

D.-S. Huang et al. (Eds.) : ICIC 2013, LNCS 7995, pp. 285–294, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Glaucus: Predicting Computing-Intensive Program’s
Performance for Cloud Customers

Xia Liu1,*, Zhigang Zhou1, Xiaojiang Du2, Hongli Zhang1, and Junchao Wu1

1 School of Computer Science and Technology, Harbin Institute of Technology,
Harbin, 150001, China

baleitu315@gmail.com,
{zhouzhigang,zhanghongli,wujunchao2011}@pact518.hit.edu.cn

2 Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122, USA

dux@temple.edu

Abstract. As Cloud computing has gained much popularity recently, many or-
ganizations consider transmitting their large-scale computing-intensive pro-
grams to cloud. However, cloud service market is still in its infant stage. Many
companies offer a variety of cloud computing services with different pricing
schemes, while customers have the demand of "spending the least, gaining the
most". It makes a challenge which cloud service provider is more suitable for
their programs and how much computing resource should be purchased. To ad-
dress this issue, in this paper, we present a performance prediction scheme for
computing-intensive program on cloud. The basic idea is to map program into
an abstract tree, and create a miniature version program, and insert checkpoints
in head and tail for each computable independent unit, which record the begin-
ning & end timestamp. Then we use the method of dynamic analysis, run the
miniature version program on small data locally, and predict the whole pro-
gram’s cost on cloud. We find several features which have close relationship
with program’s performance, and through analyzing these features we can pre-
dict program’s cost on the cloud. Our real-network experiments show that the
scheme can achieve high prediction accuracy with low overhead.

Keywords: Cloud computing, predict, cost, performance.

1 Introduction

Cloud computing has recently became an absorbing platform that attracted a substan-
tial amount of attentions from both industry and academia [1-5]. It is a promising
computing paradigm which provides a great platform with its spectacular storage
capacity and powerful computational capability. As the advantage list of cloud, cus-
tomers have motivated to outsource their computing-intensive applications to cloud.
However, customers have no idea about how to buy resources of the cloud. So it has
become a crucial challenge for the development of the cloud. Due to interest conflict,
customers do not believe the resource purchase strategy given by cloud, while cus-
tomers lack of professional knowledge. And one of the things they care about most is

286 X. Liu et al.

how to run more applications spending less money meanwhile observing SLA. To our
best knowledge, the existing methods can’t resolve this crucial problem.

Realizing the problem above, we aim to develop a middleware to predict the re-
source cost of the customers' application on cloud without migrating the application.
Taking use of the middleware, customers can know the general status of running an
application, and this will guide customers to buy the cloud.

To build such a middleware, we first need to analyze customer’s applications and
create the miniature version of the application. Specifically, we transform the applica-
tion into abstract tree and then we separate it into many computable independent units
and compare the similarity among them. Based on this, we create a miniature version
program. We use the method of dynamic analysis. By running the miniature version
program on small dataset locally, we predict the performance of application on large
dataset on the cloud. And we find several features that have close relationship with
the performance of application. The experimental results show that our middleware
can predict the performance accurately. Our contributions are summarized as follows.

• Our middleware can predict customers’ applications performance, and provide
reference for customers to run more applications spending less money.

• We predict the performance of applications without migrating any application
to the cloud.

2 Framework

As shown in Fig. 1, there are three kinds of entities in this system: cloud, customers,
and middleware. We define our system formally first. To predict applications’ per-
formance, middleware need three parts of input from customers and the cloud respec-
tively. The data needed to be transported to the middleware is defined as a triple
T , , , where refers to customer’s application, refers to the cloud
type which customer wants to buy, and refers to environmental difference
between the cloud and local. After customer input cloud type , middleware gets a
five-tuple parameter , , , , of the cloud, where refers to CPU,
refers to memory size, refers to storage space, , refers to bandwidth and
refers to operating system. Based on the information above, middleware can calculate
environmental difference . Based on this, our middleware predict the perfor-
mance of applications and return the result to customers to give them suggestion.

Fig. 1. Framework of middleware

Glaucus: Predicting Computing-Intensive Program’s Performance for Cloud Customers 287

3 Miniature Version Program

3.1 Abstract Tree

As our goal is to estimate customers’ applications, we first need to analyze applica-
tion. It is important to normalize application for the aim to analyze it easily, so we
transform the application to abstract tree.

