
Audit Based Privacy Preservation for the OpenID
Authentication Protocol

Abstract—This paper studies a privacy vulnerability within
OpenID, a distributed single sign on protocol. An OpenID system
consists of three components: User Agent (UA); Relying Party –
A web application that a UA would like to authenticate with
using their unique identifier; and Identity Provider – A web
server that provides a globally unique identifier for the UA and
validates the identity of UAs on behalf of Relying Parties. The
privacy vulnerability has been identified in existing literatures.
However, no effective solution has been proposed to date. In this
paper, we present an effective scheme to mitigate this
vulnerability. In order for OpenID to gain wider acceptance, this
vulnerability must be addressed with a solution that is convenient
to the users of single sign on. We propose a method for mitigating
this vulnerability by creating vertical levels of trust between
constituents of an OpenID network through expanding the role of
OpenID Identity Providers to include auditing OpenID Relying
Parties for privacy vulnerabilities. In addition, Identity Providers
may keep records of audits that identify Relying Parties that do
not protect the privacy of OpenID users. The primary issue with
this privacy vulnerability is that it is completely transparent – it
occurs without the user ever being aware that it is happening. We
cannot force Relying Parties to guarantee the privacy of OpenID
users, nor would we like to burden individual users with browser
level solutions that are often overly technical and difficult to
understand. We have designed an audit solution at the level of the
Identity Provider, which can accurately inform users when
Relying Parties may be sharing information with third parties,
therefore giving OpenID users the ability to make a conscious
choice to share that information. We have performed real
network experiments to validate our scheme, and the
experimental results show that our scheme is effective.

Keywords—authentication; distributed systems; OpenID;
privacy; security

I. INTRODUCTION

As more computer applications and services are placed
online, Single Sign On (SSO) systems are quickly becoming an
emerging technology that is designed to combat the insecure
and inconvenient practice of requiring users to remember
dozens of permutations of user names and passwords. SSO
identifies the user with a globally unique identifier that can be
used to verify the identity of a user to multiple computer
applications across one or many domains. This allows a user to
only be required to remember one user name and password set
that can validate the user across multiple computer
applications, greatly reducing the inconvenience and inherent

security risk of having to memorize very large sets of
authentication credentials.

The most popular distributed SSO protocol in use today is
OpenID. OpenID is the most well supported SSO, and its
governing foundation has support from industry constituents
including Google, Microsoft, Symantec, and Verizon [1].
However, OpenID has contained a known privacy vulnerability
that had first been identified in 2010, and remains unresolved
to this day [2]. This vulnerability can expose information that
uniquely identifies an OpenID user to third parties such as
computer systems used for the purposes of advertising and
consumer analytics. Once a third party has obtained this
information, an OpenID user may then be tracked, monitored,
and followed across all computer applications that have this
vulnerability exploited. This vulnerability has been difficult to
resolve because its cause is neither a bug within OpenID nor is
it an issue of improper implementation. Rather, this
vulnerability is the unfortunate result of a design flaw of
OpenID itself. Mitigation of this vulnerability requires a
solution that cannot be circumvented by Relying Parties, who
in some cases may be knowingly and willingly exposing this
information for monetary gain. In addition, a solution should
not require cumbersome and complicated tasks to be completed
by the individual OpenID user.

The structure of this paper is as follows: Section II briefly
outlines how OpenID works, and outlines the known privacy
vulnerability that is addressed in this paper. Section III
provides an analysis of the vulnerability, and utilizes data of in-
the-wild examples of this exploit to identify the exact vectors
that enable this vulnerability to occur. Section IV introduces an
audit solution that overcomes the unique challenges of working
with a distributed computer system such as OpenID. The paper
is then briefly concluded in Section V.

II. OPENID AND A KNOWN PRIVACY VULNERABILITY

OpenID utilizes several key pieces of terminology to define
the constituents of an OpenID network. As first defined by
Uruenya [2], there are three types:

 User Agent (UA): A human user utilizing a web
browser that would like to authenticate with a
computer application by providing an OpenID
Identifier, a globally unique value that is obtained from
an Identity Provider of the user's preference.

NOTICE: All domain names have been intentionally changed to ficticious
values and are intended for illustrative purposes only.

Philip J. Riesch, Xiaojiang Du
Department of Computer and Information Sciences

Temple University
Philadelphia, Pennsylvania

{philip.riesch, xjdu}@temple.edu

978-1-4673-2709-1/12/$31.00 ©2012 IEEE 348

 Identity Provider (IP): A web server that provides a
globally unique identifier for the UA, and validates the
identity of UAs on behalf of Relying Parties.

