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Abstract—Due to the unattended operation nature, nodes in 

Unattended Wireless Sensor Networks (UWSNs) are 
susceptible to physical attacks. Once a sensor is compromised, 
the adversary will be able to learn all its secrets. While some 
previous works tried to address the node self-healing issue in 
UWSNs, little effort has been devoted to ensure the 
sustainability of node self-healing. In this paper, we present a 
novel sustainable node self-healing protocol for UWSNs. We 
generate unpredictable random data for key update and thus 
the node self-healing capability doesn’t decrease when the 
number of attack rounds increases. We show both analytically 
and through simulation experiments that our protocol provides 
efficient and sustainable node self-healing capabilities with 
small overheads.  

Keywords - unattended wireless sensor networks; self-healing; 
sustainable 

I.  INTRODUCTION  
Unattended Wireless Sensor Networks (UWSNs) have 

many commercial and military applications. Different from 
traditional WSNs, an UWSN is left unattended for most of 
the time after deployment. An UWSN has a mobile base 
station (BS) that visits the network with some frequency.  

In UWSNs, the unattended feature makes nodes 
extremely vulnerable to attacks happened between visits of 
the mobile BS. An attacker may compromise nodes one by 
one, obtain their secrets and then leave the network without 
being noticed. In UWSNs, node compromise attack may 
cause severe damage to the network. First, if the node 
secrecy information is leaked, any cryptographic protocol 
that depends on the secrecy (e.g., keys) would become 
useless. Second, the attacker may decrypt and obtain 
important sensing data. Last but not least, it is easy for an 
attacker to delete data, forge data and authentication. 

Data collected from a compromised sensor may be 
classified into two categories, based on the time of 
collecting them: (1) before compromise, and (2) after 
compromise. Forward secrecy means that, even if an 
attacker obtains the sensor's current secrets, he cannot 
decrypt (or forge authentication tags for) data collected and 
encrypted (or authenticated) before compromise. Backward 
secrecy means that, an attacker who obtains the sensor's 
current secrets cannot decrypt (or forge authentication tags 
for) data after compromise [3].  

Forward security is relatively easy to obtain by key 
evolution such as hash function [6-8], which doesn’t help on 
backward security. Pietro [9] provides both forward and 
backward secrecy by using public key cryptography. 
Unfortunately, Public key cryptography is not suitable for 
WSNs due to the large computational overhead [10]. DISH 
[1] and POSH [2] achieves both forward and backward 
security by key evolution and node cooperation. In DISH, 
each node requests for random data from randomly selected 
nodes and then updates its key based on the random data 
and its current key. Different from DISH, in POSH each 
node selects some nodes as the recipients and sends a 
random data to each of them. POSH does not need to send 
extra data-request message and hence achieves much lower 
communication cost than DISH. Unfortunately, in POSH 
some nodes may not receive any random data, which makes 
the node self-healing capability not as effective as DISH.  

However, both POSH and DISH don’t consider node 
failures and message losses, which are common in real 
sensor applications. Furthermore, both POSH and DISH 
generate random data by a Pseudo-Random Number 
Generator (PRNG). A PRNG is an algorithm that starts with 
a seed - and uses some function(s) to produce a sequence of 
values that appear random [3]. If an attacker compromises a 
sensor, he can obtain the PRNG algorithm and compute all 
subsequent random values. Under this attack, a PRNG 
cannot provide backward security either. An alternative way 
to per-sensor PRNGs is to use a True Random Number 
Generator (TRNG). Compared to PRNGs, TRNGs extract 
randomness from physical phenomena and hence the 
random numbers are non-deterministic and cannot be pre-
computed. However, TRNG is only suitable for nodes 
equipped with extra hardware [4, 5]. TRNG is not suitable 
for small sensors. These challenges motivate our work.  

