
A Distributed Login Framework for Semi-structured
Peer-to-Peer Networks

Xiali Hei, Xiaojiang Du
Department of Computer and Information Sciences

Temple University

Philadelphia, PA 19122, USA

Email: {xiali.hei, dux}@temple.edu

Binheng Song
Department of Mathematical Sciences

Tsinghua University

Beijing, 100084, China

Email: bsong@math.tsinghua.edu.cn

Abstract—In Peer-to-Peer (P2P) networks, security is a chal-
lenging issue due to decentralization. In this paper, we propose
an effective distributed login framework for P2P networks. User
profile availability is a critical issue in P2P networks. Within the
distributed login framework, we propose a new Reed-Solomon
erasure code scheme leveraging the Pascal matrix that can
guarantee user profile availability. Our performance and security
analyses show that: (1) the distributed login framework provides
high availability and low redundancy rate; and (2) the new
erasure code has low computation and memory overheads.

Index Terms—peer-to-peer networks; Reed-Solomon erasure
code; Pascal matrix

I. INTRODUCTION

A Peer-to-Peer (P2P) system is built as an overlay on the

existing Internet infrastructure to provide file sharing service

to a highly transient population of users (peers). Structured

peer-to-peer systems typically use distributed hash table-based

(DHT) indexing, such as in the Chord system [1]. Unstructured

peer-to-peer systems do not provide any algorithm for organi-

zation or optimization of network connections. Three models

of unstructured architecture have been defined: pure peer-to-

peer systems, hybrid peer-to-peer systems (with supernode),

and centralized peer-to-peer systems. The first prominent and

popular peer-to-peer file sharing system - Napster, was an

example of the centralized model. Gnutella [3] and Freenet [4],

on the other hand, are examples of the decentralized model.

Kazaa [16] is an example of the hybrid model. Our system is

a semi-structured P2P system because we utilize one of the

most prominent DHT implementations - the Pastry Protocol

[2]; at the same time, we have supernodes to store the popular

files.

A login process authenticates a user to the system and

allows the system to provide service to the user. Login is

a frequently used operation. Some Instant Message software

utilizes a central login control server to process login op-

erations. It causes privacy concerns due to both inside and

outside attacks. Staffs with access to the login server may get

user credentials and profiles. Outside hackers may attack the

central server and disrupt services. Also, they may be able

to prevent some selected users from accessing their services.

The login operation of such a system should not depend

on the availability of any particular participating peer, or of

any central component, if the latter exists. To address the

drawbacks of the centralized model, we propose a distributed

login framework.

The login process should have high availability because

users may need the service at any time. According to [5],

less than 4% of the peers have an uptime of over 10 hours. It

is a challenging issue to provide high availability when peers

have short uptime.

In this paper, we design a novel distributed login framework

for p2p networks. We develop a new erasure code scheme that

can assist user profile splitting and combination operations.

Our scheme utilizes the Pascal matrix instead of the Vander-

monde matrix [9]. Compared with the current schemes that

use the Vandermonde matrix, our scheme is faster in encoding

phase and it has similar performance in decoding phase.

The rest of the paper is organized as follows. In Section

II we discuss related work. In Section III we provide the

system model. In Section IV, we present the distributed login

framework. We evaluate the performance in Section V, and

conclude the paper in Section VI.

II. RELATED WORK

There are a lot of literatures [17], [18], [19], [20], [21],

[22], [23] focused on authentication schemes in P2P network.

Unlike some P2P authentication schemes, our scheme is not

based on PKI [21] or ID-PKI [22], [23]. Since P2P network

allows sharing of resources and services by direct interactions

among multiple users. To achieve high availability of a file,

existing methods use multiple copies and the erasure code

scheme [10]. The most popular erasure code scheme is Reed

Solomon (RS) code [9], which utilizes Vandermonde matrix V
on Galois Fields (2w). This matrix has a serious drawback: the

generation of itself needs multiplication operations on Galois

Fields. These operations are time-consuming. Many literatures

focused on how to efficiently encode and decode. However,

few literatures considered alternative matrices.