Fig. 2. Abstract tree

Table 1. Building abstract tree

Algorithm 1 Building Abstract Tree
INPUT:
Customer’s Application: tokens
OUTPUT:
Abstrat Tree
MAIN
1:

2: while do

3: if then

4: new

5:

6: else if then

7: …
8: else if is completed

 &token∈simple token then
9: new

10:

11: else if token∈simple token then

12: merge(token,)

13: …
14: end if
15: end while
16: return

, 0rootn NULL i← =
token NULL≠

" "token while=
,i i Cn NULL n N= =

1. ,i in fathernode n i−= + +
" "token for=

1 1&i C in N n− −=

,i i Sn NULL n N= =

1. ,i in fathernode n i−= + +

1in −

288 X. Liu et al.

Here we give the definition of abstract tree. As Fig. 2 shows, there are three kinds
of nodes in an abstract tree. Among which, root node refers to the beginning of
application, internal node refers to different middle parts of application and leaf
node refers to end of application. Specifically, internal node includes two kinds of
nodes which are called simple node and complex node . As we define, simple
node refers to uncomplicated part of application (e.g., assignment statement), and
complex node refers to complicated blocks in the application (e.g., loop, function
call). At the same time, every complicated block also includes many simple nodes.
That means we take every complicated block as a whole part “complex node”, mean-
while, the complicated block is also be analyzed and transformed to a sub-tree.

3.2 Independent Computable Unit

Based on abstract tree, we transform the whole program into a uniform structure. As
our goal is to get miniature version program, we first split the main branch of abstract
tree into independent computable units.

Definition 1. Independent Computable Unit: | , Specifi-
cally, independent computable unit is a block of program which contains a series of
successive statements, and there is no statement having relationship with this block
outside it.

We find independent computable unit based on the abstract tree. First, we scan the
abstract tree from bottom to top. If statements included in father node have semantic
relation with the node which is being scanned, we merge father node with this node.
Otherwise, father node belongs to a new independent computable unit.

3.3 Miniature Version Program

Although we get abstract tree, this branch is still too large to be analyzed, so we aim
to get a miniature version of application.

Table 2. Typical Structures’ Running Time Analysis

Structure Running time

While

Switch

For

We first separate main branch into several independent computable units, then re-
duce each unit. As different unit has different structure and also has different impor-
tance, if we want to get a more accurate miniature version program, we should not
reduce each unit according to the unified standard. Therefore, we use the method of

() ()&
* _ _

i
i judges while judge

looptimes get time s get time s
∈

+
() ()_ _

i
judge is switch

get time s get time s
∈

+
() ()&

* _ _
i

i judges For judge
looptimes get time s get time s

∈
+

Glaucus: Predicting Computing-Intensive Program’s Performance for Cloud Customers 289

analyzing running time ratio of different program structure, and then define the reduc-
ing ratio of each unit. As Table 2 illustrates, we analyze reducing ratio taking three
typical structures.

Based on the definition of different structures’ running time formula, we will fig-
ure out the whole structure’s running time if we know each statement’s running time.
Then we split every statement into machine language. As Table 3 shows, we get the
CPU cycles of machine instruct.

Table 3. The CPU Cycles Of Machine Instruct

Index CPU cycles Instruct
23/0 = 2 ;AND r,r
23/1 = 6 ;AND r,m
31/1 = 7 ;XOR m,r
33/0 = 2 ;XOR r,r
42 = 2 ;INC eDX

28/0 = 2 ;SUB r,r8
7C = 7 ;JL rel8

Based on the analysis above, we know CPU cycles that each statement need. So we
define unit’s reducing ratio as the inverse ratio of CPU cycles of each unit. Then we
reduce each unit according to reducing ratio. Specifically, we reduce each unit’s
number of statements in terms of reducing ratio of the unit, then we get miniature
version program. Formula (1) expresses the cost of the miniature version.

 (1)

So we enlarge cost results of program’s cost as follows:

 (2)

where is real cost of program, is miniature version program’s cost, is com-
plexity function of different structure and is reducing ratio of each unit.

4 Predicting Program’s Performance

4.1 Core Variable Set

After getting the miniature version program, it is crucial to analyze it to find out the
relationship between application and resources it have to occupy on the cloud.

As the complex node takes most of running time and also more other resources, we
mainly analyze the complex node. Through analyzing complex node, we find out that
in the complex node, what have close relationship with the resources the application
occupies are some statements that contain the special variables. We define these va-
riables as core variables, which are the variables which have high weight because they

* *m rC C ϕ θ=

() 1/ *r mC C θ ϕ−=

290 X. Liu et al.

appear in the miniature version program more frequently or appear in some important
statements (e.g. malloc statement).

Definition 2. Core variable set:

, where is one of the core variables which are in the miniature

version program, is weight of , is total weight of miniature version pro-
gram tree, is the threshold which limit the standard weight of , n is number of
core variables and _ is the total number of the variables appearing in
miniature version program.

To find out core variables, we need to calculate weight of variables in the complex
node. As described above, we have already known the CPU cycles each statement
need, so we define statement’s weight as corresponding CPU cycles. Then we calcu-
late variable’s weight according to the weight of statements which contain the varia-
ble. The weight of variable is given by:

 (3)

where is weight of statements which contain variable and is number of
times these statements appears in the miniature version program.