In this paper we propose an Efficient and Sustainable 
Self-Healing (ESSH) protocol that helps sensors recover 
from node-compromise-attack with high probability. The 
main contributions are summarized below: 
1) ESSH is effective and sustainable. ESSH is effective 

since compromised nodes can recover with high 
probability. ESSH uses random numbers obtained by 
unpredictable random data generation scheme instead 
of a PRNG. Furthermore, ESSH is sustainable as the 
node self-healing capability doesn’t decrease when the 
number of attack rounds increases.  
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2) ESSH is lightweight. ESSH uses hash functions and 
symmetric cryptography and hence it has low 
computation cost. Extensive analyses and simulation 
show that: the communication cost of ESSH is 
comparable to that of POSH; the communication cost of 
ESSH is only about 50% of DISH. 

3) ESSH performs well in unreliable UWSNs. With a 
random data compensation scheme, ESSH can handle 
real network issues, such as message losses and node 
failures. 

The remainder of this paper is organized as follows. 
Section II outlines the network and attack model. Section III 
presents the node self-healing protocol. Section IV provides 
our performance analysis. Section V gives simulation results. 
Finally, Section VI concludes this paper. 

II. NETWORK AND ATTACK MODEL 

A. Network Model 
We consider an UWSN with n homogeneous sensors. 

The unattended sensors are scattered over a region to 
execute pre-determined tasks such as data gathering. Two 
sensors can communicate with each other either directly or 
via intermediate nodes. Time is divided into rounds, and 
nodes are synchronized.  

Each node is scheduled to collect, encrypt and then store 
exactly one sensing data per round. Different from the 
traditional WSNs, the BS in UWSNs is mobile and it visits 
the network at infrequent intervals. BS is supposed to visit 
the network every e rounds. However, BS might cancel a 
visit for its safety considerations. Once entering the network, 
BS collects sensing data from each node, re-initialize secret 
seed values for each node and reset the round counter to 1. 
During the interval between two BS visits, sensors are left 
unattended and they may be attacked. 

B. Attack Model 
We consider a powerful attacker. The attacker’s goal is 

to learn as many nodes’ privates as possible while keeping 
himself unobservable. He may decrypt stored data, forge 
data and authentication using obtained keys without being 
noticed. More specifically, we consider an attacker with 
following capabilities:  
• Resource rich - The attacker has adequate computation 

capability. He can also move at will. 
• Local monitoring - The attacker can eavesdrop 

messages within its transmission range.  
• Active attack - Each round, the attacker may select g 

nodes, attack them and obtain all their privates. 
We consider an attack strategy the same as in DISH [1]. 

Each round the attacker chooses to attack g sensors that 
have not been compromised in the past. If all sensors have 
been attacked before, he chooses sensors that were attacked 
a long time ago, because with high probability these sensors 
may obtain secure privates by a self-healing protocol. 

III. THE EFFICIENT AND SUSTAINABLE SELF-HEALING 
PROTOCOL 

A. Motivation 
First, we give some definitions. 
Definition 1: A V-data is a random data that is received 

by a node for key update.  
Definition 2: A secure V-data is a V-data that is 

unknown to the attacker.  
Definition 3: An unsecure V-data is a V-data that is 

directly obtained or indirectly inferred (i.e., known) by an 
attacker. 

Definition 4: pr denotes the node self-healing capability 
in round r (r>0). pr is defined as the probability that a node 
receives at least one secure V-data in round r.  

DISH/POSH generates random data by a PRNG. Thus, 
once a node is attacked, it will never provide secure V-data. 
Recall that the attacker can infer the node’s future keys by 
the obtained PRNG. Depending on whether a node is 
controlled by an attacker and whether a node can generate 
secure V-data, a node could be in one of the following four 
states:  
• Healthy：The node has never been attacked and it can 

provide secure V-data to other nodes.  
• Sub-healthy: The node has been attacked but it has 

updated its key based on some received secure V-data. 
However, it can only provide unsecure V-data. 