The Vandermonde matrix has the problem of fast coefficient

expansion. That is, as the dimension of the matrix - t increases,

the coefficients (elements of the matrix) increases dramatically

[15]. In our research, we propose an alternative matrix - Pascal

matrix. The generation of this matrix on Galois Fields (2w)

only needs addition operations. Furthermore, it’s a symmetric

IEEE ICC 2012 - Communication QoS, Reliability and Modeling Symposium

978-1-4577-2053-6/12/$31.00 ©2012 IEEE 1331

matrix, which can reduce 50% operations and memory space

comparing to the asymmetric Vandermonde matrix.

III. SYSTEM MODEL

We assume that a user runs the client software on his office

or personal computer. In the rest of the paper, we use the terms

user and node interchangeably.

A user’s profile is only stored on a set of trusted nodes such

as personal nodes and friend nodes [6]. The set of trusted

nodes of a user is referred to as HNs or friend nodes, we

will also use them interchangeably. The friends of a user

are properly selected with respect to the availability and

performance goals. We give priority rankings to friend nodes.

For example, the longer the uptime, the higher is the ranking;

the closer in distance, the higher is the ranking.

Each user is identified by a unique ID - nodeID. We use HN

to denote the nodeID of a friend node. Our system employs

a distributed hash table (DHT). This DHT is used for storing

the index of the user profile and other meta information, e.g.,

the current IP address of a user. A user and his friend-node

mapping is stored in the DHT in the form of (ID, value) pair

with ID being the nodeID and value being a friend node.

The user to friend node mapping in the DHT is useful for

distributing and retrieving a user’s profile. Using our proposed

storage methods, one can ensure that the data stored inside

DHT is highly available and secure in spite of node churn. As

a trusted storage is not required by the system design, such

a DHT could be hosted at a highly available cloud storage

or in publicly available OpenDHT-like services [7]. In our

techniques, most of the data is stored on supernodes.

IV. A DISTRIBUTED LOGIN FRAMEWORK

A. Security Requirements

The login functionality enables the user to announce his

status in the network. During the login process the user authen-

ticates himself with his credential information obtained during

the registration phase. After successful login, the joining of

the node is announced in the network, and other nodes can

contact it directly. There are four security requirements that a

distributed login framework needs to satisfy:

Privacy requirement: A friend node should not be able to

read the user’s profile.

Integrity requirement: A friend can not modify the user’s

profile.

Storage persistency: If a user has successfully registered,

his profile will be kept all the time until the user is revocated.

Availability requirement: If a user provides correct user

name and password, he should be able to login successfully.

In addition to the above security requirements, we need to

address the issue of how to distribute and retrieve a user’s

profile.

B. A Distributed Login Framework based on Pastry

To enhance file’s availability, existing P2P file sharing meth-

ods use multiple copies and the erasure code theory. Consider

a user with a file. We split user’s file into k pieces. Then we

distribute the original k pieces to k peers, while distributing

the mixture of the original k pieces to other m(= n−k) peers.

Collecting any k shares from these n peers will enable one

to reconstruct the original file. Our scheme requires an index

server to assist the file piece searching, we choose the Pastry

as the DHT protocol in this paper.

1) The Pastry Protocol [2]: Pastry is a distributed lookup

protocol which can efficiently locate a node that stores a

particular data item. Every node in Pastry Network has a

unique 128-bit node identifier(nodeId). A Pastry node with

a message and a key can efficiently routes the message to the

node, which is numerically closest to the key. Each Pastry node

maintains its immediate neighbor list in the nodeId space, and

notifies applications of new node arrivals, node failures and

recoveries. Pastry nicely takes into account network locality

and it automatically adapts to the arrival, departure and failure

of nodes. Because nodeIds are randomly assigned, the set of

nodes with adjacent nodeId is diverse in geography, ownership,

jurisdiction, etc. Leveraging this, Pastry can route to one of l

nodes that are numerically closest to the key.

