
Two Matrices for Blakley’s Secret Sharing Scheme

Xiali Hei, Xiaojiang Du
Department of Computer and Information Sciences

Temple University

Philadelphia, PA 19122, USA

Email: {xiali.hei, dux}@temple.edu

Binheng Song
Department of Mathematical Sciences

Tsinghua University

Beijing, 100084, China

Email: bsong@math.tsinghua.edu.cn

Abstract–The secret sharing scheme was invented by Adi
Shamir and George Blakley independently in 1979. In a (k,
n)-threshold linear secret sharing scheme, any k-out-of-n par-
ticipants could recover the shared secret, and any less than k
participants could not recover the secret. Shamir’s secret sharing
scheme is more popular than Blakley’s even though the former
is more complex than the latter. The reason is that Blakley’s
scheme lacks determined, general and suitable matrices. In this
paper, we present two matrices that can be used for Blakley’s
secret sharing system. Compared with the Vandermonde matrix
used by Shamir’s scheme, the elements in these matrices increase
slowly. Furthermore, we formulate the optimal matrix problem
and find the lower bound of the minimal maximized element
for k=2 and upper bound of the minimal maximized element of
matrix for given k.

Index Terms–linear threshold cryptography; linear secret shar-
ing; Pascal matrix

I. INTRODUCTION

The secret sharing scheme was invented by Adi Shamir and

George Blakley independently in 1979. Until now, well-known

secret sharing schemes in the literature include Shamir’s [2]

based on polynomial interpolation, Blakley’s [1] based on

hyperplane geometry. Asmuth and Bloom introduced an arith-

metic secret sharing scheme [3] based on Chinese Remainder

Theorem, which is essentially different from that of Shamir’s

and Blakely’s schemes.

These schemes are called (k, n) threshold secret sharing

schemes since the secret is distributed among n participants

and only k or more participants can recover the secret. The

dealer distributes the secret among n participants. Each partic-

ipant has his or her own piece of secret called share. The secret

is revealed, if any k or more of the shares gather. While Shamir

used polynomial-based technique for sharing a secret among

n participants, Blakley used a geometric approach. Shamir’s

technique creates a (k − 1) degree polynomial with random

coefficients in the range [0, p), where p is a prime number.

Secret is the constant term of the polynomial. Lagrange’s

interpolation technique is used for the reconstruction of the

secret from any k or more shares. Blakley’s technique assumes

that secret is a point in a k-dimensional space. Hyperplanes

intersecting at this point are used to construct the shares. Coef-

ficients of n different hyperplanes constitute the corresponding

n shares. In these two schemes, a secret is partitioned among

n participants. Unless k or more shares are gathered, secret

cannot be recovered.

Both Shamir’s and Blakley’s schemes are linear threshold

secret sharing schemes: As Karnin et al. [8] observed, Shamir

secret sharing scheme is a subclass of a broader class of

linear secret sharing. The polynomial share computation can be

represented as a matrix multiplication by using a Vandermonde

matrix. Similarly, the secret and the shares of the Blakley’s

scheme can be represented as a linear system Cx = y where

the matrix C and the vector y are obtained from the hyperplane

equations. At the same time, Blakley’s scheme is the same as

Shamir’s polynomial system after adding restrictions on which

planes are usable as shares, and it is a perfect secrecy system

[7].

Shamir’s secret sharing scheme is more popular than Blak-

ley’s scheme. One reason is that Blakley’s scheme lacks actual

implementations. In [4], Blakley et al. only provided a guide-

line on how to design a matrix of linear systems for perfect

secrecy, and no actual matrix was given. Recently, researchers

began to use Blakley’s geometry-based secret sharing approach

in the area of secret image sharing [9, 10]. Chen et al. [9] and

Tso [10] independently applied Blakley’s scheme for secret

image sharing. et al. Ulutas et al. [11] proposed an enhanced

scheme for secret image sharing, which adopts Blakley’s secret

sharing method and Steganography together to share the secret

and create meaningful shares. As for threshold cryptography,

Bozkurt et al [5] proposed the first threshold RSA signature

scheme that uses Blakley scheme as the underlying secret

sharing scheme. Literature [6] discussed the same scheme in

details.

