
Globecom 2012 - Communications OoS, Reliability and Modelling Symposium

An Effective Auditing Scheme for Cloud Computing

Ryan Houlihan, Xiaojiang Du
Department of Computer and Information Sciences

Temple University

Philadelphia, PA 19122, USA

Email: {ryan.houlihan, dux} @temple.edu

Abstract- In this paper, we present a novel secure auditing
scheme for cloud computing systems. Several auditing schemes
have been proposed for the cloud, which periodically trigger
the auditing function. These schemes are designed to monitor
the performance and behavior of the cloud. One major problem
with these kind of schemes is that they are vulnerable to the
transient attack (also known as the timed scrubbing attack). Our
secure auditing scheme is able to prevent the transient attack via
modification of the Linux auditing daemon - auditd, which creates
attestable logs. Our scheme utilizes the System Management
Mode (SMM) for integrity checks and the Trusted Platform
Module (TPM) chip for attestable security. Specifically, we modify
the auditing daemon protocol such that it records a hash of each
audit log entry to the TPM's Platform Configuration Register
(PCR), which gives us an attestable history of every command
executed on the cloud server. We perform real experiments on
two cloud servers and the results show that the overhead of our
scheme is very small.

Keywords-Cloud computing; performance; auditing

I. INTRODUCTION

Virtualization of a machine allows us to run several operat
ing systems at the same time on one system. Each operating
system is run on its own Virtual Machine (VM) which allows

for great flexibility. We can efficiently use the best "tool"
for the job as well as allow for things such as testing and
debugging to be done for multiple operating systems without

constant rebooting. Cloud computers implement this virtu
alization technology and are becoming increasingly popular.
A major problem that cloud providers are facing is how to
provide better security to their clients.

These virtual machines are managed by a Virtual Machine
Monitor (VMM) which is also known as a hypervisor. A

hypervisor is a piece of software that manages the hardware
for multiple VM's on a given system. It is the most privileged

piece of software on the system and thus a breach in the

integrity of the hypervisor results in a breach in the integrity of
the entire system. Thus, hypervisors should be well-protected

and contain a minimal code base. This, however, is not the case
since hypervisors do have security flaws and hypervisor based
security approaches are not sufficient to ensure the integrity

of a system.

An example of this is Xen Hypervisor [12] which is used
in systems such as Amazon's Elastic Compute Cloud (EC2)

[16]. In recent attacks (eg. [1]) Xen [12] has been shown to be
vulnerable to runtime attacks that allow data and code to be
modified by malicious users. For cloud computers to become

more viable, an attestiable hypervisor must be implemented to

give possible clients peace of mind.

A. Related Work

Protection of the highest privileged software on a system is
essential to provide integrity of the system. Many approaches

attempt to integrate a higher privileged software level such as
higher privilege hypervisors and micro-kernels. This is not an

efficient solution to the problem since you once again must

protect the new highest privileged software.

1) Hyperguard [l} and Hypercheck [2]: Both rely on the
System Management Mode (SMM) which provides hardware

protection for the integrity measurement code. Both frame

works alert the hypervisor before an integrity measurement
leaving them vulnerable to the scrubbing attack where the
hypervisor cleans up traces of an attack before the integrity
measurement is started. Neither solve the technical problems
associated with using SMM.

2) Copilot [3]: This scheme employs a PCI device which is

used to poll the physical memory of the host and periodically
send it to an administration station. A semantic gap between

the code running on the PCI device and the running system
on where PCI device resides. In result, Copilot cannot access

the CPU state (CR3 Register). There are also existing attacks
that can prevent copilot and any other PCI RAM acquisition

tool from correctly accessing the physical memory using the
hardware support of protected memory ranges. [5]

3) Flicker [4]: Employs a TPM based method to provide
a minimum Trusted Code Base (TCB), which can be used
to detect the modification of the kernel. It requires advanced
hardware features such as Dynamic Root of Trust Measure
ment (DRTM) and late launch. The scheme is also directly
vulnerable to the scrubbing attack because the measurement

target is responsible for invoking the integrity measurement.

