
Verifying Cloud Service Level Agreement
Lin Ye, Hongli Zhang, Jiantao Shi

School of Computer Science and Technology
Harbin Institute of Technology

Harbin, China
Email: {yelin, zhl, shijiantao}@pact518.hit.edu.cn

Xiaojiang Du
Dept. of Computer and Information Sciences

Temple University
Philadelphia, PA, USA
Email: dxj@ieee.org

Abstract—In this paper we study the important issue of
verifying Service Level Agreement (SLA) in a semi-trusted
(or untrusted) cloud. Cloud computing services promise elastic
computing and storage resources in a pay-as-you-go way. A SLA
between a cloud service provider (CSP) and a user is a contract
which specifies the resources and performances that the cloud
should offer. However, the CSP has the incentive to cheat on SLA,
e.g., providing users with less CPU and memory resources than
that specified in the SLA, which allows the CSP to support more
users and make more profits. A malicious CSP can disrupt the
existing SLA monitoring/verification techniques by interfering
the monitoring/measurement process. Therefore, we present a
SLA verification framework that leverages a third party auditor
(TPA). Under the TPA framework, we propose an effective testing
algorithm that can detect SLA violations of physical memory size
in virtual machine (VM). Using real experiments, we show that
the algorithm can detect cloud cheating on VM memory size
(i.e., SLA violations). Furthermore, our algorithm can defend
various attacks from a malicious CSP, which tries to hide a SLA
violation.

Keywords - Cloud Computing; Service Level Agreement; Verifi-
cation; Monitoring; Testing

I. INTRODUCTION

Cloud computing paradigm is gaining increasing attentions
recently because it brings many economic benefits to users.
Cloud computing can reduce capital expenditures, such as
hardware costs and software license costs, and it also shrinks
operational expenditures such as costs of hiring IT personnel
significantly. Moreover, users will have universal data access
and storage at multiple independent geographical locations
[1]. A number of major IT companies (such as Amazon [2],
Google [3], IBM [4] and Microsoft [5]) have started offering
cloud computing services. Meanwhile, increasing number of
enterprises are migrating their tasks to the cloud environment.

Cloud computing is client/mission-oriented, specified by
Service Level Agreements (SLAs) between cloud service
providers (CSPs) and users in a pay-as-you-go way. A SLA
is a contract between the two parties, which states the details
of the resources and performances that the cloud should offer.
The typical SLA metrics include memory size, CPU speed,
storage size, network bandwidth, system uptime, and packet
loss. For example, a small instance of the Amazon EC2 has
the following configurations [6]: 1.7 GB memory, one 1.0 -
1.2 GHz Opteron or Xeon processor, and 160 GB instance
storage.

A SLA serves as the basis for the expected level of services

obtained from the CSP. The bill that a user pays to the CSP is
closely related with the SLA. How does a user know if he/she
is getting physical memory size or CPU speed as specified in
the SLA? A CSP is a profit-based company, and it has the
incentive to cheat on SLA. For example, a CSP may provide
less memory to a user, which allows the CSP to support more
users and make more profits.

Obviously, users cannot rely on the CSP to verify the SLA.
Now Amazon EC2 puts the burden of verifying SLAs on users.
However, it is difficult for a user to verify the SLA because the
CSP has complete controls of underlying resources, including
physical machines, hypervisors, virtual machines (VMs), et
al. In a word, neither the CSP nor the user is suitable for the
SLA verification. Hence, a third party should be designed to
perform the cloud SLA verification. However, SLA verification
in cloud is much more difficult than that in the traditional
Internet and computer networks. An untrusted CSP can easily
defeat the existing SLA monitoring/verification techniques by
interfering the monitoring/measurement process.

In this paper we present a SLA verification framework that
leverages a third party auditor (TPA). A TPA resolves the
trust dilemma between a CSP and its users. There are several
benefits of the TPA-based SLA verification framework. First,
the TPA framework is flexible and scalable. It supports various
types of tests targeting at different SLA metrics (e.g., memory
or CPU). Second, it supports testing from multiple (including
a large number of) users, which could significantly enhance
the capability of testing a cloud. Third, the TPA framework
also relieves users from the verification burden. With the third-
party auditing functions, we can either prove to users that
the CSP indeed satisfies the SLA (which will in turn build
trust between users and the CSP), or detect and report a SLA
violation to users (which will protect users’ benefit and also
deter CSP from cheating in future). The contributions can be
summarized as follows.