• Sick: The node is controlled by an attacker and any V-
data comes from it is not secure. 

• Released: The node has been attacked and it hasn’t 
received a secure V-data since then. Hence, its future 
keys can be inferred by the attacker and it only provides 
unsecure V-data.  

Table I lists the status (secure or unsecure) of a V-data 
provided by a node in different states under DISH and 
POSH. We can see from Table I that only nodes in Healthy 
state can provide secure V-data. 

TABLE I.  V-DATA PROVIDED BY A NODE IN DIFFERENT 
STATES  

 DISH POSH 
Healthy secure secure 
Sub-healthy unsecure  unsecure  
Released unsecure  unsecure  
Sick unsecure  unsecure  

Fig.1 is the state transition diagram for DISH/POSH. It 
can be seen from Fig.1 that once a node is compromised, the 
attacker can predict its future key by using PRNG obtained 
from the node. Hence, even if received a secure V-data, the 
compromised node can only transit to the Sub-healthy state 
but not the Healthy state. With more rounds of attacks, in 
DISH/POSH the number of nodes that can provide secure 
V-data decreases. After several rounds, no healthy node 
exists in the network and no secure V-data can be provided. 
As a result, the node self-healing capability decreases to 
zero. Therefore, DISH/POSH cannot provide sustainable 
self-healing capability for a WSN. 

To address this issue, we propose the ESSH protocol 
that provides sustainable node self-healing capability. 
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B. Overview of ESSH 
Different from POSH/DISH, in ESSH a V-data is jointly 

generated by several nodes instead of one node. For 
example, in round r+1, the V-data comes from node i to j is 
generated by all nodes in Ri,j, where Ri,j={i,...} denotes the 
set of nodes on the route from i to j. For ∀𝑙𝑙 ∈ 𝑅𝑅𝑖𝑖 ,𝑗𝑗 , l 
contributes a value 𝑇𝑇𝑟𝑟

(𝑙𝑙) to the V-data. 𝑇𝑇𝑟𝑟
(𝑙𝑙) is computed by 

some random physical parameters of node l, such as the 
number of error bits in the received message, and the 
message transmission delay in round r. The attacker cannot 
predict these parameters. Hence, 𝑇𝑇𝑟𝑟

(𝑙𝑙)  and the V-data are 
unpredictable.  

Specifically, our ESSH protocol consists of three phases: 
pre-deployment, random data receiving/forwarding and 
random data compensate. In the random data 
receiving/forwarding phase, ESSH generates secure V-data 
by the unpredictable random data generation scheme. 
Therefore, a compromised node can receive a secure V-data 
with high probability. And also the recover ability of a node 
doesn’t decrease as the number of attack rounds increases. 
In the random data compensation phase, with the random 
data compensation scheme, ESSH can cope with real 
network issues (e.g., message losses and sensor failures) and 
further improves node self-healing ability.  

C. Pre-deployment 
Before deployment, each node i is preloaded with several 

parameters: random number βi, hash function H1 and pair-
wise key 𝑘𝑘𝑖𝑖0, where 𝑘𝑘𝑖𝑖0 is the initial key shared between i and 
the BS. 𝑘𝑘𝑖𝑖0  is updated every round and it is re-initialized 
when BS visits the network again. Node i is also preloaded 
with a routing table Ti including the next hop from i to any 
node in the network.  

D. Random Data Receiving/Forwarding 
In this phase, nodes generate V-data through cooperation 

and update their keys by received V-data.  
Data Receiving Phase. In round r, node i (as a 

volunteer) generates t recipients by H1 and sends each of 
them a V-data Generation (VDG) message. A VDG 
message mainly includes a V-data field and is used to 
generate unpredictable V-data. 