4) Hypersentry [6]: Relies on a TCB composed of hard
ware, firmware and a software component properly isolated

from the highest privilege software. An out-of-band channel
is used to invoke a System Management Interrupt (SMI) on the

target platform to trigger Hypersentry. An Intelligent Platform
Management Interface (lPMI) is used to establish this out

of-band channel. The integrity measurement agent resides in
the SMM. The framework presents novel techniques to set
the CPU to the required context and provide a verifiable
and protected environment to run a measurement agent in

the hypervisor context. Hypersentry cannot, however, handle

978-1-4673-0921-9/12/$31.00 ©2012 IEEE 1599

transient attacks where the adversary may cause harm and then
hide its traces.

B. Our Contributions

We present a framework using some features of Hypersentry
[6] while providing a simpler and easier implementation. We
contribute a more extensive framework for the requirements
of the in-context integrity measurement code as well as pre
ventative measures for transient attacks. This particular attack
is a serious flaw of Hypersentry [6] and all other integrity

verification tools that rely on periodic invocations (eg, [1]-[3]).
A transient attack is defined by an attack in which a malicious

user may cause harm, such as stealing data, and hiding its

traces before an integrity measurement is run. Similar to

Hyperguard [1], Hypercheck [2] and Hypersentry, [6] we use
SMM as secure storage for our integrity checking software.
Hypersentry [6] relies on the Trusted Platfonn Module (TPM)
and hashes the SMI handler into one of the Trusted Platform
Modules (TPM) Platform Configuration Registers (PCR) at

initilization. We instead send all logs, encrypted with a dis

tributed public key, to a local external computing system. Log
verification is assured if the hash of the encrypted log and SMI

Handler are equal to their stored encrypted hash. The message
sent consists of the hash of the message itself, the encrypted

log file, the log file hash signed by the TPM, and the hash of
this SMI handler. These are all again encrypted with the nonce

and public key to assure freshness. The nonce is sent to the
cloud system from our external integrity checking system as an

SMI is initialized. The encrypted logs are created as shown in
(Fig. 1). This helps to greatly reduce the overhead induced on
the system and instead puts the work onto the external system.

To prevent transient attacks we audit the entry into every call
of sys_execveO, encrypt the audit info with the public key and

extend a hash in the PCR register. This will prevent any of the
log files from being modified without our knowledge due to a

scrubbing attack before the integrity measurement can be run
again. This keeps the system overhead to a minimum while

offering maximum security benefits.

SMM Message

E(r) -.K.y.-Audit Log)
E(ry �K",�AIK�PCR Hash)
E(ry �K,��SMM Code Hash)

Final SMM Message

E(ry �K.,.�Audit Log)
E(ry �K.,,�A1K�PCR Hash)
E(ry �K.,.�SMM Code Hash)

E(ry �K".�SMM Message Hash)

Fig. 1. Integrity measurement message

II. THRE AT AND SYSTEM MODEL

A. Threat Model

We focus on an efficient and stealthy measurement frame

work with out of context integrity checking. We focus on

continuous integrity threats where our framework will detect
persistent and non-persistent changes in the system. This ef

fectively prevents "transient attacks" and "scrubbing attacks".
Scrubbing is the process of a malicious user removing their
traces from your system logs, effectively erasing their history.

B. Capabilities of Malicious Users

The malicious user can exploit any vulnerabilities in the
system after bootup, including the Hypervisor, Xen [12], and
all of its Virtual Machines (VMs). Arbitrary commands can

be executed in Domain 0, the highest privileged level, via

a grub.conf file [iO]. Malicious users have the capability to

modify code and data of Xen [12] by unauthorized DMA at

tacks [11]. Wotjczuk demonstrates such an attack by hijacking
a network card to perform an unauthorized DMA to the Xen
[12] hypervisors context. Once in this context, a malicious
user can read, write, delete data and access the system log

files such as Pacct and syslog.