• We propose a flexible and scalable framework that utilizes
a third party auditor for cloud SLA verification. The
framework supports various types of SLA tests.

• We design an effective testing algorithm that can detect
SLA violations on physical memory size of a VM.

• Using real experiments, we demonstrate that the algorith-
m can detect cloud cheating on VM memory size (i.e.,
SLA violation). Our testing algorithm also can defend
various attacks from a malicious CSP, which tries to hide

978-1-4673-0921-9/12/$31.00 ©2012 IEEE

Globecom 2012 - Communication and Information System Security Symposium

777

a SLA violation.
The rest of this paper is organized as follows. Section II

describes the related work on SLAs. Section III discusses our
assumptions and the threat model. Section IV presents the TPA
framework and Section V discusses the testing algorithm for
detecting SLA violations on VM memory size, followed by
the conclusion made in this paper in Section VI.

II. RELATED WORK

Studies [7], [8] discuss SLA issues in traditional IP net-
works. However, as a new paradigm, cloud computing is a
model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction [9].
Work [10] proposes a layered cloud architecture to model the
bottom-up propagation of failures, and uses it to detect SLA
violations by mapping resource metrics to SLA parameters.
There are several approaches for SLA assessment with a
focus on accurately measuring or estimating Quality of Service
parameters. Study [11] proposes a novel active measure-
ment methodology to monitor whether the characteristics of
measured network path are in compliance with performance
targets specified in SLAs. Study [12] proposes a new passive
traffic analysis method for on-line SLAs assessment, which
reduces both the need for measuring QoS metrics as well
as the interactions between the ingress and egress nodes in
the network. Work [13] presents a quantitative study of the
end-to-end networking performance among Amazon EC2 from
users’ perspective, and concludes that virtualization can cause
significant unstable throughput and abnormal delay variations.
Study [14] compares the performance and cost of four major
cloud providers (Amazon, Microsoft, Google and Rackspace).

However, the previous work did not consider an untrusted
cloud that can interfere with the measurement/monitoring pro-
cess triggered by users. A malicious cloud may intentionally
modify, delay, drop, inject or preferentially treat packets in
order to disrupt the measurement. Work [15] indeed takes the
presence of an adversary into account, but the threat model
for an adversary in the middle of a path is different from our
work where the adversary (the cloud) is at the end of a path. In
addition, they focus on the networking SLAs (such as packet-
loss rate and delay). In this paper, we emphasize on a different
SLA parameter - the physical memory size of a VM.

III. ASSUMPTIONS AND THREAT MODEL

In this paper, our assumptions are given in the following:
1) Users trust the authorized third party and allow the TPA

to perform auditing functions. A user may delegate his
account to the TPA for a while to verify the SLA. This
assumption is reasonable and sometimes necessary since
certain SLA metrics must be measured from the user’s
VM, such as response time.

2) One thing that can prevent a CSP from cheating is
to require the CSP to provide the source codes of

its hypervisor to the TPA that can ensure there is no
“malicious” code.

3) However, clean static codes do not guaranty a secure
running instance because the CSP may run a different
version of the hypervisor. Thus, the TPA should be able
to examine the integrity of a hypervisor at the run time.
This can be achieved by using some existing techniques,
such as HyperSentry [16].

4) The CSP allows the TPA to monitor its hypervisor,
which ensures that the hypervisor does not perform two
tasks: (a) To detect if there is a TPA test running in
the cloud; and (b) after detecting a TPA test, the cloud
changes the resource allocation of a VM such that the
SLA is satisfied. For example, a user leases a VM with
2GB physical memory, but the CSP sets the maximum
memory value of the VM to 1GB. When the CSP detects
such a test, it switches to 2GB immediately. Then, the
TPA will not be able to detect any SLA violation (which
actually happened).

Our threat model is given below:

1) The CSP has complete controls of its own resources,
including physical machines, hypervisors, VMs, et al.