Blakley’s method [1] uses principles of geometry to share

the secret. According to this scheme, secret is a point in

a k-dimensional space, which is the intersect point of all

the hyperplanes. Affine hyperplanes in this space represent n
shares. Blakley secret sharing scheme can be represented as a

linear system Cx mod p = y. The general full rank matrix C is

the critical data. In [6], the authors use matrix M1 (as shown

in I-1); in [11], the authors use a matrix M2 (as shown in I-2).

When the secret is too large, say 1024 bit, p should be larger

than 21024, which is a very large number. So, the operation

mod p does not affect the result. These matrices have the

problem of fast coefficient expansion. That is, as t increases,

the coefficients (elements in these matrices) will become very

large. If matrix M1 is used, to get the exact solution to the

linear system, a1, a2, a3, ..., at should be integer. If we assume

that a1, a2, a3, ..., at are in nondecreasing order, that means

a1 < a2 < a3 < ... < at. To minimize at, let a1 be 1, then

at should be t at least, so the last element at−1
t in matrix M1

should be not less than tt−1. When t is greater than 20, this
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integer is very large. It is difficult to compute and store such

a large integer. Also, it requires lots of computations to get

the det(M1). For matrix M2, there is no general expression of

the matrix’s element. Also, the coefficient is big when k = 3.

M1 =

⎛
⎜⎜⎝

1 a1 a2
1 . at−1

1

1 a2 a2
2 . at−1

2

· · ·
1 at a2

t . at−1
t

⎞
⎟⎟⎠ (I-1)

M2 =

⎛
⎝10 12 2

18 12 18
24 27 27

⎞
⎠ (I-2)

In this paper, we propose two matrices for the Blakley

secret sharing scheme. In order to obtain the exact solution

to the linear system, matrices with float elements cannot be

used. Hence, we use matrices with integer elements. Zero

elements in the matrix decrease the dimension of the matrix

(hyperplane), and may cause information leakage. Hence, there

should be no zero elements in the matrix. Coefficient expan-

sion increases the required storage and computation resource.

In this paper, we present two full rank positive integer matrices

that can avoid fast coefficient expansion and meet all above

requirements. The computation and storage overhead of the

two matrices are much smaller than the Vandermonde matrix.

We summarize our contributions as follows:

1. We propose two new matrices for the Blakley secret shar-

ing scheme, and they perform much better than the Vander-

monde matrix in terms of coefficient expansion, computation

and storage overhead.

2. We formulate the optimal matrix problem for linear secret

sharing schemes.

3. We find the lower bound for k=2 and upper bound of the

minimal maximized element of matrix for any given k.

The rest of the paper is organized as follows. In Section II

we introduce the Blakley’s secret sharing scheme. In Section

III we present a practical implementation of Blakley’s scheme

using the first matrix. In Section IV we give the second matrix–

Pascal matrix. In Section V we formulate the optimal matrix

problem and present the related bounds that we found. We

conclude the paper in Section VI.

II. THE FIRST MATRIX

Threshold secret sharing scheme is very useful in that not

only does it provide secrecy and reliability but also flexibility.

Further more, the property of sharing the secret is ideally

suited to applications in which a group of mutually suspi-

cious individuals with conflicting interests must cooperate, for

example, in an electronic voting system or a gambling game

system.

A. Coefficients of the Linear Equations

Our approach is based on linear equations. Our secret

sharing scheme gives a mechanism where n k-dimension

hyperplanes (x1, x2, ..., xk) are distributed to n parties and

any k shares can reconstruct the secret. Here, the secret s is

xk, and x1, x2, ..., xk−1 are random numbers. Also note that

after reconstruction, the secret becomes known to all parties.

A trusted dealer has the secret s. We design the coefficients of

the linear equations (which span n k-dimension hyperplanes)

according to the following rules:

apq = ap−1q−1 + ap−1q (p > 1,q > 1 ), with a1q = 1 and

ap1 = 1.