After getting every variable’s weight, we sort these variables and find out all of the
variables whose weight are bigger than . According to this method, we get m core
variables.

4.2 Dynamic Analysis

As the performance of an application has great relationship with frequency of memo-
ry page swapping, we analyze several elements influencing memory swapping. We
analyze two important features that are close related to the core variables, which are
variables’ frequency , and average density . Specifically, the frequency of core
variables refers to the percentage of times a core variable occurring in the miniature
version program, and average density refers to average distance of statements which
contain a specific core variable.

Through the method of dynamic analysis, we find that when given fixed environ-
mental parameters, performance of program will reach bottleneck as dataset becomes
larger. So we analyze performance of program from two aspects. Before program’s
performance reaches bottleneck, we find that cost of program increases linearly ap-
proximately. We first run miniature version program on a specific small dataset, and
get two pairs of program’s cost (i.e. time cost and memory cost). Then predict cost of
program before program’s performance reaching bottleneck. The memory cost of
program is given by:

 (4)

/{ | , , [1,] 0
i treei i v wV v v V w i n and nα= ∈ > ∈ < ≤

()max_ }vnum N

*
i i iv s sw w n=

2 1

2 1

*s

M M
m d

D D

−
=

−

Glaucus: Predicting Computing-Intensive Program’s Performance for Cloud Customers 291

where refers to memory resource when running program on the specific small
dataset, d is scale of dataset, and are memory size of program when running
the program on two specific data scale respectively, and and are correspond-
ing data scale.

As we know the maximal memory size of our platform, we can figure out
corresponding data scale when the program taking use of all the memory. So the larg-
est data scale before program’s performance reaching bottleneck is given by:

 (5)

And by the same method, we can figure out running time of program:

 (6)

where refers to running time when running program on the specific small dataset,
and and are running time of program when running the program on two specif-
ic data scale respectively.

Based on analysis above, we figure out the running time of program when
program’s performance reaching bottleneck, which is given by:

 (7)

Then we know the inflection point which represents the bottleneck of program’s per-
formance when given a fixed environmental parameter. After that, we predict perfor-
mance of program based on the two important features. As we know, different fea-
tures have different importance, we define the two features weight as w , and
respectively. And the running time of program on big dataset is given by:

 (8)

And memory resource that program occupy is given by:

 (9)

Based on our analysis of program’s cost locally, we can figure out the whole pro-
gram’s performance on the cloud. We use the following performance model as our
final performance model:

 (10)

where refers to the predicting value of program’s cost on the cloud, is the cost
of miniature version program on our local middleware platform, is environmental
parameter difference degree between local and cloud, and is the reducing ratio
between real program and the miniature version program.

max 2 1
max

2 1

*()M D D
D

M M

−
=

−

2 1

2 1

*
T T

t d
D D

−
=

−

max 2 12 1
max

2 1 2 1

*()
*

M D DT T
T

D D M M

−−
=

− −

()2 1
max

2 1
F Db V F V D

T T
t d w V w V T

D D

−
= + +

−

()2 1
max

2 1
F Db V F V D

M M
m d w V w V M

D D

−
= + +

−

λμΩ = ϒ

292 X. Liu et al.

5 Evaluation

To evaluate the performance of our scheme, we run real computation-intensive appli-
cation on both local platform and the real cloud platform. Based on this, we compare
the results of application’s cost of the two platforms. The configuration of our expe-
riments is as follows:

Our local platform is a PC with Ubuntu 12.04 CPU, 512 MB Memory and 20GB
hard disk. And we build our cloud test platform with 8-core 2.93 GHz Intel Xeon
CPU, 24 GB memory, 500 GB and installed with Linux 2.6.18.

To find the reducing scale of miniature version program, we do experiment based
on four typical computing-intensive programs (i.e. matrix multiplication, red-black
tree, heap sort, maximal sum of submatrix). As Fig. 3 shows, when changing scale of
program, the predicting of original program’s performance also changes. And when
reducing scale percentage is 20%, prediction result is the best.

(a) matrix multiplication (b) red-black tree

(c) heap sort (d) maximal sum of submatrix

Fig. 3. Changing reducing scale of miniature version program

To prove the two features(i.e. frequency and average gap) have great influence on
program’s performance, we run our benchmark program locally, and change frequen-
cy and average gap of a specific core variable under the condition that the program
filling all the available memory. And we find out that program’s running time
changes obviously with the variety of the two features. As Fig. 4(a) shows, program’s
time cost changes sharply as frequency of core variable changes from 15% to 50%.
And Fig. 4(b) illustrates when changing average gap of a fixed core variable from 5 to
40, program’s time cost also changes greatly.