2) The CSP is able to know any security material (such as
an encryption key) used by a VM, because the material
is stored in the physical memory and/or the hard drive
that the hypervisor has access to. In addition, the CSP
is able to modify any message sent by a VM without
being detected. For example, if a VM runs a test and
creates a timestamp after the test is completed, the cloud
can change the timestamp stealthily, even if a message
authentication code (MAC) is used. The hypervisor
knows the key for the MAC and it can create a new
valid MAC after changing the message.

3) The CSP will perform the cheating only if the cost is
less than C, where C is a cost-related parameter. For
example, if the CSP needs to reserve a GPU such that it
is not detected by a GPU/CPU test, the cost of cheating
may be too large for the CSP and it has no incentive to
cheat.

IV. SLA VERIFICATION FRAMEWORK

Our objective is to develop an auditing solution that can
verify whether a CSP satisfies a SLA or not. Given a semi-
trusted (or untrusted) CSP, we propose a third party auditor
based framework, including three parts as shown in Fig. 1: (1)
a third party auditing module (TPAM) running in the cloud
machine; (2) the SLA testing programs (testers); and (3) the
TPA server that locates outside the cloud.

TPAM is a software module implemented by the TPA to
monitor the integrity of a running hypervisor in the cloud.
To defend against compromised hypervisor, TPAM’s job is to
check the consistency between the running instance and the
correct executable version. Thus, first, given the hypervisor’s
source codes, the TPA will examine them by static program
analysis to find out malicious operations, and then compile a

778

Fig. 1. The SLA verification framework

clean-slate correct executable version with necessary parame-
ters supplied by the cloud. Second, in order to securely test the
running hypervisor, TPAM must be trustworthy, which means
its execution should not be modified or interrupted by the
hypervisor, nor should its results be modified. In this paper
we protect the TPAM by using HyperSentry [16], which has
the following properties to make it a good candidate to perform
our task, i.e., to check if a running hypervisor is the same as
the correct executable version:

1) HyperSentry provides a framework to enable an agent to
measure the integrity of the highest privileged software
(e.g., the hypervisor).

2) HyperSentry can be invoked stealthily without the
awareness of the hypervisor.

3) The measurement output can be securely conveyed to
a remote verifier. The hypervisor is not able to alter or
forge the output.

Under the framework of HyperSentry, the TPAM can be
examined step by step by using trusted boot hardware [17]
until all components are measured at the boot time. During
the trusted boot procedure, the code and data of the TPAM
are copied into the SMRAM (a designated and lockable
memory) and kept from accessing or modifying, regardless
of the process’s privilege level. As a result, no software can
modify the code and data of the TPAM, and its trust can be
maintained.

At the run time the TPAM can be activated by interrupts
from the Intelligent Platform Management Interface (IPMI)
[18] via an out-of-band channel, which is triggered by the
TPA server. IPMI is a server-oriented platform management
interface directly implemented in hardware and firmware.
Hardware features can be used to differentiate between inter-
rupts generated by the out-of-band channel and other methods.
An interrupt generated by the out-of-band channel is the
exclusive way to trigger the TPAM.

Finally, the actual checking of the running hypervisor is
straightforward. After being activated by the outside TPA
server, the TPAM computes a hash of the running hypervisor,
securely signs the hash, and then sends the signed hash to the
outside TPA server for verification.

SLA Testing Programs are special testing programs (also

called testers) proposed in our work, which can defend various
attacks from an untrusted cloud while still being able to detect
SLA violations. Traditional benchmarks are used to evaluate
the performance of certain hardwares in a trusted environment.
However, the VMs run in machines owned by the CSP that
controls hypervisors and other resources. A malicious CSP
may change the measurement result or complete a testing task
at a different (more powerful) machine without being detected.
Hence, the existing benchmarks cannot be used in our case.
Similarly, the existing SLA measurement techniques are not
available to verify SLA in an untrusted cloud.

TPA server plays a centric role in the auditing framework
and controls the SLA verification process. When the TPA
server is ready for a test, it triggers the TPAM, which checks
the integrity of the hypervisor. Then the TPA server starts the
SLA testing programs remotely. After finishing the tests, it
will record and analyze the results to give a proof whether the
SLA has been violated.