2) The Distributed Login Model: In Pastry network, each

node maintain a routing table, neighborhood set and leaf set.

Assume that friend nodes are trusted. Every user’s friend is

a node in the Pastry network. When a user has a new friend,

the friend is added to the user’s Pastry network as a direct

neighbor. We choose friend nodes with higher priority in the

Pastry network to store the user’s profile pieces. The user

has an assisted data server on his own PC or on Cloud. The

assisted server distributes and combines the profile pieces.

After registration, the assisted server obtains the user’s profile.

After the user add n friends, the assisted server distributes the

profile to n friends. Any k (k < n) online friends can recover

the user’s profile.

3) Profile Distribution and Storage: Existing methods [10-

14] have low efficiency and availability because they need

to search and then obtain the user profile. Based on the

characteristic of a user’s profile, we propose a more efficient

method for profile management.

In the model, each node on Pastry stores an empty filedb

during initialization. Because the user’s ID is unique, we can

get a 128-bit resID by hash nodeID using SHA-1. During

the registration and password update process, the profile needs

to be distributed. During registration, user distributes the

profile to the assisted server. After the user adding friends

to the nodes on Pastry, the assisted server distributes the

user’s profile to friend nodes according to resID. The assisted

server (also called the bootstrap node) keeps an index of the

friend nodes. The password update process is similar to the

registration process. The user sends a command to change the

password, the friend nodes will modify the filedb after they

receive the command.

When friend nodes (FNs) receive the corresponding profile

pieces, they backup their profile pieces on his leaf nodes. For a

user that has logged in, if one friend node goes off-line, then

one of the nearest leaf node will probably become the new

friend node (FN). If there is one node (say A) added before

1332

the FN goes off-line, A may be the new FN. This method

guarantees the quick search of nodes with profile pieces.

After the backup node receives the profile piece, first he

will check the integrity of the piece. If the check passes, the

node store it into filedb. However, he will not back up it to

his leaf nodes.
4) The Login Process: First, a user finds the FNs through

the bootstrap node (i.e., the assisted data server). Then boot-

strap node sends the request to these FNs. The FN checks

whether it owns the user’s profile piece or not. If the piece

does exist, it returns the piece to the user after the integrity

check passes. If the integrity check fails, the FN will delete

the profile piece from his filedb.

If the FN does not find the user’s profile piece, it will inquire

the profile piece from his leaf nodes. If successfully finding

the profile piece, it will retrieve the profile piece from the

successor and forward it to the user. The user then combines

all the needed profile pieces, if it matches his original profile,

the user passes. Otherwise, the user cannot login.
5) Securing User Profile Pieces: To secure user profile

pieces, a straightforward method is to encrypt the profile pieces

using user’s public key. We can also use MD5 checksum of

encrypted pieces to detect falsifications.

C. The Profile Distribution Scheme

We present the profile distribution scheme below.

Step 1: The server evenly split the file into k pieces:

x1, x2, ..., xk. Each partner (peer) i gets one piece xi.

Step 2: The server distributes the file pieces to the (k+1)th

party to the (k + m)th party as follows:

The (k + 1)th party gets: yk+1 = x1 + x2 + ... + xk

The (k+2)th party gets: yk+2 = x1 +2x2 +3x3 + ...+kxk

...

The (k+m)th party gets: yk+m = x1 +C1
mx2 +C2

m+1x3 +
...Cm−1

k+m−2xk

Step 3: To reconstruct the file from any k parties, we only

need to obtain the exact solution to the k linear equations

(from the above (k + m = n) equations).