B. Formula for Matrix Elements

We already have: apq = ap−1q−1 + ap−1q (p > 1,q >
1), with a1q = 1 and ap1 = 1. Hence, ap,q − a1,q =∑p−1

k=1 ak,q−1. Or ap,q = 1 +
∑p−1

k=1 ak,q−1=1 + (p − 1) +∑p−1
k=1

∑k−1
w=1 aw,q−2=p +

∑p−1
k=1

∑k−1
w=1 aw,q−2.

C. The Secret Sharing Scheme

Step 1: The dealer generates (k − 1) random numbers

x1, x2, ..., xk−1, and combines them with the secret s (xk)

to get a point: (x1, x2, ..., xk).

Step 2: The server distributes the n k-dimension hyper-

planes to the n parties as follows:

The 1st party gets y1 = x1 + x2 + ... + xk

· · ·
The kth party gets yk = x1 + kx2 + k2−k+2

2 x3 + ...+2k−1xk

The k + 1th party gets yk+1 = x1 + (k + 1)x2 + k2+k+2
2 x3 +

... + (k + 1 +
∑p−1

k=1

∑k−1
w=1 aw,k−3)xk−1 + (2k − 1)xk

The k +2th party gets yk+2 = x1 +(k +2)x2 + k2+3k+4
2 x3 +

... + (k + 2 +
∑p−1

k=1

∑k−1
w=1 aw,k−2)xk

· · ·
Step 3: To reconstruct the secret from any k parties, we only

need to solve the linear equations and get the exact solution

(the point). If we know the point, we can obtain the secret,

which is the last coordinate value of the point.

After we process the coefficient table, we get the general

equations II-3.

y1 = x1 + x2 + x3 + ... + xk

· · ·
yk = x1 + kx2 + k2−k+2

2 x3 + ... + 2k−1xk

yk+1 = x1 + (k + 1)x2 + k2+k+2
2 x3 + ...(k + 1 +

∑p−1
k=1

∑k−1
w=1 aw,k−3)xk−1 + (2k − 1)xk

· · ·

(II-3)

We write down the coefficient matrix A as follows:
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A =

⎛
⎜⎜⎜⎜⎝

1 1 1 . . 1
· · ·
1 k k2−k+2

2 . 2k−1 − 1 2k−1

1 k + 1 k2+k+2
2 . k + 1 +

∑p−1
k=1

∑k−1
w=1 aw,k−3 2k − 1

· · ·

⎞
⎟⎟⎟⎟⎠ (II-4)

We split matrix A into two submatrices A1 and A2. Matrix

A1 is a k×k square matrix, and matrix A2 is a m×k matrix,

where m = n − k. According to our design rules, in A2,

ap,q = ap−1,q−1 + ap−1,q (p > 1,q > 1), with a1,i = 1 and

ai,1 = 1. Hence, the last number in the ith row is not less

than the sum of the last numbers from the 1st row to the (i-
1)th row, while the first number in the ith row is equal to

the first number in all other rows. Thus, the ith row cannot

be represented by a linear combination of the first (i-1) rows.

Hence, the rank of A2 is min(k, m). If we assume m < k,

then the m row vectors in A2 are linearly independent.

A =
(

A1

A2

)
(II-5)

A1 =

⎛
⎜⎜⎝

1 1 1 . 1
· · ·
1 k − 1 k2−3k+4

2 . 2k−2

1 k k2−k+2
2 . 2k−1

⎞
⎟⎟⎠ (II-6)

A2 =

⎛
⎝ 1 k + 1 k2+k+2

2 . k + 1 +
∑p−1

k=1

∑k−1
w=1 aw,k−3 2k − 1

1 k + 2 k2+3k+4
2 . . k + 2 +

∑p−1
k=1

∑k−1
w=1 aw,k−2

· · ·

⎞
⎠ (II-7)

D. Proof of Correctness

The rank of a k×n matrix is at most min(k, n). A matrix

that has a rank as large as possible is said to have full rank. If

the rank of the augmented matrix is equal to the rank of the

coefficient matrix, the system must have at least one solution.

The solution is unique if and only if the rank is equal to

the number of variables. Otherwise, the solution has w free

parameters where w is the difference between the number of

variables and the rank. This theorem is discovered by Rouch’

and Capelli [12].