Specifically, the procedure of our framework has six steps
illustrated in Fig. 1:

1) A user initializes a request to the TPA server for a test,
such as whether a given resource is satisfied as the SLA
claimed. Additionally, the user may delegate his account
to the TPA for a while to verify the SLA.

2) Upon receiving the user’s request, the TPA server imme-
diately activates the TPAM via the out-of-band channel
and makes sure that the hypervisor is clean and correct.

3) The TPAM computes a hash of the running hypervisor,
securely signs the hash, and then sends the signed hash
to the outside TPA server for verification.

4) The TPA server receives the signed hash and compares it
with that of the correct executable version. If the running
hypervisor is correct, the TPA server uploads the testers
and the corresponding data, and starts a test in the VM.

5) When the test is completed, the TPAM sends the results
back to the TPA server.

6) Based on the results, the TPA server determines whether
there is a SLA violation and generates a report for the
user.

V. SLA VERIFICATION ON MEMORY SIZE

A CSP is very powerful and has complete controls of its
resources, including physical machines, hypervisors, VMs, et
al. Hence, it is a challenging task to detect SLA violations
by an untrusted cloud. In this section, we study one of the
most important SLA metrics - memory size, and present an
effective algorithm that can detect whether the cloud actually
allocates a VM the physical memory size as specified in the
SLA.

Note that the usable memory size in a VM should exclude
the memory used by the VM and other system softwares.
Besides, it is normal for a cloud to schedule physical memory
among VMs, because this is the way the CSP benefits. If
a user leases a VM (denoted as VM1) with 2GB physical
memory, the cloud may allocate less but sufficient memory
(may be less than 2GB). However, when the applications

779

require more memory, the cloud will satisfy VM1 immediately,
up to the maximum value (e.g., 2GB in this example). The
above behavior is considered normal and the SLA is satisfied.

In contrast, a SLA violation is considered as follows. VM1
is specified with 2GB physical memory in the SLA. When
VM1 is running, the hypervisor also tells VM1 (and the user)
that its maximum memory is 2GB. However, the hypervisor
sets the actual maximum memory of VM1 to 1.5GB, which
means that VM1 will never get more than 1.5GB no matter
how many processes are running. Thus, when the workload
increases, the computations will spend more time than should
be in VM1. As a result, all the computations in VM1 suffer
from performance degradations.

A. The Access-Time-Based Memory Testing

To detect any SLA violation on VM resources, the key is
to design effective testing programs for different resources
according to their usage characteristics. It is well-known that
the usable memory size is very important for application
performance because less usable physical memory will cause
more memory page faults and need more swapping operations
between the physical memory and the hard disk. And this
significantly increases the access/computation time, because
the hard drive access time (3 to 5 milliseconds) is much
larger than that of the physical memory (2 to 70 nanoseconds)
[19]. The access-time-based (ATB) memory testing algorithm
is exactly designed based on the above access-time difference.

Denote M as the maximum memory size that is usable by
user applications. From our experiments in Amazon EC2, the
size of memory used by all the applications in a VM is in fact
less than M in most cases. A SLA violation on memory size
will not be detected if the memory usage is not close to the
value of M . Therefore, the ATB algorithm must satisfy:

• It tries to use a memory size of (or close to) M .
• In order to defeat any cheating from the hypervisor, it

must have computations based on actual access (e.g.,
read) to the physical memory.

• The result should not be predictable by the hypervisor.
Otherwise, the hypervisor could pre-compute the result.

• The result should be verifiable by the outside TPA.
As a result, the ATB algorithm is presented below.
1) The TPA server creates an array R of size M .
2) The TPA server sets the value of each element of R (a

simple case is R[i] = i).
3) The TPA server uploads the array R to VM1, which

means that VM1 will create the array R, and set the
same value for each element.

4) When the TPA server wants to test the cloud, it generates
a random number r, and sends r to VM1.

5) After sending, the TPA server records the time t1
immediately.

6) VM1 randomly selects N array elements (details given
below), and computes the sum of the N elements. This
means that VM1 needs to read the N elements from the
physical memory. If the cloud does not allocate sufficient

physical memory, some of the array elements will not
be stored in the physical memory (but rather in the hard
disk), which will cause a much longer access time.

7) As soon as the computation is done, VM1 returns the
result (i.e., the sum) to the TPA server.