 Relying Party (RP): A web application that a UA
would like to authenticate with using their unique
identifier. The UA is validated by using this identifer to
discover and refer the UA to their preferred IP.

OpenID utilizes the Hypertext Transfer Protocol (HTTP) as
its preferred transport protocol. Information is transmitted
through encoding OpenID information into the parameters of
the HTTP request [3], therefore allowing OpenID to require no
special software in order to be properly used by UAs. While
there are many individual steps involved in an OpenID
transaction, including the generation and exchange of security
associations through Diffie-Hellman based key exchanges [5],
an OpenID transaction can be described in four very high level
steps (fig. 1):

1) A UA would like to utilize a computer application that
has RP software installed and configured to allow
authentication through OpenID. The UA will reveal an
identifier to the RP, typically with an HTML form that
is provided by the RP.

2) An identifier is in the form of a valid Uniform
Resource Locator (URL) [6] for an HTTP server. This
URL points to a web page that provides information
about the UA and its IP. On receipt of a UA's
identifier, the RP will utilize the identifier to retrieve
this page and discover the preferred IP of the UA.

3) Through the use of redirection capabilities built into
HTTP [3], the RP will redirect the UA to their
preferred IP, as discovered from the UA's identifier.
The RP encodes information about the OpenID
transaction directly into the redirection URL. This
information can include state information, security
associations, and cryptographic message signatures [4].

4) The UA authenticates with the IP. Again using HTTP
redirection features, the user is redirected back to the
RP with information again encoded into the URL that
validates who the user is and whether they were
properly authenticated.

The vulnerability in OpenID originates from the choice of
how transaction information is transmitted. The choice to
utilize URL parameters for the transmission of OpenID
transaction data can unsafely expose unique and identifying
information about the UA to third parties via a utility feature of
HTTP, OpenID's underlying transport protocol [2]. The
vulnerability is exploitable during the last step of the OpenID
authentication process, when the UA has successfully
authenticated with their IP and is redirected back to the
requesting RP. If this page contains any external resources,
such as scripts, stylesheets, and image files, the UA becomes
exposed to the vulnerability.

HTTP contains a utility feature originally intended for web
site maintenance known as a Referer value [3]. Web pages
may contain various external resources in order to render as
intended, and all modern browsers will retrieve these resources
automatically. In addition, modern browsers will attach a
Referer value to HTTP requests for these resources. This

Referer value contains the original URL that requires the
external resource, including all URL parameters and other
information that was encoded into the original URL. OpenID
transaction data is cryptographically signed using an HMAC
based hasing algorithm [7] in order to prevent tampering,
however this data is not encrypted. In consequence,
unencrypted OpenID information encoded into the URL
becomes exposed to third parties if the external resource exists
outside of the two domains participating in the OpenID
transaction.

III. VERIFYING THE VULNERABILITY

Testing for in-the-wild examples of this vulnerability is
fairly simple, and indicates how prolific this vulnerability has
become. An analysis can be conducted by capturing all HTTP
traffic transmitted between a UA's web browser and the various
HTTP servers that it connects to during the course of an
OpenID transaction. UAs generate a trail of requests as they
proceed through the OpenID transaction, including requests for
all external resources that may need to be retrieved. By
analyzing the HTTP control data within this trail of requests,
we are able to determine the presence or absence of OpenID
information that can uniquely identify a UA.

The benchmark as to what is considered to be uniquely
identifiable OpenID information would be the presence of
OpenID's openid.identity value. This data value
contains the OpenID Identifier of the UA, a globally unique
value that can be used to identify a UA across multiple RPs [4].
We can consider this information to be unique enough that a
user may be tracked with little effort by any third party that
obtains this information. It was observed that an OpenID
transaction should ideally occur within only two unique
domains: the domain of the RP, and the domain of the IP. We
will refer to these as the transacting domains. The vulnerability
is exposed when external resources are called by the UA's
browser that exist outside of the transacting domains, therefore
exposing the openid.identity value via HTTP Referer
information subsequently transmitted by the UA's browser.

Figure 1: High level illustration of a typical OpenID transaction.

