Globecom 2013 - Communication and Information System Security Symposium

Protecting Private Cloud
Located within Public Cloud

Hongli Zhang!, Lin Ye'!, Xiaojiang Du?, and Mohsen Guizani

3

'School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China,
{zhanghongli, hityelin} @hit.edu.cn
2Dept. of Computer and Information Sciences, Temple University, Philadelphia, PA, USA, dxj@ieee.org
3Qatar University, Doha, Qatar, mguizani @ieee.org

Abstract—Many studies use cryptographic technologies to
protect sensitive data in public cloud. However, these approaches
may introduce large overheads. Recently, hybrid cloud started to
gain a lot of attentions. A hybrid cloud consists of a private cloud
and a public cloud. Hybrid cloud allows users to store sensitive
data in their private cloud and hence enables efficient and secure
data outsourcing. In this paper, we consider a new hybrid cloud
model “Cloud-in-Cloud” (CIC). Our CIC model uses a new
architecture to form a hybrid cloud: placing a small number
of private computers (i.e., a small private cloud) within a public
cloud. The private cloud can be used to store sensitive user data.
Furthermore, it is within the public cloud, so the communications
between private and public clouds have small overhead. And
then we study how to protect a private cloud that locates within
a semi-trusted environment. We present two methods that can
detect attacks that try to obtain data and information in the
private cloud. Our methods are able to efficiently detect physical
attacks, such as the cold boot attack and the USB autorun attack.
Experimental results show that our methods have small overhead.

Index Terms—hybrid cloud, attack, heartbeat, hook

I. INTRODUCTION

Cloud computing offers dynamically provisioned resources
as a service over the Internet. Users can easily scale their
applications or services with elastic computing and storage
resources in a pay-as-you-go way. Major industrial companies
(such as Amazon [1], Google [2], IBM [3] and Microsoft [4])
have started offering cloud platforms. Though low-cost and
flexible resource usage of cloud computing brings many ben-
efits, serious concerns on privacy risks are also on the rise and
discourage potential customers to migrate their systems into
the cloud. First, organizational data usually contains highly
sensitive information (e.g., personal contacts, health records,
etc.), which needs the highest security assurance that existing
clouds cannot offer. Second, recent incidents significantly ag-
gravate customers’ worry about their data stored in commercial
cloud. For example, a subset of the Amazon elastic block store
volumes became unable to service read and write operations
[5]. Third, there is no corresponding regulations or standards
to clarify the responsibilities of customers and providers
when an incident happens. Similar documents like service
level agreement only provide a weak service commitment for
customers to remedy any unavailability or other failures in
Amazon EC2 in the term of service credit [6], which means
customers have to pay for their loss. Actually, it is difficult to
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build a solid trust between cloud service providers (CSPs) and
their customers because of potential attacks or system failures
even if applying cryptographic techniques.

Recently, hybrid cloud is proposed to make a tradeoff
between system performance and security consideration. A
hybrid cloud generally consists of a private cloud and a public
cloud, which are bound together. Hybrid cloud offers the
benefits of multiple deployment models [7]. Hybrid cloud
allows customers to keep highly sensitive data in-house while
utilizing the cost-effective infrastructure of public cloud. Most
existing works on hybrid cloud assume that the private cloud
is separate from the public cloud, and they may be far away
physically. This may incur long network delay and high cost
on network bandwidth due to the long-haul communications,
especially for data-intensive computation.

In this paper we propose a different hybrid cloud model:
Cloud-in-Cloud (CIC), which let a cloud user to build a small
private cloud inside the public cloud. This may be achieved by
exclusively renting some servers of the public cloud. Similar
practices have already been implemented. For example, NASA
signed a contract with Amazon to rent a few servers, which
only allows NASA’s virtual machines (VMs) to run on these
servers.

Compared with traditional IaaS model that mainly provides
VMs, in CIC the customers have complete control of the
servers. The CIC model avoids vulnerabilities due to the multi-
tenant environment, and hence it can provide much better
security and privacy protections. Moreover, the communication
cost (e.g., delay) between private and public clouds is much
smaller because the two clouds are in the same network. Many
cloud service providers (CSPs) do not charge communications
within the cloud.

On the other hand, it also causes new security concerns
by placing the private cloud within the public cloud, which
exposes the private cloud servers in a semi-trusted environ-
ment. A number of attacks may be launched on the servers.
For example, cold boot attack [8] may be used to recovery
the confidential information in memory if physical access is
allowed. An attacker may leverage physical USB attack [9] to
hack into the servers.

