMENT
This work is supported by the project of National Natural

Science Foundation of China (60903166, 61100188,
61173144), National Basic Research Program (973 Program)
of China (2011CB302605) and National High Technology
Research and Development Program (863 Program) of China
(2010AA012504), and by the US National Science Foundation
under grants CNS-0963578, CNS-1022552 and CNS-1065444.

REFERENCES

[1] Amazon Relational Database Service (Amazon RDS) [Online]. Available:
http://aws.amazon.com/rds/

[2] HPL - A Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Computers [Online]. Avaliable:
http://netlib. org/benchmark/hpl/

[3] G. H. Wang, T. S. E. Ng, “The Impact of Virtualization on Network
Perfor-mance of Amazon EC2 Data Center,” in Proc. 29th IEEE Int.
Conf. Comput. Commun., San Diego, CA, 2010, 1-9.

[4] CloudCmp Project Website [Online]. Available: http://cloudcmp.net
[5] Google AppEngine [Online]. Available: http://code.google.com/

appengine
[6] M. Hajjat, X. Sun, et al., “Cloudward Bound: Planning for Beneficial

Migration of Enterprise Applications to the Cloud,” in Proc. 2010 ACM
Int. Conf. Special Interest Group on Data Commun., New Delhi, India,
2010, 243-254.

[7] A. Li, X. Zong, et al., “CloudProphet: Towards Application
Performance Prediction in Cloud,” in Proc. 2011 ACM Int. Conf. Special
Interest Group on Data Commun. Toronto, ON, Canada, 2011, 426-427.

[8] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Shopping for a
Cloud Made Easy,” in Proc. 2nd UNSEIX Workshop on Hot Topics in
Cloud Computing, Boston, MA, USA, 2010.

[9] E. Walker. “Benchmarking Amazon EC2 for High-Performance
Scientific Computing,” USENIX Login, vol.33, no 5, Oct. 2008.

[10] R. A. Balance, J. Cook, “Monitoring MPI Programs for Performance
Characterization and Management Control,” In Proc. 28th ACM Symp.
on Applied Computing, 2010, 2305–2310.

[11] GCC, the GNU compiler Collection [Online]. Available:
http://gcc.gnu.org

[12] GLIBC, the GNU C Library [Online]. Available: http://www.gnu.org/
software/libc

[13] A. Li, X. W. Yang, S. Kandula, M. Zhang, “CloudCmp: Comparing
Public Cloud Providers,” in Proc. 2010 Internet Measurement Conf.,
Melbourne, Australia, 2010, 1-14.

[14] M. P. Mesnier, M. Wachs, R. R. Sambasivan, et al., “//trace: parallel
trace replay with approximate causal events,” in Proc. 5th USENIX
Conference on File and Storage Technologies, San Jose, CA, 2007.

[15] Eucalyptus [Online]. Available: http://open.eucalyptus.com

1961

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