349

In order to test for in-the-wild instances of this privacy
vulnerability, a series of experiments were set up and executed.
An IP was established using a lightweight and open source IP
server, running on a Linux based web server. A UA was
provided by a commercially well known web browser that was
modified to contain a module that captured and recorded all
HTTP traffic that was transmitted and received by the web
browser. Several major web applications were selected that had
been purported to support OpenID as of 2010, the time at
which this vulnerability was first identified. Access to each
would be attempted using our test UA and test IP. The HTTP
traffic log that is generated would then be analyzed in order to
generate a visual map showing each step taken within the
OpenID transaction (fig. 2,3). Any external resources that were
called during this transaction would be associated to a specific
step on the map. This data would indicate whether any external
resources were called that do not exist within the valid space of
the transacting domains.

The results of these experiments was discouraging. Of all
web applications tested, about half were found to no longer
support OpenID as an RP. Most of these web applications
either no longer supported any form of distributed
authentication, or forced the user to instead utilize a distributed
login system that was proprietary to the site. Of the remaining
subjects, all but one RP contained external resources being
called that existed outside of the transacting domains, therefore
causing our browser to transmit OpenID information within the

Figure 3: Another OpenID transaction map captured from an in-the-wild
RP. This RP performed an additional step after receiving the UA from the IP
that resulted in the UA being redirected to another page internal to the RP. It
was noted that this extra redirect removed OpenID credentials from Referer

data. However, this RP still called a resource with OpenID credentials
encoded into the external resource request.

Figure 4: Raw HTTP Referer data captured from a transaction with an in-
the-wild RP. Leaked OpenID credentials underlined and highlighted.

Figure 5: Raw HTTP GET data captured from a transaction with an in-the-
wild RP. Leaked OpenID credentials underlined and highlighted.

Figure 2: A visual map of an OpenID transaction generated from HTTP
data captured from an in-the-wild RP. This map indicates that this particular

RP is susceptible to the vulnerability and is leaking identifiable OpenID
information to two separate third parties.

350

Referer data contained in the request (fig. 2,4). It was
observed that these external resources most commonly existed
on domains that belonged to web analytics companies and
content distribution networks.

In addition to identifying information being found encoded
within Referer data, some RPs were found to additionally
have this same information encoded directly within the URLs
of the external resource request (fig. 3,5). This second vector
has also been documented [2], and is also considered to be a
vector of the vulnerability. In order to mitigate this
vulnerability, an audit system must be devised that is able to
inspect the pages returned by RPs in order to determine if a UA
can become vulnerable through these two vectors for a given
RP.

IV. CREATING TRUST THROUGH PRIVACY AUDITING

In order to protect OpenID networks from this
vulnerability, a system of vulnerability auditing and protocol
compliance checking must be developed that can foster layers
of trust that extend across the entirety of an OpenID network.
This system must be designed to be installed and executed on
the IP, the constituent that an OpenID network should
theoretically contain the fewest number of. In addition, because
the IP is already trusted to safely store the authentication
credentials of UAs, we may also safely assume IPs to be the
most conscious about the privacy and security of OpenID
users. It is not possible to design a solution that will be
realistically implemented by RPs, as some RPs could possibly
be sharing this information intentionally with third parties for
monetary benefit; implied by the findings of our in-the-wild
experiments. We cannot design a browser level solution to be
implemented by the UA, as this is the largest – and often the
most uninformed – group of constituents, making network-
wide implementation all but impossible. An IP level solution
defines the IP as an authoritative figure, allowing a realistic
implementation goal.

Under this solution, an IP would keep records of all RPs
that are accessed by all of the UAs managed by the IP. These
records would include a history of audits performed on the RP,
and whether the audit was successful or unsuccessful. Once a
UA has correctly authenticated with their IP, the IP will
retrieve the audit history of the RP, and determine if the most
recent audit is older than a time-to-live value that is defined

procedure Audit

set document to Document Object Model [8] of success page
returned by RP;

set e to an array of all elements in document with tag name
“img”;

for i := 0 to length of e do

if e[i] has attributes do

set n to value of attribute of e[i] with name

 “src”;

if n is a URL and domain of n is not within

trust root [4] declared by RP

audit has failed;

end

end

set e to an array of all elements in document with tag name
“link”;

for i := 0 to length of e do

if e[i] has attributes do

set n to value of attribute of e[i] with name

 “href”;

if n is a URL and domain of n is not within

 trust root declared by RP

audit has failed;

end

end

set e to an array of all elements in document with tag name
“script”;

for i := 0 to length of e do

if e[i] has attributes do

set n to value of attribute of e[i] with name

 “src”;

if n is a URL and domain of n is not within

 trust root declared by RP

audit has failed;

end

end

Algorithm 1: There are three Document Object Model elements in HTML
that will invoke a browser to retrieve external resources. The IP must insure
that all of these resources occur within the domain of the Trust Root claimed

by the RP.