In this paper, we present two generic approaches that can
protect a private cloud from the cold boot and USB attacks.
Our approaches monitor the onlineness of private servers and
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the status of their hardware such that a remote owner is notified
when the attacks happen. Our contributions are summarized
as follows:

o We design an enhanced heartbeat mechanism to period-
ically examine whether a private server is still alive or
not. Different from existing heartbeat mechanisms, we
employ cryptographic method to strengthen our scheme
for the semi-trusted cloud environment, and make sure
that the cold boot attack on a private server is detected.

o We propose an authorized device management mecha-
nism that allows remote owners to monitor/control the
I/O device access. We design a scheme that can detect
any unauthorized I/O device access to a private server.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III introduces the system
and threat models. Section IV and V present the enhanced
heartbeat mechanism and the authorized device management
mechanism, respectively. Section VI presents the evaluations
of our proposed schemes, followed by the conclusion in
Section VII.

II. RELATED WORK

Many efforts have been made to secure users’ sensitive data
and privacy in public cloud, such as encrypting outsourced
data or applying fully homomorphic encryption schemes [10].
Though cryptographic techniques are able to provide enough
protection, they also cause the overhead of decryption and
some inconveniences, such as data query [11] and access
control [12]. Furthermore, it seems that fully homomorphic
encryption schemes have a long way to go before they can be
used in practice.

Recently, hybrid cloud has been proposed to balance cloud’s
benefits and user security concerns. Wood et al. [13] propose
a VPN-like network to provide secure and seamless resource
integration between private and public clouds. Zhang et al.
[14] present a user-transparent hybrid-cloud based secure data-
intensive computing framework - Sedic, which ensures that
sensitive data are not exposed to public cloud while making
use of computing resources in public cloud. Sedic leverages
the characteristics of MapReduce to automatically partition
a computing job according to the security levels of the data
it works on, and arranges the computation across a hybrid
cloud. Study [15] proposes an execution model - HybrEx
to support confidentiality and privacy in cloud computing.
By partitioning data and computation, HybrEx allows an
organization to utilize their own infrastructure for sensitive,
private data and computation, while integrating public clouds
for non-sensitive, public data and computation.

III. SYSTEM AND THREAT MODEL

In the CIC model, a CSP allows cloud customers to rent
physical infrastructure (such as rack space and servers) to build
a small private cloud within the public cloud. The CIC model
is illustrated in Fig. 1, where the private cloud locates inside
the public cloud and is monitored by the outside owner. Data
links are used to exchange data between public and private
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Fig. 1. CIC Model

clouds. Customers can store highly sensitive data in the private
cloud. The CIC model has two advantages: 1) compared with
public cloud models (IaaS, PaaS and SaaS), customers have
total control of the private cloud and they don’t need to worry
about the security and privacy of data in the private cloud; and
2) compared with the standard hybrid cloud model, private
cloud and public cloud are very close to each other, which
significantly reduces network delay and communication cost.

However, the CIC model also causes other security con-
cerns. The traffic between the private cloud and the outside
owner could be captured and analyzed. Since the I/O devices
of the private cloud servers can be physically accessed, an
attacker is able to perform cold boot attack [8], which retrieves
memory contents that remain readable from seconds to min-
utes after power is shutdown. Hard disk can be removed from
a server and copied. In addition, an attacker may launch a USB
autorun attack [9]. There are some trivial ways to protect the
private cloud, such as using locked-up cabinet or specialized
hardware. However, locked-up cabinet increases the cost and
may waste the rest of space in the rack. In addition, the attacker
may be able to get a copy of the key. Specialized hardware
also increases the cost.

Therefore, effective security schemes need to be designed
for the CIC model, which can defense or detect the attacks
on private servers. In this paper, we study two physical level
attacks:

o Disassembly Attack. A disassembly attack is a brutal
way to recover or copy users’ data in temporary and
persistent storage. An attacker can disassemble a com-
puter into parts, such as removing memory (or hard disk)
from the computer, and then he can recover the memory
content or make a disk-to-disk copy to obtain sensitive
data. Since the private servers locate in the public cloud,
an attacker can easily access the servers and disassemble
components without owners’ awareness, and the data will
be exposed even if the whole disk has been encrypted [8].

o Attached Attack. An attached attack exploits potential
weaknesses of I/O devices. Some Linux desktop appli-
cations provide friendly user interfaces, such as auto-
mounting USB devices, which may give attackers an
opportunity to launch virus in a USB disk [9].
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IV. THE ENHANCED HEARTBEAT MECHANISM

The key to fight against the disassembly attack is to
prove that a private server works continuously and normally
as expected since the disassembly attack disrupts normal
operations of the private server. Heartbeat mechanism is a
common method used to guarantee the high availability of
key services in distributed computing, which allows clients to
know about the presence (or disappearance) of peer processes
on other machines and to easily exchange messages with them
[16]. However, existing heartbeat mechanisms using plain text
are not suitable for our case because the public cloud can
eavesdrop on the traffic and launch an impersonate attack (e.g.,
sending fake heartbeat messages). In our research, we improve
the heartbeat mechanism to have the following properties:

1) Anti-fake. Because the private cloud runs in a semi-
trusted environment, every message may be captured and
analyzed. If an attacker is able to infer the content and
pattern of the heartbeat communication, it can easily
launch an impersonate attack in which the attacker’s
machine can pretend to be the private server and send
fake heartbeat messages to the outside owner. Therefore,
the heartbeat mechanism must be anti-fake.