We design the coefficients of the equations according to the

following rules: dp,q = dp,q−1dp−1,q (p > 1, q > 1), with

d1,i = 1 and di,1 = 1 for integer i.

yi = xi, i = 1, 2...k;
yk+1 = x1 + x2 + x3... + xk

· · ·
yk+m = x1 + C1

mx2 + C2
m+1x3 + ... + Cm−1

n+m−2xk

(IV-1)

The coefficients of the linear equations form a matrix A:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . 0
0 1 0 0 . 0
· · ·
0 0 0 0 . 1
1 1 1 1 . 1
1 2 3 4 . k
· · ·
1 m C2

m+1 C3
m+2 . Cm−1

k+m−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(IV-2)

We split matrix A into two matrices I and D. Matrix I is

a k × k indentity matrix, and the rank of it is k. According

to our design, in matrix D, dp,q = dp−1,q + dp−1,q (p > 1,

q > 1). Hence, the last (right-most) element in the ith row is

not less than the sum of the last numbers from the 1st row to

the (i-1)th row, while the first number in the ith row is equal

to the first number in the first (i-1) rows). Hence, the ith row

cannot be represented by a linear combination of the first (i-1)

rows. So, the rank of D is min(k, m). If we assume m < k,

then it means the m row vectors of matrix D are linearly

independent. Actually, D is a Pascal matrix, and the elements

of the symmetric Pascal matrix are the binomial coefficients,

i.e. dpq = Cr
z , where z = p + q − 2, r = i− 1.

A =
(

I
D

)
(IV-3)

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . 1
1 2 3 4 . k
1 3 6 10 . C2

k+1

· · ·
1 m− 1 C2

m C3
m+1 . Cm−2

k+m−3

1 m C2
m+1 C3

m+2 . Cm−1
k+m−2

⎞
⎟⎟⎟⎟⎟⎟⎠

(IV-4)

D. Proofs of Correctness

The rank of an m × k matrix is at most min(m, k). A

matrix that has a rank as large as possible is said to have

full rank. The solution is unique if and only if the rank of

the augmented matrix is equal to the number of variables.

Otherwise the general solution has w free parameters where

w is the difference between the number of variables and the

rank. This theorem is discovered by Rouch’s and Capelli. To

prove the correctness, the main challenge is to prove that any

k dimension row vectors consisted of coefficients are linearly

independent.

Lemma 1: The m× k matrix D is full rank.

Proof: Here we suppose m=min(m,k) to simplify the proof.

Let Adt is a matrix made up of the first t rows and first t
columns of D.

Adt =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . 1
1 2 3 4 . k
1 3 6 10 . C2

k+1

· · ·
1 t− 1 C2

t C3
t+1 . Ct−2

k+t−3

1 t C2
t+1 C3

t+2 . Ct−1
k+t−2

⎞
⎟⎟⎟⎟⎟⎟⎠

(IV-5)

Step 1: Perform the row transformations on Adt: we let the

(i + 1)th row subtract ith row, (for i = t − 1, ..., 1), then the

Adt turn out to be:

Adt =
(

1 e
f Ad(t−1)

)
(IV-6)

where f is a zero column vector, e is a row vector with nonzero

elements, Ad(t−1) is a submatrix of Adt by deleting the first

row and the last column. The reason is that di,j − di−1,j =
di,j−1, so every element becomes its left neighbor. Because

1333

f is a zero column vector while the first element in first row

vector is 1, the first row vector cannot be represented by the

row vectors after it. At this time, the problem turns out how

to prove that Ad(t−1) is full rank.

Step 2: We iteratively do Step 1, eventually we get one

matrix with only one nonzero element 1, which is the most

left and lowest element. Since it is full rank, this is trivial.

Till now, the proof of Lemma 1 is done. So that means

m row vectors in D are linearly independent. If we pick any

t < m row vectors in D, they are linearly independent, too.

We pick the first k columns from A, and randomly pick k row

vectors from these first k columns to form a new matrix E.

Lemma 2: E is a full rank k×k matrix consisted of k row

vectors in A. If any row vector of E is replaced with a row

vector in A \ E, the new matrix is still full rank.

Proof: here we use mathematical induction on m.