In POSH/DISH, an attacker can predict a compromised 
node’s future key by obtained PRNG. Thus once being 

attacked, the node cannot provide secure V-data. If a V-data 
is generated by different nodes using unpredictable value 
(e.g. a value related to the network performance) instead of 
a PRNG, an attacker cannot predict the V-data. So, we 
propose a simple but effective random data generation 
scheme: an unpredictable random data generation scheme 
based on network performance (URDG-NP). 

In URDG-NP, at the end of each round, each node say i 
calculates a random number 𝑇𝑇𝑟𝑟

(𝑖𝑖)=F(e1,e2,…), where eu (u≥1) 
denotes a parameter related to i’s local network performance 
such as the average message transmission latency, message 
retransmission times, the number of error bits from received 
message, etc. F is a randomly chosen multivariate function. 
Since 𝑇𝑇𝑟𝑟

(𝑙𝑙) changes with the network performance which is 
undetermined, 𝑇𝑇𝑟𝑟

(𝑙𝑙) is unpredictable. In order to enhance the 
unpredictability of a V-data, V-data is computed as the 
accumulation of Tr from nodes which the VDG message 
passes through. For example, if node j receives a V-data v’ 
comes from i in round r+1, then v’ is computed as  
∑ 𝑇𝑇𝑟𝑟

(𝑙𝑙)
𝑙𝑙∈𝑅𝑅𝑖𝑖 ,𝑗𝑗  .  

Different from POSH/DISH, in ESSH if a node is 
compromised in some round and then released; it can still 
contributes unpredictable value to generate secure V-data in 
cooperation with other nodes. Therefore, a compromised 
node in ESSH can recover with high probability and its self-
healing ability will not decrease (even disappear) with the 
increase of attack rounds.  

Data Forwarding Phase. When a node, say i receives t’ 
(t’≥0) VDG messages in round r, i updates its pair-wise key 
for the next round by Eq. (1) 
                  𝑘𝑘𝑖𝑖𝑟𝑟+1 = 𝐻𝐻(𝑘𝑘𝑖𝑖𝑟𝑟 ||𝑉𝑉𝑖𝑖[1]|| … ||𝑉𝑉𝑖𝑖[𝑡𝑡′ ])                      (1) 
where 𝑉𝑉𝑖𝑖[𝑞𝑞] (1≤q≤t) denotes the q-th V-data received by i. If 
node i has not received any V-data, i can obtain V-data by 
the random data compensation scheme in the next phase. 
After that, i encrypts and then stores the received V-data and 
sensing data by  𝑘𝑘𝑖𝑖𝑟𝑟+1. 

E. Random Data Compenstation 
As we introduced before, each node selects some 

recipients randomly in ESSH. So, some nodes might receive 
no VDG message in a round. Furthermore, network issues 
such as node failures or message losses might also cause 
VDG message missing. We propose a simple random data 
compensation scheme. If node i doesn’t receive any VDG 
message in round r, i selects t nodes and sends a V-data 
Request message to each of them. Once a node receives a 
V-data Request message, it sends a VDG message back to i.  

IV. PERFORMANCE ANALYSIS 
ESSH has low computation cost using hash function and 

symmetric cryptography. Therefore, we only analyze the 
communication cost and security performance for ESSH in 
this section. 

A. Communication Cost 
The communication cost is the total number of 

transmissions of a process. The communication cost of 
ESSH includes two parts. 
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1) In the random data receiving/forwarding phase, each 
node sends a VDG message to each of t recipients. The 
communication cost is  

nt�̅�𝑑                                      (2) 
where n is the total number of nodes in the network and �̅�𝑑 
denotes the average shortest hop between any two nodes. 