2) Low-overhead. Since a heartbeat mechanism contin-
uously sends heartbeat messages, the traffic volume
may be large. The communication overhead should be
minimized.

A. The Basic Mechanism

In order to provide anti-fake property, we use one-way hash
function to generate a sequence of random values. One-way
key chain is a widely-used cryptographic primitive [17]. At
the beginning, the last element of the chain k; is randomly
selected, and then the rest elements of the chain are generated
by repeatedly applying a one-way function H. The first
element kg is a commitment to the entire one-way chain, which
can be used to verify any element of the chain. For example,
one can verify the ith element k; by checking if H(k;) = ko.
More generally, if ¢ < j, one can verify that k; is part of
the chain by checking if HU~"(k;) = k;, and we say that
k; commits to k;. The elements of the chain are revealed
in reverse order ko, ki, - - -, ki—1, k. Fig. 2 illustrates the
generation/reveal process of a one-way key chain.

The enhanced heartbeat mechanism employs the one-way
key chain to confirm the onlineness of private cloud servers.
A server sends one key of the chain in the reveal order
periodically, and this heartbeat communication is used to
detect possible disassembly attack. If an attacker launches the
disassembly attack and interrupts the running of the private
server, the keys cannot be sent at the normal frequency and
value. If the remote owner’s server does not receive the
expected heartbeat message, it knows that the private server
is attacked. Due to the property of one-way key chain, an
attacker cannot infer the future keys from the known ones,
it is impossible for an attacker to fake valid future keys and
perform an impersonate attack.

Generation Order

Hik) | Hik) Hikeo)

- —— Ky ——— kf.1<m ¢

Reveal Order

Fig. 2. One-way key chain

In the following subsections, we will discuss other aspects
of the enhanced heartbeat mechanism: new key generation,
interval and overhead.

B. New Key Generation

In our mechanism, SHA-1 hash function is used to generate
the one-way key chain. However, the heartbeat mechanism
sends lots of messages (and hence keys) during the operation
of the private cloud. When the current key chain is exhausted,
new keys need to be generated. In our mechanism, a pre-
computed one-way key chain is stored in the private server.
When these keys are going to run out, the remote owner will
upload a new pre-computed key chain to the private server.

C. Interval and Overhead

It is important to use a proper time interval for the heartbeat
messages. If the interval is too short, it may result in too many
messages and large overhead between the private cloud and the
remote owner. On the other hand, if the interval is too long,
the heartbeat mechanism may not be able to detect unusual
shutdown of the private server. We analyze the disassembly
attack that tries to steal sensitive data in hard disk, and we find
there are four main steps involving in a successful attack: 1)
disassembling the hard disk from the private server, 2) copying
data, 3)installing the hard disk back to private server, and 4)
rebooting the machine. The total time is given in Equation (1):

Total Time = disassembling time

+ data copy time
+ installation time
+ reboot time €))

Usually, the disassembling time and the hard disk instal-
lation time is small. The copy time depends on the volume
of the data: i.e., larger data volume needs more copy time. If
the volume of sensitive data is small, then the copy time is
also small. In general, the reboot time is the dominating factor
and it determines how long the interval of heartbeat messages
should be.

The reboot time is the duration of the following events: a
computer is at normal working state, shutting down, and then
back to normal working state again. However, it is not easy
to determine whether a computer has finished its boot process
because there are many components, processes or services of
operating system to be initialized. In order to estimate the
reboot time, a basic network diagnosis command “ping” is
used to detect whether a target machine has finished rebooting
or not. Note that a quick response from “ping” command
indicates that the TCP/IP stack of the operating system is
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working normally. When a user types the “reboot” command,
the operating system immediately begins its closure routine.
In our test, after 1-2 seconds of typing the “reboot” command,
the server does not response the “ping” command anymore.

In our experiment, a powerful server with 32GB memory
and Intel Xeon E5620 2.4GHz CPU is used. There are about
331 processes in the operating system. Another PC is used to
send the ICMP messages continuously generated by the “ping”
command. The experimental results show that the reboot time
of the server is stable, about 171 seconds. The interval of
heartbeat messages should be smaller than the reboot time of
the server, so we set the interval to 150 seconds. Since the
length of a key is only 20 bytes, the overhead of heartbeat
messages is about 20 bytes per 150 seconds, which is very
small.