C. System Model and Assumptions

We assume that our scheme is run on a system that supports

numerous capabilities. This includes an out-of-band channel to

remotely trigger an SMI via the General Input Port 0 (GPIO)
which in our case is an embedded micro-controller, namely the

Baseboard Management Controller (BMC). We also assume
that the system is equipped with TCG's Trusted Platform

Module (TPM) [13] in order to provide secure boot via the
Core Root of Trust for Measurement (CRTM) as well as secure

storage for the log file hashes via the PCR. The CRTM is an

extension of the BIOS which will be initalized first, measure
parts of the BIOS block, and then pass control back over to the

BIOS. Once the BIOS, bootloader, and OS kernel run and pass
control to the OS, the expected configuration by examining the

TPM's Platform Configuration Register (PCR). Any change to
the code between CRTM and the OS running will result in an

unseen PCR value. The SMRAM is to be properly setup by
the BIOS at boot time and to remain tamper-proof from cache

poisoning attacks as in [7], [8]. To prevent these attacks, proper
hardware configurations, such as System Management Range

Register (SMRR) [9], should be used.

III. THE AUDITING SCHEME

The following is our continuous auditing scheme for cloud
computers. There are two requirements we must fulfill for an

attestable system. First, our scheme must log every execution
of the system before the execution can take place. Second,
we must securely store a history of these logs to provide
attestability of our system. Please see (Fig. 2) to examine the

summary of our schemes execution cycle.

A. Pre-Filled Requirements

Secure invocation of our integrity code into SMRAM is
provided by HyperSentry [6] framework. The first General

Purpose Input port (GPI 0) provides us with an architecture
to invoke a System Management Interrupt (SMI) as well as

run our integrity check initialized by our external system

1600

through an out-of-band channel as described in HyperSentry
[6]. We use an Intelligent Platform Management Interface

(IPMI) to communicate with the BMC but any out-of-band
channel will work. By clearing the EFLAGS register and

modifying the Interrupt Descriptor Table (IDT) we can insure
a non interrupted System Management Mode (SMM) from

both Maskable and Non-Maskable Interrupts (NMI).

PCR's have the requirement that they can only be extended

and not over written. Thus the only way to modify a PCR is
by the following TPM operation:

PCRExtend(index, data)
When PCRExtend is invoked on the TPM it updates the

PCR with the SHA-l hash of the previous value of the PCR
concatenated with the data provided, where data must be a

20 byte hash. The TPM, thus, performs the following update:
SHA-l: PCR := SHA-l(PCR + data)

This operation provides assurance that no malicious user can

modify the contents of the PCR to pass our authentication test,
providing tamper proof evidence of a scrubbing attack. Linux

provides an auditing system whose user space component,
auditd(8) [15] the auditing daemon, can be used to audit

all aspects of the kernels life-cycle. The letc/auditfaudit.rules
contains a set of rules loaded into the kernels audit system.
Through modification of this file we can have extensive audit

ing control over every system call. Using the (entry,always)
option we are able to audit the entry into any system call
before the actual system call happens. When any program is

executed in the system it initially makes a call to:

long sys_execve(canst char _user *,
canst char _user *const _user *,
canst char _user canst _user *,
struct pCregs *)

This inturn calls:
extern int do_execve(const char *,

canst char _user * canst _user *,
canst char _user * canst _user *,
struct pCregs *)

which is responsible for the actual execution of execO. How
ever, before sys_execve() actually runs do_execve() a call to

char *getname(const char _user * filename)
is made which inturn calls:

void _audit....getname(canst char *name)
The call to _audit....getname() adds a name to the list of audit

names for the given context. Thus, by using the auditd(8) [15]
daemon, we fulfill our requirement to log every execution of
the system before the execution can take place. This in itself

does not yet fulfill the requirement for our system to be tamper
evident.