Base case: when m = 1, by observation method, a k
dimension row vectors consisted of coefficient is matrix E1,

and it has two cases:

Case 1.1: In E1, (k − 1) row vectors are from I and

one row vector is from D, it is (1, 1, 1, ..., 1), because I is

k × k identify matrix, so these (k-1) row vectors made up

of coefficients are linearly independent, and the k dimension

row vector (1, 1, 1, ..., 1) cannot be represented by these (k−1)

row vectors because the rank of the matrix consisted of these

(k − 1) row vectors is (k − 1) rather than k, so these k row

vectors consisted of coefficients are linearly independent.

Case 1.2: In E1, (k) row vectors are from I , because I is k×
k unit matrix, so these k row vectors consisted of coefficients

are linearly independent.

Combined these two cases, when m = 1, the Lemma 2 is

correct. Then, we assume that for all positive integers m = s,

any k row vectors in A are linearly independent.

Suppose these k row vectors in A constitute a new matrix

Es. We also assume that i row vectors in Es are from matrix

B, the other (k − i) row vectors are from matrix D.

When m = s + 1, if we replace one row vector in Es with

the new row vector (1, (s + 1), C2
s+2, C

3
s+3, ..., C

s
k+s−1), we

called the new matrix is Es+1.

Case s.1: The replaced row vector is from I .

Because the remaining (i − 1) row vectors in Es+1 from

matrix I are unit vector, so they can not represent the new

vector (1, (s + 1), C2
s+2, C

3
s+3, ..., C

s
k+s−1). Thus, the new

vector is linearly independent to these remaining (i− 1) row

vectors from matrix I in Es+1. By Lemma 1, the new vector

is linearly independent with the other (k− i) row vectors from

matrix D in Es+1. According to the induction hypothesis, the

unreplaced (k − 1) vectors are mutually linearly independent

because the all k vectors are mutually linearly independent.

So the the rank of new matrix Es+1 is still k. That means, the

new k row vectors are linearly independent.

Case s.2: The replaced row vector is from D.

Because the other i row vectors in Es+1 from matrix I are

unit vector, so they cannot represent the new vector (1, (s +
1), C2

s+2, C
3
s+3, ..., C

s
k+s−1). Thus, the new vector is linearly

independent to these remaining i row vectors from matrix I

in Es+1. By Lemma 1, the new vector is linearly independent

to the other (k − i− 1) row vectors from matrix D in Es+1.

According to the induction hypothesis, the remaining (k − 1)
vectors are mutually linearly independent because the all k
vectors are mutually linearly independent. So the rank of new

matrix Es+1 is still k. That means, the new k row vectors are

linearly independent.

Hence, by the second principle of induction, Lemma 2 is

true.

Theorem 1: Any k row vectors in matrix A are linearly

independent.

Proof: Initially, we pick k row vectors are from I , they

are linearly independent. Then, we replace one row with row

vector from D, this is case 1.1, so it is correct. After that, we

replace one row in the updated k dimension row vectors with

one row vector from D, so it is true according to Lemma 2.

After we finish this, we delete the picked row vector in D.

We iteratively do this until there are no more rows left in D,

and the k row vectors are still linearly independent. So, any

k row vectors in matrix A are linearly independent. We are

done.

V. PERFORMANCE EVALUATION

A. Computation Complexity

Reed Solomon erasure code scheme is based on Galois Field

GF(2w). This is to avoid file expansion due to the coefficients

increasing with the k. We will discuss computation complexity

in two phases: encoding phase and decoding phase.

Encoding Phase: Adding a new element in Pascal matrix

just involves addition operation while multiplication operation

in Vandermonde matrix. Vandermonde matrix V have a fatal

drawback that is the generation of it needs unavoidable mul-

tiplication operations on Galois Fields. These operations are

time-consuming. While generation of Pascal matrix on Galois

Fields (2w) just needs addition operation. What’s more, it’s

symmetric that can reduce 50% operations and memory space

compared with the asymmetric Vandermonde matrix. In the

encoding phase (also known as computing checksum phase),

Pascal matrix is faster than Vandermonde matrix.