2) In the random data compensation phase, if a node 
receives no VDG message, it sends t V-data Request 
messages to t randomly chosen nodes. Hence, the 
communication cost is 2npt�̅�𝑑, where p is the probability that 
a node doesn’t receive a VDG message. For arbitrary two 
nodes, say i and j (j≠i), j receives a VDG message from i 
with probability t/(n-1) in round r. So, j cannot receive a 
VDG message from i with probability 1- t/(n-1). Then, the 
probability that j cannot receive a VDG message from any 
node in round r is [1 −  𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1) . Thus, the 
communication cost in the random data compensation phase 
is 
                 CESSH(t)=2nt�̅�𝑑[1 −  𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1)                  (3) 
Combining Eq.(2) and Eq.(3), we have that the 
communication cost for ESSH is CESSH(t)=nt �̅�𝑑+2nt �̅�𝑑[1 −
 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1). 

In DISH, each node obtains t random V-data by 
sending t data request message. Thus the communication 
cost is CDISH(t)=2nt �̅�𝑑 . Compared with DISH, the 
communication cost of ESSH is reduced by 

[CDISH(t)- CESSH (t)]/CDISH(t) 
={2nt�̅�𝑑-nt�̅�𝑑-2nt�̅�𝑑[1 −  𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1)}/2nt�̅�𝑑 
=0.5-[1 −  𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1)                                     (4) 

Let f(x)= [1 −  𝑡𝑡/(𝑥𝑥 − 1)](𝑥𝑥−1), the derivative of  f(x) with 
respect to x  is 
          f’(x) = f(x) {𝑙𝑙𝑛𝑛[1 − 𝑡𝑡/(𝑥𝑥 − 1)] +  𝑡𝑡/(𝑥𝑥 − 𝑡𝑡 − 1)}     (5) 
Let z=t/(x-1) and z∈(0,1), then  we have that 
   𝑙𝑙𝑛𝑛[1 − 𝑡𝑡/(𝑥𝑥 − 1)] +  𝑡𝑡/(𝑥𝑥 − 𝑡𝑡 − 1)=ln(1-z)+z/(1-z)       (6) 
Let  
                                                g(z)= ln(1-z)+z/(1-z)             (7) 
and the derivative of g(z) with respect to z is g’(z)=𝑧𝑧/(1 −
𝑧𝑧)2>0. It is obvious that g(z) is monotonically increasing. 
As z>0, we thus have g(z)>g(0)=0. Combining Eq. (5), (6) 
and (7), we obtain f’(x) >0. Therefore, f(x) is monotonically 
increasing too and we have 

f(n)=[1 −  𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1) 
     <lim𝑛𝑛→+∞[1 −  𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1) 

=lim𝑛𝑛→+∞[1 + 1
(1−𝑛𝑛)/𝑡𝑡

][(1−𝑛𝑛)/𝑡𝑡](−𝑡𝑡)            (8) 
Let  

y=(1 − 𝑛𝑛)/𝑡𝑡                              (9) 
Combining Eq. (8) and Eq. (9) gives  

f(n) =[1 −  𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1) 
< lim𝑛𝑛→+∞[1 + 1

𝑦𝑦
]𝑦𝑦(−𝑡𝑡)=𝑒𝑒−𝑡𝑡                  (10) 

according to the exponential limit equation limn→∞[1 +
 1/𝑛𝑛]𝑛𝑛=e.  Then, combining Eq.(4) and (10), we have 

[CDISH(t)- CESSH (t)]/CDISH(t)>0.5-𝑒𝑒−𝑡𝑡                      (11) 
Different from DISH, nodes in POSH don’t have to send 

extra data request message. Thus the communication cost 
for POSH is CPOSH(t)=nt �̅�𝑑 . Compared with POSH, the 
communication cost of ESSH increases 

[CESSH (t)-CPOSH(t)]/CPOSH(t) 
={nt�̅�𝑑+2nt�̅�𝑑[1 −  𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1)-nt�̅�𝑑}/nt�̅�𝑑 
=2[1 −  𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1) < 2𝑒𝑒−𝑡𝑡                          (12) 

According to Eq. (11), we conclude that the 
communication cost of ESSH decreases at least 0.5-𝑒𝑒−𝑡𝑡  
(nearly 50%) compared with DISH. Meanwhile, compared 
with POSH, the communication cost of ESSH increases 
only 2𝑒𝑒−𝑡𝑡  by Eq. (12). If t < 6, many sensors do not receive 
any random data in POSH and hence the node self-healing 
ability is not good [2]. Therefore, we set t=6 as POSH does. 
When t=6, the communication cost of ESSH decreases 
49.75% compared with DISH and increases only 0.5% 
compared with POSH. Therefore, ESSH incurs small 
communication cost. 