B. Attestable Auditing

To provide tamper evident logging a modification to the

_audit....getname() function is required. This function, as
previously mentioned, is executed before the corresponding

command is issued auditing several aspects of the given
command. In modifying _audit....getname() we can fulfill our

requirement for a tamper evident system. We found two very

similar approaches to this problem, one adds a little more
execution time but added security and one with no added

execution time and less security. Even so, both are more then
secure enough to prevent even the most adamant attacker from

perfonning a transient attack.

Encrypted
Response

Nonce

External
Attestation

System

Nonce

Cloud System

Fig. 2. Attestation process of our scheme which uses a remote integrity
verification system to assure the integrity of a target system

Both approaches require that an audit context entry must be
created and securely stored to provide assurance that the logs

were not modified in anyway. For systems with predictable
execution cycles, both approaches require that at secure boot

a randomized entry is added to the beginning of the auditing
log. This entries hash is then added to the PCR. This additonal

requierment prevents a malicious user from erasing the entirety

of the log file and replacing it with a predicted system
execution and then rehasing the entirity of the PCR to match

this new value.

In our first approach we encrypt the aforementioned audit
log entry with the kernels public key Ksys to create a encrypted
audit context entry Ksys(audit). The corresponding private

key K';-y1s is stored on the external attestation agent and thus
unaccessible to anyone who breeches the security of the

cloud system. The encrypted log entry Ksys(audit) will be
added to the audit name list as usual. The data must then be

extended into the PCR. As previously mentioned, any data to
be extended must be 20 bytes, which would exceed the size

of the encrypted audit entry Ksys(audit) .

Therefore, we must take a hash of the encrypted audit con

text using SHA-l which would produce Hsha- dKsys(audit)]
which is 20 bytes long. Our encrypted audit entry hash is

then extended to the PCR register and the encrypted audit
entry is scheduled to be appended to the auditing log at the

systems convenience. For consistency with our PCR stored
hash the audit entries must be scheduled and added in a definite
order, namely the order in which there corresponding hashes

were extended to the PCR. The encrypted audit entry does not
have to be added to the log immediately because even if the

malicious user prevents the entry from being appended to the
log file we will, in our PCR register, have a history that there

is a missing entry. This also saves us fTom unnecessary system
overhead invoked by our scheme.

Our second approach is very similar to the first approach
except for one minor detail; we delay the encryption of the

audit log entry. We create a SHA-l hash of the raw audit entry,
Hsha- l(audit), and then extend this hash to the PCR register.

Once the extension is complete we schedule the audit entry

1601

to be encrypted and appended to the log entry. This must, as
before, be done in order to provide consistency. As in the first

approach if a malicious user prevents the addition of the log
entry to the log file we will have, in the peR register, a history

that there is a missing entry.

Using the security and attestability of the peR register and
the existing Linux auditing daemon we have designed a secure

auditing protocol that gives us attestation to each auditing log
entry. For the remainder of the paper we will assume the first

approach has been implemented. Regardless, all aspects of
the scheme can be easily modified to work for the second

approach.

C. SMM Measurement Message

After an SMI is generated using an out-of-band channel
the system enters SMM which runs the measurement agent

stored in the SMRAM. The integrity measurement agents

responsibility is to deliver a encrypted message, E[Msmm],
to the external integrity attestation system. In SMM the mea

surement agent retrieves the following four items: KsysCLog) ,
Hsha-dKsys(Log)],ry, Hsha-lCSMM). The public key, Ksys, T

encrypted log file KsysCLog) = L KsysCaudit)i where T
i=Tprev

is the total number of audit entries and TpTev is the total

number of audit entries as of the previous integrity verification.
This means we only copy over new additions to the log file

since the last auditing session. This saves us valuable system

overhead with each integrity verification since we already
have the info before Tprev on the external attestation agent

and thus there is no need to copy it over again. If it was
modified, our integrity check will alert us since we still have

the hash of all the each auditing entries, Hsha-l [KsysCaudit)],
for verification. Hsha-dKsysCLog)] is the resulting hash stored
in the peR which is the sum of the extensions of all of
the Hsha-dKsysCaudit)]. Before the hash is transferred to the

SMM context the TPM signs the register with its Attestation
Integrity Key CAlK) and the nonce, 'f/, sent by the External

Integrity Attestation System. The first encryption is used to

acknowledge the integrity of the contents of the register, the
second to guarantee freshness of the response from the TPM.