Glaucus: Predicting Computing-Intensive Program’s Performance for Cloud Customers 293

(a) Changing frequency of core variable (b) Changing average gap of core variable

Fig. 4. Application’s cost changes with features

Finally, we run our benchmark program on our local middleware platform with the
dataset scale of 2000 and 4000 respectively. Then we predict cost of program on large
dataset scale up to 20000 based on our scheme, and also run the program on cloud test
platform. As Fig. 5 shows, our middleware can accurately predict the performance of
computing-intensive applications on cloud with small dataset scale.

(a) Prediction result of program’s memory cost (b) Prediction result of program’s time cost

Fig. 5. Prediction result of program’s cost

6 Related Work

Many efforts have been made to predict performance of the computing-intensive pro-
gram. Li et al. [6, 7] compares performance of multiple cloud servers. This work is
used to predict the performance of CPU-intensive applications across a large collec-
tion of CPU types and gives purchase suggestions for computing-intensive tasks and
Web application. Zhang et al. [8] presents a performance prediction scheme that con-
structs a miniature version program to run in local machines, and then replays it in
cloud to get the performance ratio between local and cloud. Ye et al. [9] proposes a
testing algorithm based on HyperSentry [10] to detect SLA violations of physical
memory size in virtual machine (VM). Sommers et al. [11] proposes a novel active
measurement methodology to monitor whether the characteristics of measured net-
work path are in compliance with performance targets specified in SLAs. Study [12]
proposes a new passive traffic analysis method for on-line SLAs assessment, which
reduces both the need for measuring QoS metrics as well as the interactions between
the ingress and egress nodes in the network.

294 X. Liu et al.

7 Conclusion

In this paper, we propose a method of predicting computing-intension program’s per-
formance on cloud. We identified and addressed three key challenges: (1) how to find
unified form of computing-intensive applications for analyzing it easier, and (2) how
to predict the performance of applications on large scale dataset without migrating
any application to the cloud (3) how to provide reference for customers to run more
applications spending less money. Our experiments showed that our scheme can
achieve accurate prediction results with low overhead.

Acknowledgment. This work is supported by National Basic Research Program (973
Program) of China (2011CB302605), the project of National Natural Science Founda-
tion of China (60903166, 61100188, 61173144), and National High Technology Re-
search and Development Program (863 Program) of China (2011AA010705).

References

1. Amazon Web Service, http://aws.amazon.com/
2. Google AppEngine, http://code.google.com/appengine/
3. Armbrust, M., Fox, R.G.A., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson,

D.A., Rabkin, A.: Stoica, 1., Zabaria, M.: Above the Clouds: A Berkeley View of Cloud
Computing. University of California, Berkeley, Tech. Rep. (2009)

4. Sripanidkulchai, K., Sahu, S., Ruan, Y., Shaikh, A., Dorai, C.: Are Clouds Ready for
Large Distributed Applications? In: Proc. SOSP LADIS Workshop (2009)

5. Microsoft Windows Azure, http://www.microsoft.com/
6. Li, A., Liu, X., Yang, X.W.: CloudCmp: Comparing Public Cloud Providers. In:

USENIX/ACM Symposium on Networked Systems Design and Implementation (April
2011)

7. Li, A., Liu, X.: CloudCmp: Shopping for a Cloud Made Easy. In: 2nd USENIX Workshop
on Hot Topics in Cloud Computing, HotCloud (2010)

8. Zhang, H.L., Li, P.P., Zhou, Z.G., Du, X.J., Zhang, W.Z.: A Performance Prediction
Scheme for Computation-Intensive Applications on Cloud. In: Proc. of ICC 2013 (2013)

9. Ye, L., Zhang, H.L., Shi, J.T., Du, X.J.: Verifying Cloud Service Level Agreement. In:
Proc. of Globecom 2012 (2012)

10. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: HyperSentry: Enabl-
ing Stealthy In-Context Measurement of Hypervisor Integrity. In: Proc. of the CCS 2010,
Chicago, Illinois, pp. 38–49 (2010)

11. Sommers, J., Barford, P., Duffield, N., Ron, A.: Multi-objective Monitoring for SLA
Compliance. IEEE/ACM Transactions on Networking 18(2), 652–665 (2010)

12. Serral-Gracia, R., Yannuzzi, M., Labit, Y., Owezarski, P., Masip-Bruin, X.: An Efficient
And Lightweight Method for Service Level Agreement Assessment. Computer
Networks 54(17), 3144–3158 (2010)

	Glaucus: Predicting Computing-Intensive Program’s Performance for Cloud Customers
	1 Introduction
	2 Framework
	3 Miniature Version Program
	3.1 Abstract Tree
	3.2 Independent Computable Unit
	3.3 Miniature Version Program

	4 Predicting Program’s Performance
	4.1 Core Variable Set
	4.2 Dynamic Analysis

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