B. Security Analysis 
In this section, we will analyze the security performance 

of ESSH. 
Theorem 1：Node self-healing ability doesn’t change 

with the growth of attack rounds in ESSH.  

Proof: For arbitrary two nodes, say i and j (j≠i), j 
receives a VDG message from i with probability t/(n-1) in 
round r. So, j cannot receive a VDG message from i with 
probability 1- t/(n-1). Then, the probability that j receives t’ 
VDG messages in round r is  
𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡′) = 𝐶𝐶𝑛𝑛−1

𝑡𝑡 ′ [𝑡𝑡/(𝑛𝑛 − 1)]𝑡𝑡′ [1 − 𝑡𝑡/(𝑛𝑛 − 1)]𝑛𝑛−𝑡𝑡′ −1     (13) 
If j has ever been compromised, j can recover on condition 
that j receives at least one secure V-data. Let 𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡′) 
denote the probability that j receives at least one secure V-
data from t’ VDG messages. Then, according to Def. 4, we 
have that 

  Pr=𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(0)𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡) + ∑ 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡′)𝑛𝑛−1
𝑡𝑡 ′=1 𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡′)    (14) 

As each V-data is generated by all nodes on the route Ri,j 
from i to j, the V-data is unsecure only if the last node in Ri,j  
is controlled by the attacker currently. The probability that 
the last node in Ri,j is under control by an attacker is g/n. 
Thus a V-data is unsecure with probability g/n. We thus 
have  
                                  𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡′) = 1 − (𝑔𝑔/𝑛𝑛)𝑡𝑡‘              (15) 
Combining Eq. (13), (14) and (15) gives 
Pr=[1 − 𝑡𝑡/(𝑛𝑛 − 1)]𝑛𝑛−1[1 − (𝑔𝑔/𝑛𝑛)𝑡𝑡] 
      +∑ 𝐶𝐶𝑛𝑛−1

𝑡𝑡 ′ [𝑡𝑡/(𝑛𝑛 − 1)]𝑡𝑡‘[1 − 𝑡𝑡/(𝑛𝑛 − 1)]𝑛𝑛−𝑡𝑡′ −1𝑛𝑛−1
𝑡𝑡 ′ =1 [1 −

       (𝑔𝑔/𝑛𝑛)𝑡𝑡’]                                                                               (16) 
 Eq. (16) shows that Pr is not a function of r. We thus 
conclude that node self-healing ability in ESSH doesn’t 
change with varying r in ESSH. □ 

In POSH/DISH, once a node has been compromised, it 
cannot provide secure V-data. When1≤r<⌈𝑛𝑛/𝑔𝑔⌉, the number 
of nodes in Healthy state is H(r)=n-gr. When r≥⌈𝑛𝑛/𝑔𝑔⌉, all 
nodes in the network have been attacked and hence H(r)=0. 
In DISH, each node receives t V-data in a round. A 
compromised node j transits to Sub-healthy state with 
probability 

pr=�
1 − (𝑔𝑔𝑟𝑟/𝑛𝑛)𝑡𝑡               1 ≤ 𝑟𝑟 < ⌈𝑛𝑛/𝑔𝑔⌉

    0                            𝑟𝑟 ≥ ⌈𝑛𝑛/𝑔𝑔⌉
�                 (17) 
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As for POSH, the probability that each node receives t’ 
(t’≥0) V-data is  𝑃𝑃𝑉𝑉−data (𝑡𝑡′)=𝐶𝐶𝑛𝑛−1