The nonce, 'f/, is also sent by the External Integrity Attestation
System to the SMM context to guarantee freshness of the

measurements response. Finally, Hsha-1CSMM), is the hash
of the measurement code which is executed by the SMI and

stored in the SMRAM itself.

The measurement agent encrypts Hsha-l CSMM) with
Ksys and 'f/ to create E[Hsha-l (SMM)]. KsysCLog) and
Hsha-l [Ksys(Log)] are also encrypted with 'f/ to form

E[Ksys(Log)] and E[H[Ksys(Log)]]. The SMM message is
then constructed as M = {E[Ksys(Log)] I E[H[Ksys(Log)]]
I E[Hsha-l(SMM)]}. A hash of M is then taken, called
Hsha-1(M), and appended to the end of M creating a new mes

sage MSMM. The final message is MSMM = {E[Ksys(Log)]
I E[H[Ksys(Log)]] I E[Hsha-l(SMM)] I Hsha-lCM)}. This is

encrypted with Ksys and 'f/ to form E[MsM M] which is our

final encrypted message. This message is now ready to be sent
to the External Integrity Attestation System for verification.

D. Attesting to Measurement Output

On the External Integrity Attestation System we have stored
the encrypted system logs up to KsysCLog)Tprev' the hash of

the audit entries up to Hsha-l [Ksys(Log)]Tprev' and the hash of
the measurement agent code HSha-1 CSMM). The stored system

log is represented as KsysCLog)Stored, the stored hash is rep
resented as H[KsysCLog)]Stored and the stored measurement

code hash is H(SMM)Expected. These are used for attesting
to the information received from the cloud system along with

the SMM measurement message MSM M. The authentication

system receives E[MsM M] from the cloud and proceeds to
decrypt the message using the private key, K,;:}s, as well as the

nonce, 'f/, which results in MSMM. Once MSMM is obtained
we break the message back up into two parts, Hsha-l(M) and

M.
The hash of the message, HCM) Actual, is calculated and

compared with the received hash Hsha-lCM). If Hsha-lCM)
!= H(M)Actual, the message was tampered with and we have
a security breach. If the message's integrity is assured we
proceed to decrypt the remaining three items E[KsysCLog)],
E[H[KsysCLog)]], E[Hsha-lCSMM)]. First E[Hsha-l(SMM)]
is decrypted using K';:y1s. We then check for freshness by de

crypting with 'f/ and check for integrity assurance of the TPM
by decrypting with the AIK which produces Hsha-1CSMM).
Next, we compare Hsha-1CSMM) to the expected value of
the measurement code hash, HCSMM)Expected. If they are

equivalent, this verifies the SMM measurement code has not
been altered by an SMM attack.

After the message, M, and the measurement agent on the
cloud system are verified, the rest of the attestation process can

take place. E[KsysCLog)] and E[H[KsysCLog)]] are both de
crypted with 'f/ to form Ksys(Log) and H[Ksys(Log)]. We must

update Ksys(Log)Stored with the new log entries by appending
KsysCLog) to KsysCLog)Stored. Now for T - Tprev KsysCaudit)
added to KsysCLog)Stored from KsysCLog) we hash these
KsysCaudit) into our stored log hash, H[Ksys(audit)]Stored. If

the newly computed H[KsysCaudit)]Stored is equivalent to the
H[KsysCLog)] transferred in the measurement message then
we are assured that our systems integrity is not compromised.
If the opposite is true, we are alerted that undefined and po
tentially malicious behavior has occurred and the appropriate
damage control measures can put into place.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

Our experiment consisted of three distinct parts to approx
imate the system overhead invoked with this framework. We
tested the time it takes to sign the auditing output with the
public key stored by the kernel, the time it takes to create a

20 byte hash of the public key signed auditing output, and the
time it takes to extend the 20 byte hash to a peR register.