To prove the correctness, the main challenge is to prove that

any k dimension row vectors consisted of coefficients of linear

equations are linearly independent.

Lemma 1: The k × k matrix A1 is full rank.

Proof :

Let A1t be a matrix made up of the first t rows and the first

t columns of A1.

A1t =

⎛
⎜⎜⎝

1 1 1 . 1
· · ·
1 t− 1 t2−3t+4

2 . 2t−2

1 t t2−t+2
2 . 2t−1

⎞
⎟⎟⎠ (II-8)

Step 1: Perform the row transformations on A1t: we let the

(i + 1)th row subtract the (i)th row, (for i = t− 1, ..., 1), then

the A1t turns out to be:

A1t =
(

1 d
c A1(t−1)

)
(II-9)

where c is a zero column vector, d is a row vector with

nonzero elements, A1(t−1) is a submatrix of A1t by delet-

ing the last row and the last column. The reason is that

ai,j − ai−1,j = ai−1,j−1, so every element becomes its left

and upper neighbor. Since c is a zero column vector and the

first element in first row vector is 1, the first row vector cannot

be represented by the rows vectors after it. At this time, the

problem becomes how to prove that A1(t−1) is full rank.

Step 2: We repeat Step 1 t − 1 times, eventually we get a

matrix with only one element –1. This element does not equal

to 0, so it is full rank.

The above two steps prove Lemma 1. This means that the

k row vectors of A1 are linearly independent. If we pick any

t < k row vectors in A1, they are linearly independent, too.

Corollary 1: A2 is full rank.

Proof:

Without loss of generality, we let x=min(m,k) to simplify

the discussion.

Let A2x be a matrix made up by the first x rows and the

first x columns of A2.

By Lemma 1, we know A2x is full rank, i.e., rank(A2x) =
x, so the first x rows of the first x columns are linearly

independent. If we expand these x rows from x columns to k
columns, they are still linearly independent. Hence, Corollary

1 is true.

We pick the first k columns from A, and pick the k row

vectors from these first k columns to form a full rank matrix

Bk.

Lemma 2: Bk is a full rank k × k matrix consisted of k
row vectors in A, if any row vector of it is replaced with one

row vector in A \Bk, the new matrix is still full rank.

Proof: Here we use mathematical induction on m.

Base case: when m = 1, by observation, k dimension row
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vectors in Bk has two cases:

Case 1.1: (k−1) row vectors are from A1 and one row vector

is from A2, which is (1, (k + 1), (k+1)2−(k+1)+2
2 , ..., 2k − 1).

Because A1 is full rank matrix, these (k − 1) row vectors

made up of coefficients are linearly independent. And the k

dimension row vector (1, (k + 1), (k+1)2−(k+1)+2
2 , ..., 2k − 1)

cannot be represented by these (k − 1) row vectors because

its last element 2k − 1 = 1 + 2 + 4 + ... + 2k−1, the latter is

the sum of the last numbers from the 1st row to the (i-1)th

row, while the first number in the ith row is equal to the first

number in all other rows, it cannot be spanned by the k−1 row

vectors in A1. Thus, these updated k row vectors are linearly

independent.

Case 1.2: k row vectors are from A1, because A1 is k × k
full rank matrix, these k row vectors are linearly independent.

Combined these two cases, when m = 1, the Lemma 2 is

correct.

Then, assume that for all positive integers m = s, any k
row vectors in A are linearly independent.

Suppose these k row vectors in A constitute a new matrix

Bk. We also assume i row vectors in Bk are from matrix A1,

the other (k − i) row vectors are from matrix A2.

When m = s + 1, if we replace one row vector in Bk with

the new row vector (1, (k+s+1), (k+s+1)2−(k+s+1)+2
2 , ..., k+

s + 1 +
∑k+s

k=1

∑k−1
w=1 aw,k−2), we called the new matrix is

Bs+1.

Case s.1: The replaced row vector is from A1.