𝑡𝑡 ′ [𝑡𝑡/(𝑛𝑛 − 1)]𝑡𝑡′ [1 − 𝑡𝑡/(𝑛𝑛 −
1)]𝑛𝑛−𝑡𝑡′ −1 . A compromised node transits to Sub-healthy 
state if it receives at least one secure V-data. Hence, the 
node self-healing probability is 

pr=�
1 − ∑ 𝑃𝑃𝑉𝑉−data (𝑡𝑡′)𝑛𝑛−1

𝑡𝑡 ′ =1 (𝑔𝑔𝑟𝑟/𝑛𝑛)𝑡𝑡‘1 ≤ 𝑟𝑟 < ⌈𝑛𝑛/𝑔𝑔⌉
                   0                                  𝑟𝑟 ≥ ⌈𝑛𝑛/𝑔𝑔⌉

�      (18)                        

We use the same parameters as in POSH [2]: n=400, t=6 
and g=80, and by Eq. (14), we have 

Pr=𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(0)𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡) + ∑ 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡′)𝑛𝑛−1
𝑡𝑡 ′ =1 𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡′) 

    >𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(0)𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(6) + ∑ 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡′)399
𝑡𝑡 ′ =1 𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡′) 

>0.9995  
Therefore, compromised nodes in ESSH can transit to 

Healthy state with a high probability. Fig. 2 shows the node 
self-healing ability of ESSH, DISH and POSH with the 
increase of attack rounds. It can be seen from Fig. 2 that 
ESSH provides high and sustainable node self-healing 
ability regardless of r. 

 
Fig.2: Self-healing probability comparison 

V. SIMULATION RESULTS  
We evaluate the performance of ESSH by an event-

driven sensor network simulator written in C++. For 
uniform sensor deployment, we divide the monitored area 
into small grids and place one node in each grid. For fair 
comparison, our simulation uses the same setting as POSH 
[2]: a sensor network of 400 nodes with g=80. 

Fig. 3 plots the communication cost of ESSH, POSH 
and DISH for varying t. As shown in Fig. 3, for ESSH, 
POSH and DISH the communication cost increases with the 
increase of t. The communication cost of ESSH is very close 
to that of POSH. This is consistent with our analysis in 
section IV. Fig. 3 also shows that compared with DISH 
ESSH reduces the communication cost by 50%.   

In Fig. 4, we compare the number of nodes that receive 
at least one secure V-data under the three protocols. We can 
see that at the beginning the numbers of nodes in the three 
protocols are very close. However, as the attack round 
increases, the number of nodes in both POSH and DISH 
decreases significantly. After five rounds, nodes in both 
POSH and DISH cannot receive any secure V-data. This is 
because all nodes have been attacked after five rounds and 
no nodes in the network can provide secure V-data. On the 
other hand, we observe that almost all nodes in ESSH can 
receive secure V-data regardless of the attack round. 

Fig. 5 shows that ESSH performs much better than 
POSH and DISH, in term of the number of self-healing 
nodes each round. It can be seen that the increase of attack 
rounds has a significant impact on POSH and DISH: The 
number of self-healing nodes quickly decreases with the 
increase of attack rounds. After five rounds, no nodes in 
both POSH and DISH can recover. On the other hand, the 
number of self-healing nodes in ESSH doesn’t change much. 

Fig. 6 shows the number of nodes in Healthy state. Note 
that for POSH and DISH, nodes in either Healthy or Sub-
healthy state are considered as healthy nodes in our 
experiment. Fig. 6 shows that with the increase of attack 
rounds, the number of healthy nodes in POSH and DISH 
decreases dramatically, and after ten rounds there is no 
healthy node in the network. In contrast, the curve for ESSH 
is almost flat and the number of healthy nodes in ESSH is 
always more than that in POSH and DISH. This is no 
surprise since almost all nodes in ESSH can receive at least 
a secure V-data each round and thus most of nodes remain 
in healthy state or can return to healthy state.  