8) The TPA server records the time t2 when it receives the
result.

9) Based on the time t1 and t2, the TPA server can figure
out the computation time in VM1 (details given below),
then the TPA server can determine if the cloud actually
allocates sufficient physical memory to VM1.

There are still two issues to be further discussed in the ATB
algorithm: the selection of N random elements (step (6)) and
how to figure out the computation time in VM1 (step (9)).

In step (6), there are two trivial approaches to generate the
random indexes.

Approach #1: The TPA server generates N random indexes
and sends them to the tester in the cloud. However, the number
of indexes may be large (e.g., could be 50 millions), which
may introduce large communication overhead.

Approach #2: The TPA server generates a random seed and
sends it to the tester. The tester uses the seed and a pre-stored
function to generate N random indexes of array R. However,
the hypervisor is able to see the function (stored in physical
memory or hard drive) and compute the N random indexes
when it sees the random seed. Then the hypervisor can move
all the N array elements (corresponding to the N random
indexes) into the physical memory before the computation
starts, which makes the computation fast enough. Finally, the
TPA server will not be able to find out any SLA violation.

In order to select N random elements efficiently, our
solution uses a random number r as the index of the first
element, and determines the next index based on the value of
the current element. In general, the nth index is based on the
value of the (n− 1)th element R[n− 1]. Specifically, the nth

index is determined by the following equation:

nth index = {(n− 1)th index+
lowest k − bit of R[n− 1]} mod (S)

Where k satisfies 2k−1 ≤ S < 2k− 1, and S is the size of the
array. The lowest k-bit of the (n−1)th element R[n−1] could
be considered as a “random” number between 0 and 2k − 1.

In the above method, one has to read the value of the (n−
1)th element, in order to generate the nth index. If a malicious
CSP wants to cheat, it will be very costly to generate all the
indexes using the above method, because the method requires
the hypervisor to read all the N elements, which is equivalent
to our test. And if some of the N elements are not in the
physical memory, it will take much longer time to complete the
index generation, which makes any cheating of the hypervisor
detectable.

In step (9), the test time ∆t = t2 − t1 includes the Round
Trip Time (RTT) between the TPA server and VM1, plus the
computation time of the test in VM1. However, the RTT may
have some variations, which is a noise to the measurement.

780

TABLE I
COMPARISON OF EXECUTION TIME WITH FULL AND PARTIAL MEMORY

ACCESS.

Sample Rate ∆tfull(s) ∆tpartial(s) ∆tpartial/∆tfull
1/10 0.622 7.648 12.296
1/20 0.314 3.824 12.178
1/30 0.213 2.554 11.991
1/40 0.160 1.925 12.031
1/50 0.129 1.552 12.031

1/100 0.068 0.778 11.441
1/200 0.036 0.389 10.806
1/500 0.017 0.156 9.176

1/1000 0.011 0.079 7.182

According to the measurement results [14], the RTT of four
major CSPs (Amazon, Google, Microsoft and Rackspace) is
less than 200 milliseconds. Therefore, the effect of the RTT
noise can be reduced as follows. If the computation time is in
the order of several seconds, the variation of the RTT will not
affect our decision (i.e., whether there is a SLA violation).

B. Experiments

The real experiments were performed at Harbin Institute of
Technology to evaluate the effectiveness of the access-time-
based algorithm in a small cloud where XEN [20] was used as
the hypervisor. There are two scenarios: (1) the cloud allocates
the full memory size as specified in the SLA; and (2) the cloud
allocates less memory than that specified in the SLA. The
results are reported in Table I, where the sample rate refers to
the rate of sampling the array R (for example, a sample rate
of 1/10 means the algorithm randomly selects 1/10 elements
from the array). The sample rate is used to control the number
of elements to be accessed, which in turn controls how large
the computation time will be. ∆tfull is the test time recorded
under scenario (1) (i.e., full memory access); and ∆tpartial
is the test time recorded under scenario (2) (i.e., with 50%
memory access and 50% hard drive access).