This will give us a good idea of the system time overhead
invoked by our scheme since these are the only modifications

done to the kernel itself. They will also be executed at the

1602

Command

cat Ivar/loglmessages

netstat -tupl

uname -a
Is -Ia

Execution Time in Ticks

ca I fvar/loglmessages

nets'at -tupl ___________________ S'· 57E+OO8

uoame -a

Is -la

ps .82E-+-OO7
ps

peR Extend Execution

SHA-I

1.46E-+{)07

2.57E-+{)08

1.33E-+{)07

2.2\ E-+{)07

6.82E-+{)07

3.15E-+{)07
2.92E-+{)04
1.12E-+{)07

PCR Extend Execution •••

512 Bit RSA
SHA-l

512 Bit RSA

O.OOE+OOO 5.00E+OO7 1.00E+OO8 I.50E+OO8 2.00E+OO8 2.50E+OO8 3.00E+OO8

Ave.rage TIcks Per Execution o�r 10,OO(J Trials

Fig. 3. Secure logging of all calls to execve. The results are measured in ticks over 10,000 tests whereas ticks are machine-dependent cycle counters [20].
All stages of the peR extension are combined to give the execution time of the overall extension process.

beginning of any execution by all users at any privilege level,
thus invoking the most overhead.

A. Testing Setup

All our experiments were run on a Dell PowerEdge T41O.
This system is equipped with 32 GB of DDR3 RAM running

at 1066 MHz, 2 Quad core Intel Xeon E5620 processors
clocked to 2.40 GHz and three 150 GB Western Digital Raptor

hard drives running at 10,000 RPM. The system runs CentOS
5.7 x86_64 with the Xen Linux kernel 2.6.18-274.17.1. We

used TrouSerS TSS 1.1 [19] open-source Trusted Computing
Group (TCG) Software Stack to implement the PCR extension

process.
First our program took in audit log entries replicating files

that would saved by the auditing system before the invocation

of a call to execveO. This line is then encrypted with our
generated public key using a 512 bit RSA encryption algorithm

[18]. Once the 512 bit encrypted auditing entry is produced

we create a 20 byte hash using the SHA-l hashing algorithm
[14]. This 20 byte hash is then extended to the PCR register,

by PCR := SHA-l(PCR + data), where the data is our the
auditing log hash. The PCR extension consists of four parts.

Initially we must create the Trusted Service Provider Interface
(TSPI) context. After this context is created we must open a

connection with the context. Once a connection is initialized
with the TSPI context we can call on it to initialize a TPM

object. The TPM object has functionality which allows us to
extend to a PCR of our choosing.

This experiment sufficiently replicates the added execution

overhead during the execution of any call to sys_execve().
To complete our analysis we benchmarked the time to ex
ecute various shell commands such as Is which calls ex
ecve("/binlls", {"Is"}, (/ * 39 vars *1]) and cat which calls ex
ecve("lbinlcat", {"cat"}, (/ * 39 vars */}). The overhead of our
scheme was then compared to the total execution time of these
shell commands. This resulting value is a good approximation

of the total overhead invoked on the system. Benchmarking of
many other aspects of our framework was roughly performed

by Hypersentry [6]. They found the system overhead for an

auditing framework based off of SMM integrity measurement
to be in an acceptable range of 2.4% system overhead if an

integrity check is done every 8 seconds, and 1.3% if invoked

every 16 seconds.