V. THE AUTHORIZED DEVICE MANAGEMENT
MECHANISM

In this section we study another attack - the attached attack,
which can be exploited to hack into the private server and
monitor the activities via unauthorized hardware connections.
For example, if the attacker inserts a CD or connects a USB
drive containing virus and the autorun mechanism is permitted,
the virus will infect the system. Different from the disassembly
attack, the attached attack does not interrupt the running of the
private server, and hence the enhanced heartbeat mechanism
cannot detect it. Furthermore, it is hard to prevent the attacker
from attaching I/O devices to the server because the private
server physically locates in the public cloud.

To defend against the attached attack, we propose an
authorized device management mechanism that can monitor
and manage I/O devices in private cloud. The basic idea is:
no matter what kinds of I/O devices are attached, they must
be accessed using system calls provided by the operating
system, such as the open operation that is the only way to
load (malicious) programs into the server. If an I/O device
tries to connect to the private server, the open operation will
be called. Before executing the open operation, the private
server (and maybe also the remote owner) will verify whether
such I/O connection is authorized or not. By doing this, we
can prevent any unauthorized I/O connection (and hence the
attached attack) to the private server.

To avoid any circumvention of the attacker on the above
scheme, the security mechanism must be intrinsic in the
operating system, which makes it difficult to compromise.
System calls are the set of native functions for a program
to request a service from the kernel, which includes hardware
related services, creating and executing new processes, and
communicating with integral kernel services. System calls
provide an essential interface between a process and the oper-
ating system. In Unix, Unix-like and other POSIX-compatible
operating systems, popular filesystem calls are open, read and
write, which correspond to the kernel functions sys_open,
sys_read and sys_write etc. When a file is accessed, the
operating system initially makes a call to:

int open(const char spathname,
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Fig. 3. The hook of system call sys_open

it flags,
mode_t mode);

This in turn calls:

asmlinkage long sys_open(

const char__user *filename,
it flags,
int mode);

which is responsible for the actual operation of open.

Since every device has its own directory in the filesystem,
the file path will indicate whether the device is accessed or not.
However, original system calls do not have this functionality to
satisfy the above security requirements. Therefore, we encap-
sulate the original system calls that file operations depend on
to examine the file/directory path pattern before these calls are
actually invoked. The process is illustrated in Fig. 3. We install
a security checking hook function to the original sys_open of
the operating system, which has the following steps:

1) when an open operation is invoked, it abstracts file path
from the pass-in parameters.

2) it examines the prefix of the file path to check whether
there are unexpected requests generated by unauthorized
I/O devices.

3) it directly omits these file operations or asks for autho-
rization according to the predefined security policy.

VI. EXPERIMENTAL RESULTS

We implement a prototype of our security mechanisms on
a virtual Ubuntu machine, which has a Intel(R) Core(TM)2
Duo T5850 @ 2.16GHz CPU and 1GB RAM. Our prototype
consists of two main components: 1) the enhanced heart-
beat mechanism, and 2) the authorized device management
mechanism. The modules are presented in Section IV and V,
respectively.

We run a set of experiments to evaluate the overhead of
the security mechanisms on the target platform. The overhead
mainly comes from two aspects: the traffic of heartbeat mes-
sages and the execution of security checking on file operations.
Section V has discussed the overhead of heartbeat messages.
Thus, in the following we focus on the overhead of the security
checking on file operations. In general, security checking on
open should not be a frequent operation compared with read
and write in the whole file process, since it is a one-time
operation at the beginning. On the other hand, open, as a
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common kernel system call, is used by all system services
and applications.

Our experiment is to understand the performance overhead
on the operating system when the security checking operation
is running. We leverage several well-known tests in the suite
of the UnixBench benchmark [18] to evaluate the overhead.
We compare the overhead of running the security checking on
the Ubuntu system with the overhead of the normal system
without the security checking operation.

The results are plotted in Fig 4. Most of the overheads
are no more than 5%, except that the overhead of the “Pipe
Throughput” test is 11%. Fig 4 shows that the overhead of
the security checking operation is small and acceptable. Ad-
ditionally, the results also show that the overheads of different
tests are different, which is mostly due to the difference in the
number of open system call in each test.

VII. CONCLUSION

In this paper we proposed a different hybrid cloud model
- Cloud-in-Cloud (CIC), which places a small private cloud
physically within a public cloud. The motivation is to sig-
nificantly reduce the communication cost between private
and public clouds in the traditional hybrid clouds. The CIC
model introduces new security issues because an attacker may
have physical access to the private servers. In this paper,
we presented two effective security mechanisms to defend
against the attacks. The enhanced heartbeat mechanism can
continuously examine the onlineness of private servers and
defend against the cold boot attack. The authorized device
management mechanism is able to detect and prevent any
unauthorized I/0 access, such as the USB autorun attack. Our
analysis and experiments showed that the overhead of our
security mechanisms is small.
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