Figure 6: An IP with Relying Party Audit Engine.

351

internally by the IP. If the most recent audit is beyond the age
of this value, the IP will conduct an audit of the RP (fig. 6).

When an audit occurs, the IP will authenticate with the RP
as if it were a UA, utilizing its own unique OpenID Identifier.
This allows the IP to receive data that would typically be
received by a UA. The IP will then process this data and search
for any external resources that are called outside of the defined
transacting domains: the domain of the IP and the domain of
the RP as claimed by the RP's Trust Root [4] (alg. 1). If the IP
is to find any resources outside of the transacting domains, it
will record this audit to the audit history for this RP. The IP
will then warn the UA that originally made the request about
the failure. The IP will also warn any other UA that wants to
authenticate with this RP (fig. 7). This will allow the IP to
actively notify UAs that an RP is unsafe and may be leaking
unique, identifiable information to third parties.

In order to test this solution, a proof of concept web
application was developed in PHP and tested on a Linux based
web server that implemented an OpenID IP and audit engine
that could automatically read OpenID logon forms on RPs and
perform an automated OpenID transaction with an RP. When
tested on RPs that were known to be vulnerable, this audit
engine was able to accurately detect any external resources that
had been expected to be vulnerability vectors, as predicted
through our validation experiments. In consequence, the IP was
able to warn the UA when they were accessing an RP that was
unsafe. This indicates that a solution that consists of IPs
investigating and reporting on the safety of other participants in
an OpenID network is a viable solution that helps to indicate
when the vulnerability is occurring, and therefore allows for
mitigation by giving UAs the choice to continue with an unsafe
OpenID transaction, or abort the transaction altogether.

V. CONCLUSION

As more computer applications are removed from the
confines of the user's personal computer and re-implemented
within the Cloud and other Internet enabled environments, a
widely accepted distributed authentication protocol will
become necessary in order to reduce the amount of
authentication credentials that must be memorized by users of
these applications. OpenID is continuing to gain traction as the
preferred solution that addresses and mitigates this problem in
a way that is able to work within a distributed environment.
Decisions made regarding the design of OpenID's data transfer
protocols has enabled OpenID to function without requiring the
user to modify their computers or install any software, however
this decision has unfortunately created a vector for a privacy
vulnerability that could be exploited for the purpose of tracking
OpenID users without their knowledge or consent.

If distributed authentication protocols such as OpenID are
to gain wider acceptance, privacy vulnerabilities must be
addressed with a short term solution that cannot be

circumvented. This goal can be accomplished by expanding the
responsibilities of the IP to include guaranteeing the security of
the overall network. This is achieved through auditing the
network in order to accurately represent the privacy policies of
web applications to OpenID users. Such a solution actively
works to preserve the privacy of the user by removing the
transparent transmission of identifiable information to third
parties. The user is granted the knowledge that an RP may leak
identifiable information. Therefore, it becomes the conscious
choice of the user to continue the transaction and willingly
share that information, or cancel the transaction and refuse to
share information with third parties.

ACKNOWLEDGMENT

This research was supported in part by the US National
Science Foundation (NSF) under grants CNS-0963578, CNS-
1002974, and CNS-1022552, as well as the US Army Research
Office under grant W911NF-08-1-0334.

REFERENCES

[1] OpenID Foundation. http://openid.net/

[2] M. Uruenya, C. Busquiel. Analysis of a Privacy Vulnerability in the
OpenID Authentication Protocol. IEEE Multimedia, Communications,
Services, and Security 2010.

[3] T. Berners-Lee, et al. Hypertext Transfer Protocol – HTTP/1.1. June
1999.

[4] D. Recordon, B. Fitzpatrick. OpenID Authentication 1.1. May 2006.

[5] R. Escola. Diffie-Hellman Key Agreement Method. IETF RFC 2631.
June 1999.

[6] T. Berners-Lee, L. Masinter. Uniform Resource Locators. IETF RFC
1738. December 1994.

[7] H. Krawczyk, M. Bellare, R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. IETF RFC 2104. February 1997.

[8] W3C DOM IG. W3C Document Object Model.
http://www.w3.org/DOM/. January 2005.

Figure 7: The results of our efforts: the IP presents the human user with
notification of an unsafe OpenID transaction, enabling the user to make a

conscious decision to continue the transaction.

352