Decoding Phase: During the decoding phase, we need to

get the inverse matrix of the matrix E. E is not a Pascal

matrix, neither is Vandermonde matrix. We assume E has

k − s unit vectors and other s row vectors from Pascal

matrix or Vandermonde matrix. For this case, there is no fast

method to get the exact solution to the corresponding linear

equations due to exploiting the Fast Fourier Transform to

solve linear equations needs strict condition constrains. So the

efficient methods are Guass elimination, LU decomposition

and Cholesky decomposition. Guass elimination is the most

common-use method. If we utilize this method, the compu-

tation complexity of decoding phase is k + ks + s3. When

s � k, it is roughly equal to k, where E is a sparse matrix.

If s ≈ k, then it is roughly equal to s3.

In a summary, Pascal matrix can be used to replace the

Vandermonde matrix in Reed-Solomon erasure code scheme.

1334

Compared with Vandermonde matrix, it is faster than Van-

dermonde matrix in encoding phase, while having similar

performance in decoding phase.

B. Storage Requirement

Assume the size of the whole file is S, now the size of

every piece is almost S/k, there are nl pieces totally. So the

redundancy rate is (n∗ l)/k−1, where l is the number of leaf

nodes.

C. Availability Analysis

Availability here means when friends (nodes) join or quit,

the profile won’t be lost and the user can login successfully

at any time.

Hence, there should be nodes that can locate the needed

profile pieces successfully in Pastry. The redundancy backup

can address the lost profile pieces when the user’s friend joins

or leaves. If there are no malicious nodes, one independent

backup node will store the profile pieces on his leaf nodes. If

in a stabilization cycle, all of his leaf nodes quit, the profile

piece will be lost. However the other profile pieces can recover

the original file. Another approach is increasing the number of

backup pieces on assisted server. This will increase the backup

messages linearly while availability almost exponentially.

D. Security Analysis

Here we focus on the security of the profile. We assume that

malicious nodes are possible but the malicious nodes cannot

modify or access the data without authorization. At the same

time, the tampered or falsified data pieces can be found timely

and discarded. We assume traditional encryption is secure.

The user (resID) can generate pieces a1 and a2 consistently.

Since the distribution and combination profile need the user

ID, the assisted server can combine hash(ID) with resID to

determine the a1 or a2 firstly, then determine the respective

location I1 and I2 according to Pastry protocol. Because both

I1 and I2 do not know that the user’s profile are stored on

them, this method does work. Thus, the security of system

depends on the hash function of user ID.

E. Feasibility Analysis

In this model, if a user has few friends, this may affect

the availability. We can use an assisted data server (without

authentication and control functions) to store the encrypted

profile pieces. The user distributes the original profile to the

assisted data server during the registration. Then the assisted

data server distributes the profile to the Pastry periodically.

This method decreases the number of backup nodes and

guarantees the availability of the system.

VI. CONCLUSION

In Peer-to-Peer (P2P) networks, security is a challenging

issue due to decentralization. In this paper, we proposed an

effective distributed login framework. User profile availability

is an important issue in P2P networks. Within the distributed

login framework, we proposed a new erasure code scheme.

This new erasure code scheme uses Pascal matrix instead of

Vandermonde matrix. Compared with Vandermonde matrix,

our scheme only uses 50% of the time for encoding, while has

similar performance in decoding phase. Our performance and

security analysis showed that the distributed login framework

provides high availability and low redundancy rate.

VII. ACKNOWLEDGMENT

This research was supported in part by the US National

Science Foundation (NSF) under grants CNS-0963578, CNS-

1002974, CNS-1022552, and CNS-1065444, as well as the US

Army Research Office under grant W911NF-08-1-0334.