B. Overhead of Auditing

As shown in (Fig. 3) the entire PCR extension process
adds about a 237% overhead to a call to uname -a, or 140%

overhead on a call to Is -Ia. For calls like ps, it only invokes
46% overhead and for something like netstat -tupl, it only

invokes a 12.3 % overhead. Typically on cloud systems large
computations are done and the overhead invoked on something

like netstat -tupi is more reasonable to the length of jobs
run daily on a cloud system. The 512 Bit RSA encryption

takes about 84% as long as a call to uname -a, 51 % as

long as a call to Is -la, 16% overhead on ps, and only about
4.4% overhead on a call to netstat -tupl. The SHA-l hash

algorithms' contribution to the overhead is negligible with a
run length of 0.014% of that of netstat -tupl.

The total execution time of the PCR extension process is
on average 3.15 x 107 ticks. As shown in (Fig. 3) creating the

initial TSPI context takes 0.187% of the total execution time
and is thus insignificant to the overall overhead. Connecting

to the TSPI context took quite a bit longer and averaged at

9.62% of the total extension process. Creating the TPM object
took the least amount of time at only 0.021 % of the total

overhead of the extension process. The PCR extension itself
took by far the most amount of time in regards to the overall

extension process. It took on average, 90.16% of the overall
PCR extension process just to write to the PCR register. Thus

we saw no ways of improving the implementation speed unless
the PCR extension itself was further optimized.

We can combine the PCR extension process, SHA-l, and

the 512 bit RSA encryption to get a good idea of the total
overhead invoked by the system. The PCR extension process

takes 73.7% of the total execution time, the SHA-l takes only
0.068%, and the 512 bit RSA encryption takes 26.2%. En

cryption with the 512 Bit RSA can also be eliminated entirely

1603

Gt /VarAo¢r>r!ssagf5
Command Execution Time in Ticks

cat Ivarlloglmessages 1.46E+OO7
nEtstat ·tu pi 1 .. ············.·········2.57E+006

netstat .!Upl 2.57E+OO8 unarre -a

una me -a 1.33E+OO7 Is·la

Is ·Ia 2.2 I E+OO7 ps .82E<007
ps 6.82E+OO7

Tspi_ TPM_PcrExtend 2.&lE<007
TSPI Context Get TPM 6.59E+OO3

Object Tspi _ Coot9Ct GetTprrOq e:1 .59E�003
TSPI Context Connect 3.03E+OO6 T!PLCa1text Coone:1 a03E+006
TSPI Create Context 5.88E+OO4

T spi _ O"eate_ Context .8IE<004
PCR Extend Total 3.15E+OO7

SHA·I 2.92E+OO4 SHA·l .92E .. OO4

512 Bit RSA
. _ - - - - - - - - _ . _ . _ . _ - - - _

I. 1 2E+OO7
- - _ . _ . _ . _ . _ -- _ .. . _ -

512 Bit RSA

0.00:+000

1.12E+007

5.00:+007 1.00:+008 1.50E+OO8 2.ooE+008 2.50E+008 aooE+008

A .. rage TICbPar Execulllon oV&' 10,000 Trials

Fig. 4. Secure logging of all calls to execve. The results are measured in ticks over 10,000 tests whereas ticks are machine-dependent cycle counters [20].
Each part of the PCR extension is individually broken up. The PCR extend function itself produces the most overhead for the PCR extension process.

without any negative contribution to the overall security of the
system and also save us 26.2% overhead.

This occurs beacause an attacker who enters our system
and wants to run a transient attack would first have to erase
their history from the auditing logs. They would then build a

hash that when extended to the PCR register, produces a hash
that would correspond to our auditing logs after the removal

of their entries. A typical interval between attestation checks
would be approximately 8 seconds to 16 seconds, thus giving
any attacker only that amount of time to rehash the PCR before

their malicious actions would be detected and the history of
their attacks moved onto the external attestation agent. It is

currently unfeasible for an attacker to calculate the appropriate
hash the PCR should contain after the removal of their attack

history and then rehash the PCR to reflect this value in the
allotted time. Further, the audit entries might not be stored

before the users code will be run, thus making their produced
hash incorrect. The fact that a malicious user does not have
access to the private key, Ksys, makes it impossible for this

user to create a viable hash and thus unable to use the real
log entries to create a new hash.