 
Fig.3: Comparison of communication cost  

 
Fig.4: Number of nodes receiving secure V-data vs. attack rounds 

  
Fig.5: Number of self-healing nodes comparison 
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Fig.6: Number of healthy nodes vs. attack rounds 

In summary, our simulation results show that ESSH 
provides efficient and sustainable node self-healing ability 
while incurring small overhead. 

VI. CONCLUSION 
In this paper, we studied the node compromise attack in 

UWSNs and we presented an efficient and sustainable self-
healing (ESSH) protocol. We showed analytically and 
through simulation experiments that ESSH is efficient, 
sustainable and lightweight. Furthermore, ESSH copes well 
with reliable issues in UWSNs, e.g., message losses and 
sensor failures.  

ACKNOWLEDGMENT 
This research was supported in part by the China 

National Basic Research Program (973 Program) under 
grants 2011CB302605, the China National High 
Technology Research and Development Program (863 
Program) under grant 2010AA012504 and 2011AA010705, 
the National Natural Science Foundation of China under 
grant 61073194, 61173145 and 61173144; and by the US 
National Science Foundation under grants CNS-0963578, 
CNS-1002974, CNS-1022552, and CNS-1065444, as well 

as the US Army Research Office under grant W911NF-08-
1-0334.  

REFERENCES 
[1] D. Ma and G. Tsudik, “Dish: Distributed self-healing,” in Proc. of 

International Symposium on Stabilization, Safety, and Security of 
Distributed Systems (SSS’08), 2008. 

[2] R. Di Pietro, D. Ma, C. Soriente, and G. Tsudik, “POSH: Proactive 
cooperative self-healing in unattended wireless sensor networks,” in 
Proc. of IEEE Symposium on Reliable Distributed Systems (SRDS’08), 
2008. 

[3] D. Ma,  C. Soriente and G. Tsudik. “New Adversary and New Threats: 
Security in Unattended Sensor Networks,” IEEE Network, vol. 23, no. 
2, pp. 43-48, 2009.   

[4] R. Latif, and M. Hussain, “Hardware-Based Random Number 
Generation in Wireless Sensor Networks(WSNs),” in Proc. of ISA, 
2009.  

[5] A. Suciu, D. Lebu and K. Marton, “Unpredictable Random Number 
Generator Based on Mobile Sensors,” in Proc. of IEEE International 
Conference on Intelligent Computer Communication and Processing 
(ICCP), 2011. 

[6] M. Bellare and B. Yee, “Forward integrity for secure audit logs,” 
Technical Report, Computer Science and Engineering Department, 
University of San Diego, November, 1997. 

[7] R. Dutta, Y. D. Wu, and S. Mukhopadhyay, “Constant storage 
selfhealing key distribution with revocation in wireless sensor 
network,” in Proc. of IEEE International Conference on 
Communications (ICC’07), 2007, pp. 1323–1328. 

[8] M. Bellare and A. Palacio, “Protecting against key-exposure: strongly 
key-insulated encryption with optimal threshold,” Appl. Algebra Eng. 
Commun. Comput. vol. 16, no. 6, pp. 379–396, 2006. 

[9] R. Di Pietro,  G. Oligeri, C. Soriente and G. Tsudik, “Intrusion-
Resilience in Mobile Unattended WSNs,” in Proc. of IEEE 
INFOCOM’10, 2010. 

[10] W. Liu, R. Luo, and H. Yang, “Cryptography Overhead Evaluation 
and Analysis for Wireless Sensor Networks,”  in Proc. of 
International Conference on Communications and Mobile Computing, 
2009. 

 

2 4 6 8 10 120

50

100

150

200

250

300

Round (r)

H
ea

lth
y 

N
od

es

 

 

DISH
POSH
ESSH

5361