Because the remaining (i − 1) row vectors in Bs+1

are from matrix A1, so they are linearly independent. The

new vector (1, (k + s + 1), (k+s+1)2−(k+s+1)+2
2 , ..., k + s +

1 +
∑k+s

k=1

∑k−1
w=1 aw,k−2) cannot be represented by these

(k − 1) row vectors because its last element k + s + 1 +∑k+s
k=1

∑k−1
w=1 aw,k−2) > 2k − 1 = 1 + 2 + 4 + ... + 2k−1, the

latter is the sum of the last numbers from the 1st row to the

(i-1)th row, while the first number in the ith row is equal to

the first number in from 1st row to (i-1)th row, it cannot be

spanned by the i− 1 row vectors in A1. Thus, these updated

i row vectors are linearly independent and the new vector is

linearly independent to these remaining (i − 1) row vectors

from matrix A1 in Bs+1. By Corollary 1, the new vector is

linearly independent with the other (k−i) row vectors are from

matrix A2 in Bs+1. According to the induction hypothesis, the

remaining (k − 1) vectors are mutually linearly independent

because the all k vectors are mutually linearly independent.

So the the rank of new matrix Bs+1 is still k. That means, the

new k vectors are linearly independent.

Case s.2: The replaced row vector is from A2.

Because the remaining i row vectors in Bk+1 are from

matrix A1, so they are linearly independent. The new

vector (1, (k + s + 1), (k+s+1)2−(k+s+1)+2
2 , ..., k + s +

1 +
∑k+s

k=1

∑k−1
w=1 aw,k−2 cannot be represented by these

(i) row vectors because its last element k + s + 1 +∑k+s
k=1

∑k−1
w=1 aw,k−2) > 2k − 1 = 1 + 2 + 4 + ... + 2k−1,

the latter is the sum of the last numbers from the 1st row to

the (i-1)th row, while the first number in the ith row is equal to

the first number in from 1st row to (i-1)th row. Thus, the new

vector is linearly independent to these remaining i row vectors

from matrix A1 in Bk+1. By Corollary 1, the new vector is

linearly independent with the other (k − i − 1) row vectors

are from matrix A2 in Bk+1. According to the induction

hypothesis, the remaining (k−1) vectors are mutually linearly

independent because the all n vectors are mutually linearly

independent. So the the rank of new matrix Bk+1 is still k.

That means, the new k vectors are linearly independent.

Hence, by the second principle of induction, Lemma 2 is

true.

Theorem 1: Any k row vectors in matrix A are linearly

independent.

Proof:
Initially, we pick k row vectors from A1. They are row vectors

from a full rank matrix. Then, we replace one row with a row

vector from A2, this is case 1.1, so it is correct. After that, we

replace one row in the updated k dimension row vectors with

one row vector from A2, and it is correct according Lemma

2. Next, we delete the picked row vector in A2.

We iteratively do the above until there are no more rows left

in A2, the k row vectors are still linearly independent. Hence,

any k row vectors in matrix A are linearly independent. Done.

E. Properties of the First Matrix

1) Computation Complexity and Storage Requirement: The

first matrix has similar properties as the Vandemonde matrix.

However, it also has some special properties. For example, for

any first k participants, the determinant of the corresponding

matrix is 1. This reduces the complexity of computing the

inverse matrix over the field GF (p).
When k approaches n, the maximum element in the Van-

demonde matrix is nn, and the maximum element in our new

matrix is only 2n. Our matrix saves a lot of computations and

storage when n is large. Also, our matrix does not require

multiplication operation over the field GF (p). The size of each

sharing does not exceed the size of the secret.

2) Extensible and Dynamic: When k is fixed, secret pieces

can be dynamically added or deleted without affecting other

pieces. Security can be easily enhanced without changing

the secret, but by changing the coefficients occasionally and

constructing new shares to the participants.

3) Flexibility: In organizations with hierarchy, we can pro-

vide each participant with different number of pieces according

to his role with the organization. For instance, the CEO can

obtain the secret alone, whereas 3 secretaries are required to

do so.

III. THE SECOND MATRIX–PASCAL MATRIX

Here, we design another coefficient matrix for above equa-

tions according to the following rules:

apq = apq−1 + ap−1q (p > 1,q > 1 ), with a1i = 1 and

ai1 = 1 for i is integer. It is a Pascal matrix A3.