V. CONCLUSION

Due to an increased interest in the use of cloud computing,

providing accountability to the corporate clients has become a

critical component of the value proposition offered by cloud

providers. In this paper, we presented an effective scheme that
provides fully attestable auditing for cloud computing system.

Different from the existing auditing schemes, our scheme is
capable of preventing the transient attack. We achieved this

by modifying the existing Linux auditing daemon as well as
making use of existing software and hardware. Our scheme

can provide clients with greater assurance and trust in cloud
computing services. We performed real experiments on two

servers, and the results showed that the overhead of our scheme

is small.

ACKNOWLEDGMENT

This research was supported in part by the US National

Science Foundation (NSF) under grants CNS-0963578, CNS-

1002974, CNS-1022552, and CNS-1065444, as well as the US
Army Research Office under grant W91lNF-08-1-0334.

REFERENCES

[1] R. Wojtczuk and J. Rutkowska. "Xen Owning trilogy". Proc. Black Hat
conference, 2008.

[2] J. Wang, A. Stavrou, and A. K. Ghosh. "HyperCheck: A hardware
assisted integrity monitor." Proc. of the 13th International Symposium
on Recent Advances in Intrusion Detection (RAlDIO), September 2010.

[3] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. "Copilot - a
coprocessor-based kernel runtime integrity monitor." Proc. of the 13th

USENIX Security Symposium, p 13, 2004.
[4] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. "Flicker:

an execution infrastructure for TCB minimization." Proc. of the ACM

European Conference on Computer Systems (EuroSys), MarchlApril
2008.

[5] J. Rutkowska. "Beyond the CPU: Defeating Hardware Based RAM
Acquisition Tools." Blackhal, February 2007.

[6] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, N. C. Skalsky.
"HyperSentry: Enabling Stealthy In-context Measurement of Hypervi
sor Integrity." Proc. of the 17th ACM Conference on Computer and

Communications Security, pp. 38-49, 2010.
[7] Duflot "Getting into the SMRAM: SMM reloaded" Proc. of the 10th

CanSecWest conference, 2009.
[8] R. Wojtczuk and J. Rutkowska. "Attacking SMM memory via Intel CPU

cache poisoning." Invisible Things Lab, 2009.
[9] I. Corporation. Software developer's manual vol. 3: System program

ming guide, June 2009.
[10] MITRE. Cve-2007-4993.
[11] R. Wojtczuk. "Subverting the Xen hypervisor." Invisible Thing Labs,

2008.
[l2] P. Barham, B. Dargovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, A. Warfield. Xen and the Art of Virtualization.
Proc. 19th ACM Symposium on Operating Systems Principles, SOSP
2003, Bollon Landing, USA, October 2003.

[13] Trusted Computing Group. TPM specifications version 1.2.
https:llwww.trustedcomputinggroup.org/downloads/specifications/tpm,
July 2005.

[14] Department of Commerce National Institute of Standards and Tech
nology. Secure Hash Signature Standard (SHS) (F1PS PUB 180·2).

February 2004
[15] SUSE. The Linux Audit Framework. Novell, 2008. Avaliable:

http://www.suse.com
[16] Amazon Elastic Compute Cloud (EC2). http://aws.amazon. com/ec2
[17] PolarSSL. Offspark, 2011. Avaliable: http://polarssl.org/source_code
[18] RSA Lab. PKCS #1 v2.1: RSA Cryptography Standard. June 2002.
[19] TrouSerS Open-Source TCG Software Stack.

http://trousers.sourceforge.net/
[20] M. Frigo, S. G. Johnson. FFTW Version 3.3. http://fftw.org

1604