REFERENCES

[1] I. Stoica, R. Mprris, D. Karger et al., “Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications,” in Proc. of ACM SIGCOMM
2001, August 2001, pp. 149-160.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” in Proc. of
the 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), Heidelberg, Germany, November 2001, pp.
329 - 350.

[3] http://www.gnu.org/philosophy/gnutella.html
[4] https://freenetproject.org/index.html
[5] J. A. Pouwelse, P. Garbacki, D.H.J. Epema et al., “The Bittorrent P2P

filesharing system: Measurements and analysis,” in Proc. of IPTPS’05,
Feb 2005, vol. 3640 of LNCS, pp. 205-216.

[6] A. Datta, “Tutorial: Peer-to-Peer Storage Systems: Crowdsourcing the
storage cloud,” in Proc. of ICDCN 2010, Kolkata, India, 2010.

[7] G. Urdaneta, G. Pierre, and M. V. Steen, “A Survey of DHT Security
Techniques,” ACM Computing Surveys, 2009.

[8] NIST. SECURE HASH STANDARD. http://csrc.nist.gov/publications
/fips/fips180-2/fips180-2withchangenotice.pdf.

[9] J. Plank, “A tutorial on reed-solomon coding for faulttolerance in raid-like
systems,” Software Practice and Experience, Vol. 27, No.9, Sept. 1997,
pp. 995-1012.

[10] J. Kubiatowicz et al., “OceanStore: An Architecture for Global-Scale
Persistent Storage,” in Proc. of ASPLOS’00, 2000, pp. 190-201.

[11] W. G. Yee and L. T. Nguyen, “A view of the data on P2P file-sharing
systems,” Jounal of The american society for information science and
technology, Vol. 60, No. 10, 2009, pp. 2132-2141.

[12] J. Leu and M. Huang, “Comparison of Piece-Based File Sharing
Schemes over a Peer-to-Peer Network in a Heterogeneous Network
Environment,” in Proc. of GLOBECOM’09, 2009, pp. 1-6.

[13] W. Sang and D. Qiu, “On The Efficiency of Peer-To-Peer File Sharing,”
in Proc. of ICME’07, 2007, pp. 32-35.

[14] J. Lu and J. Callan, “Content-based retrieval in hybrid peer-to-peer
networks,” in Proc. of ACM CIKM’03, 2003, pp. 199-206.

[15] X. Hei, X. Du, B. Song. Two matrices for Blakley’s Secret Sharing
Scheme. ICC 2012.

[16] http://en.wikipedia.org/wiki/Kazaa
[17] Z. Li, X. Xu and L. Shi et al, “Authentication in Peer-to-Peer Network:

Survey and Research Directions, in proc. of Third International Confer-
ence on Network and System Security, 2009, pp. 115-122.

[18] Z. Min, “P2P Software Security Research Based on Key Issues, Shang-
hai Jiaotong Universitu, Doctoral thesis, 2008.

[19] L. Lu, J. Han and Y. Liu et al, “HuaiLionel M. Ni, Jian Ma, Pseudo
Trust: Zero-Knowledge Authentication in Anonymous P2Ps, IEEE Tran.
On parallel and distributed systems, vol. 19, no. 10, 2008, pp. 1325-1337.

[20] Y. Zhang and D. Zhang, “Authentication and access control in P2P
network, in proc. of GCC2003, 2004, pp. 468-470.

[21] K. Berket, A. Essiari and A. Muratas, “PKI-Based Security for Peer-to-
Peer Information Sharing,, in proc. of the Fourth International Conference
on Peer-to-Peer Computing, 2004, pp. 45 -52.

[22] S. Ryu, K. Butler and P. Traynor et al, “Leveraging indentity-based
cryptography for node ID assignment in structured p2p systems, in proc.
of IEEE AINAW07, 2007, pp. 1803-1815.

[23] K. V. Nguyen, “Simplifying peer-to-peer device authentication using
identity-based cryptography, in proc. of the International conference on
Networking and Services, 2006, pp. 43-46.

1335

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