813



A3 =

⎛
⎜⎜⎝

1 1 1 1 . 1
1 2 3 4 . k
· · ·
1 n C2

n+1 C3
n+2 . Cn−1

k+n−2

⎞
⎟⎟⎠ (III-10)

The proof of correctness is similar to the proof in VI.D and

our paper [13] uses this matrix in Reed-Solomon code. The

elements of A3 increase much slowly than M1. When n or k
is small, A3 is also practical.

IV. THE OPTIMAL MATRIX PROBLEM

A. Formulation
If one wants to find a matrix for the linear secret sharing

schemes, the matrix should have the following property:
Property A: For some k, any k (k = min(n, m)) row vectors

among the first k column vectors in n×m matrix O are linearly

independent and any k − 1 row vectors among the first k − 1
column vectors in matrix O are linearly independent.

The optimal matrix O is formulated as follows:

min(max( all elements in O)) (IV-11)

B. Lower Bound of the Minimal Maximized Element in O for
k = 2

When k=2, we assume the largest number in O is u,
n= # of (the relative prime pairs in [1, ..., u])×2 -1

=[u(u+1)/2−∑u
i=1(u− i)/(i+1)]×2-1 � u(u+1)−2u∗

logu+2
∑

i/(i+1)-1= u(u+1)−2u× logu+2u−2logu−
1=u2 +(3−2logu)u−2logu−1 < u2 (when 3 < 2logu, and

it means u ≥ 3).
Hence, n < u2 implies u > n1/2, this is the lower bound.

C. Upper Bound of the Minimal Maximized Element in O for
Any Given k

Here we relax the condition to be any given k. Suppose that

O is one of the optimal matrices for the given k.

Onk =

⎛
⎜⎜⎜⎜⎝

a11 . . a1k

a21 . . a2k

· · ·
a(n−1)1 . . a(n−1)k

an1 . . ank

⎞
⎟⎟⎟⎟⎠ (IV-12)

O(k−1)(k−1) =

⎛
⎜⎜⎝

a11 . . a1(k−1)

a21 . . a2(k−1)

· · ·
a(k−1)1 . . a(k−1)(k−1)

⎞
⎟⎟⎠ (IV-13)

After we delete any one column and any one row, O turns

out to be O(n−1)(k−1). If we pick any k − 1 row vectors of

O(n−1)(k−1), we can get matrix O(k−1)(k−1). Because Onk is

full rank, using property A we can get O(k−1)(k−1) is still full

rank, that means r(O(k−1)(k−1)) = k − 1.
We assume all coefficients belong to {1,..., u } for some

u. Then we have uk−1 possible (k − 1)-vectors. Choose any

(k−2) (k−1)-vectors. And they can span a (k−2) (or lower)

dimensional space. There should be around uk−2 vectors in

this space. Do this
(
n−1
k−2

)
times. There should be around

uk−2
(
n−1
k−2

)
or less vectors in all those spaces.

If uk−2
(
n−1
k−2

)
< uk−1, then there is a vector that is not in

any of those spaces. Let u =
(
n−1
k−2

)
+1, and it is the upper

bound of the minimal maximized element in O for given k, n.

D. Extension

Apart from the above methods, to get a suitable coefficient

matrix, one can generate a random n × k positive integer

matrix, and then use a computer program to check if any k
row vectors are linearly independent or not. This method may

get a better matrix. However, it is very time-consuming. For

example, for n = 40, k = 4, it need several hours to get a

matrix that satisfies the conditions with small coefficients.

V. CONCLUSION

In this paper, we proposed two new matrices for practical

implementation of Blakley’s secret sharing scheme. The de-

terminant of the corresponding square matrix is 1, so it is

easy to compute its inverse matrix over the field GF (p). And

the generation of these matrices does not need multiplication

operation under mod p field. Compared with the Vandermonde

matrix, our matrices require less computation and storage.

Furthermore, we formulated the optimal matrix problem and

obtained the lower bound for k = 2 and the upper bound for

any given k.
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