Each test was run five times to eliminate the random
influences from other applications in the VM. Table I shows
the big difference of the execution time between the full-
memory access and the partial-memory access. The partial-
memory access time is about 7 to 12 times of the full-
memory access time. Table I also indicates that the length of
the computation time can be adjusted by varying the sample
rate. When the sample rate is 1/50, the difference between
∆tfull and ∆tpartial is larger than one second. Given that
RTT is less than 200 milliseconds, all the tests with sample
rate higher than 1/50 are able to detect if full physical memory
is available (i.e., if SLA is satisfied). The actual RTT in our
experiments is less than one millisecond. In general, if there
is a big gap between the two times ∆tfull and ∆tpartial, the
ATB algorithm is able to verify whether the CSP allocates
sufficient memory to the VM.

The effectiveness of the ATB algorithm is also studied
when a cloud performs different levels of cheating. The level
of cheating refers to the percentage of memory that is not
provided to the VM. A small percentage of memory cheating

TABLE II
COMPARISON OF EXECUTION TIME FOR DIFFERENT PERCENTAGES OF

MEMORY CHEATING (SAMPLE RATE = 1/100).

Percentage of
∆tfull(s) ∆tpartial(s) ∆tpartial/∆tfullMemory Cheating

50% 0.068 0.778 11.441
40% 0.089 0.440 4.944
30% 0.053 0.324 6.113
20% 0.083 0.279 3.361
10% 0.080 0.186 2.325

TABLE III
COMPARISON OF EXECUTION TIME FOR DIFFERENT PERCENTAGES OF

MEMORY CHEATING (SAMPLE RATE = 1/10).

Percentage of
∆tfull(s) ∆tpartial(s) ∆tpartial/∆tfullMemory Cheating

50% 0.624 7.683 12.313
40% 0.889 4.387 4.935
30% 0.517 3.693 7.143
20% 0.827 2.765 3.343
10% 0.790 1.853 2.346

may not be easily detected because it only causes small
performance degradation for the user. The results are given
in Table II for various percentages of memory cheating where
the sample rate is 1/100.

Table II gives the execution time for different memory
cheating percentages, varying from 50% to 10%. As expected,
the smaller the cheating percentage, the less the difference
between the two access times. When the cheating percentage
is 50%, the partial-memory access time is about 12 times of
the full-memory access time. However, when the percentage
is 10%, the difference becomes smaller, only 2.33 times or
106 milliseconds.

By using a high sample rate, the ATB algorithm is able to
detect even a small percentage of memory cheating. Table III
presents the results when the sample rate is 1/10. Even for
the 10% memory cheating, the difference between ∆tfull and
∆tpartial is more than one second, which is large enough to
verify a memory cheating (a SLA violation).

C. Security Analysis

For the access-time-based memory testing algorithm, a
possible cheating is to migrate the VM to another machine that
has sufficient physical memory when a CSP detects such a test.
However, according to [21] and [22], even at a fast bandwidth,
a VM migration takes 5 - 10 seconds with 0.3 - 1.5 seconds
downtime. In contrast, the ATB algorithm takes less than 0.9
seconds to complete (for full memory access). Hence, a VM
migration can be detected due to the large migration delay. It
is normal that a cloud is allowed to migrate VM when some
resource at a machine is running out. However, if a cloud
always migrates a VM when it is being tested by the TPA, it
is a strong indication of cloud cheating.

A malicious cloud may launch other attacks on the ATB
algorithm. For example, if a cloud does not allocate enough
memory, it may use only array elements in the physical
memory for the computation during a test. However, this attack

781

can be easily defeated because the wrong computation result
will be verified by the outside TPA server that knows the
correct result. To sum up, our memory testing algorithm can
defeat various cheating/attacks from an untrusted cloud.

VI. CONCLUSION

In this paper we propose a flexible and scalable framework
that leverages a third party auditor for cloud SLA verifica-
tion. Under the framework, an effective testing algorithm is
designed to detect a SLA violation on VM physical memory
size. The access-time-based memory testing algorithm utilizes
the difference of the access time between physical memory
and hard drive. The real experimental results demonstrated
that the algorithm can effectively detect SLA violations on
VM physical memory size in the cloud. Also, it is shown that
our algorithm can defend various attacks from a malicious
cloud.

ACKNOWLEDGMENT

This research is supported by the National Basic Re-
search Program (973 Program) of China under Grant
No. 2011CB302605, the National High-Tech Development
863 Program of China under grants No. 2011AA010705,
2012AA012506 and 2010AA012504, the National Natural
Science Foundation of China under grants No. 60903166
and 61173145, and by the US National Science Foundation
(NSF) under grants CNS-0963578, CNS-1022552, and CNS-
1065444.

REFERENCES

[1] Opencrowd cloud taxonomy, [Online]. Available: http: www.opencrowd
.com/views/cloud.php

[2] Amazon EC2, [Online]. Available: http://aws.amazon.com/ec2
[3] Google App Engine, [Online]. Available: http: www.google.com/enterp

rise/appengine
[4] IBM Cloud, [Online]. Available: http://www.ibm.com/cloud-computing

/us/en
[5] Microsoft Azure, [Online]. Available: http://www.microsoft.com/win

dowsazure
[6] Amazon EC2 Instance Types, [Online]. Available: http://aws.amazon.

com/ec2/instance-types
[7] A. Shaikh and A. Greenberg, “Operations and management of IP

networks: what researchers should know,” ACM SIGCOMM Tutorial
Session, 2005.

[8] J. Martin and A. Nilsson, “On service level agreements for IP networks,”
Proceedings of the 21st Annual Joint Conference of the IEEE Computer
and Communications Societies, pp. 855-863, 2002.

[9] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
National Institute of Standards and Technology, 2011.

[10] I. Brandic, V. C. Emeakaroha, M. Maurer, S. Dustdar, S. Acs, A. Kertes,
and G. Kecskemeti, “LAYSI: A layered approach for SLA-violation
propagation in self-manageable cloud infrastructures,” Proceedings of
34th Annual IEEE Computer Software and Applications Conference
Workshops, pp. 366-370, 2010.

[11] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Multi-objective mon-
itoring for SLA compliance,” IEEE/ACM Transactions on Networking,
vol. 18, issue. 2, IEEE Press: NY, USA, pp. 652-665, 2010.

[12] R. Serral-Gracia, M. Yannuzzi, Y. Labit, P. Owezarski, and X. Masip-
Bruin, “An efficient and lightweight method for Service Level Agree-
ment assessment,” Computer Networks, vol. 54, issue. 17, Elsevier: New
York, NY, USA, pp. 3144-3158, 2010.

[13] G. Wang and N. T. Eugene, “The impact of virtualization on network
performance of Amazon EC2 data center,” Proceedings of the 29th IEEE
Conference on Computer Communications, pp. 1163-1171, 2010.

[14] A. Li, X. Yang, S. Kandula, and M. Zang, “CloudCmp: comparing
public cloud providers,” Proceedings of the 10th Internet Measurement
Conference, ACM: New York, NY, USA, pp. 1-14, 2010.

[15] S. Goldburg, D. Xiao, E. Tromer, B. Barak, and J. Rexford, “Path-
quality monitoring in the presence of adversaries,” Proceedings of the
2008 ACM SIGMETRICS on Measurement and Modeling of Computer
Systems, ACM: New York, NY, USA, pp. 193-204, 2008.

[16] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“HyperSentry: enabling stealthy in-context measurement of hypervisor
integrity,” Proceedings of the 17th ACM Conference on Computer and
Communications Security, ACM: New York, NY, USA, pp. 38-49, 2010.

[17] Trusted Computing Group, [Online]. Available: http://www.trusted com-
putinggroup.org

[18] IPMI - intelligent platform management interface specification
v2.0, [Online]. Available: http://download.intel.com/design0/servers/ip
mi/IPMIv2 0rev1 0.pdf

[19] Hard Disk Drive Access Time, [Online]. Available: http://en.wikiped
ia.org/wiki/Hard disk drive#Access time

[20] Xen Hypervisor, [Online]. Available: http://www.xen.org
[21] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper, “Predicting

the Performance of Virtual Machine Migration,” Proceedings of the 18th
Annual Meeting of the IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
IEEE Computer Society: Los Alamitos, CA, USA, pp. 37-46, 2010.

[22] M. Zhao and R. J. Figueiredo, “Experimental study of virtual machine
migration in support of reservation of cluster resources,” Proceedings
of the 2nd International Workshop on Virtualization Technologies in
Distributed Computing, ACM: New York, NY, USA, pp. 51-58, 2007.

782

