
An Efficient and Sustainable Self-healing Protocol for Unattended
Wireless Sensor Networks

Juan Chen1, Hongli Zhang1, Binxing Fang1,3, Xiaojiang Du2, Haining Yu1, Xiangzhan Yu1

1Research Center of Computer Network and Information Security Technology, Harbin institute of technology,

Harbin, China, e-mail: juanchencs@gmail.com
2Dept. of Computer and Information Sciences, Temple University, Philadelphia, PA, USA, e-mail: dux@temple.edu
3Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China, e-mail: fangbx@cae.cn

Abstract—Due to the unattended operation nature, nodes in

Unattended Wireless Sensor Networks (UWSNs) are
susceptible to physical attacks. Once a sensor is compromised,
the adversary will be able to learn all its secrets. While some
previous works tried to address the node self-healing issue in
UWSNs, little effort has been devoted to ensure the
sustainability of node self-healing. In this paper, we present a
novel sustainable node self-healing protocol for UWSNs. We
generate unpredictable random data for key update and thus
the node self-healing capability doesn’t decrease when the
number of attack rounds increases. We show both analytically
and through simulation experiments that our protocol provides
efficient and sustainable node self-healing capabilities with
small overheads.

Keywords - unattended wireless sensor networks; self-healing;
sustainable

I. INTRODUCTION
Unattended Wireless Sensor Networks (UWSNs) have

many commercial and military applications. Different from
traditional WSNs, an UWSN is left unattended for most of
the time after deployment. An UWSN has a mobile base
station (BS) that visits the network with some frequency.

In UWSNs, the unattended feature makes nodes
extremely vulnerable to attacks happened between visits of
the mobile BS. An attacker may compromise nodes one by
one, obtain their secrets and then leave the network without
being noticed. In UWSNs, node compromise attack may
cause severe damage to the network. First, if the node
secrecy information is leaked, any cryptographic protocol
that depends on the secrecy (e.g., keys) would become
useless. Second, the attacker may decrypt and obtain
important sensing data. Last but not least, it is easy for an
attacker to delete data, forge data and authentication.

Data collected from a compromised sensor may be
classified into two categories, based on the time of
collecting them: (1) before compromise, and (2) after
compromise. Forward secrecy means that, even if an
attacker obtains the sensor's current secrets, he cannot
decrypt (or forge authentication tags for) data collected and
encrypted (or authenticated) before compromise. Backward
secrecy means that, an attacker who obtains the sensor's
current secrets cannot decrypt (or forge authentication tags
for) data after compromise [3].

Forward security is relatively easy to obtain by key
evolution such as hash function [6-8], which doesn’t help on
backward security. Pietro [9] provides both forward and
backward secrecy by using public key cryptography.
Unfortunately, Public key cryptography is not suitable for
WSNs due to the large computational overhead [10]. DISH
[1] and POSH [2] achieves both forward and backward
security by key evolution and node cooperation. In DISH,
each node requests for random data from randomly selected
nodes and then updates its key based on the random data
and its current key. Different from DISH, in POSH each
node selects some nodes as the recipients and sends a
random data to each of them. POSH does not need to send
extra data-request message and hence achieves much lower
communication cost than DISH. Unfortunately, in POSH
some nodes may not receive any random data, which makes
the node self-healing capability not as effective as DISH.

However, both POSH and DISH don’t consider node
failures and message losses, which are common in real
sensor applications. Furthermore, both POSH and DISH
generate random data by a Pseudo-Random Number
Generator (PRNG). A PRNG is an algorithm that starts with
a seed - and uses some function(s) to produce a sequence of
values that appear random [3]. If an attacker compromises a
sensor, he can obtain the PRNG algorithm and compute all
subsequent random values. Under this attack, a PRNG
cannot provide backward security either. An alternative way
to per-sensor PRNGs is to use a True Random Number
Generator (TRNG). Compared to PRNGs, TRNGs extract
randomness from physical phenomena and hence the
random numbers are non-deterministic and cannot be pre-
computed. However, TRNG is only suitable for nodes
equipped with extra hardware [4, 5]. TRNG is not suitable
for small sensors. These challenges motivate our work.

In this paper we propose an Efficient and Sustainable
Self-Healing (ESSH) protocol that helps sensors recover
from node-compromise-attack with high probability. The
main contributions are summarized below:
1) ESSH is effective and sustainable. ESSH is effective

since compromised nodes can recover with high
probability. ESSH uses random numbers obtained by
unpredictable random data generation scheme instead
of a PRNG. Furthermore, ESSH is sustainable as the
node self-healing capability doesn’t decrease when the
number of attack rounds increases.

978-1-4673-0921-9/12/$31.00 ©2012 IEEE

Globecom 2012 - Wireless Networking Symposium

5356

2) ESSH is lightweight. ESSH uses hash functions and
symmetric cryptography and hence it has low
computation cost. Extensive analyses and simulation
show that: the communication cost of ESSH is
comparable to that of POSH; the communication cost of
ESSH is only about 50% of DISH.

3) ESSH performs well in unreliable UWSNs. With a
random data compensation scheme, ESSH can handle
real network issues, such as message losses and node
failures.

The remainder of this paper is organized as follows.
Section II outlines the network and attack model. Section III
presents the node self-healing protocol. Section IV provides
our performance analysis. Section V gives simulation results.
Finally, Section VI concludes this paper.

II. NETWORK AND ATTACK MODEL

A. Network Model
We consider an UWSN with n homogeneous sensors.

The unattended sensors are scattered over a region to
execute pre-determined tasks such as data gathering. Two
sensors can communicate with each other either directly or
via intermediate nodes. Time is divided into rounds, and
nodes are synchronized.

Each node is scheduled to collect, encrypt and then store
exactly one sensing data per round. Different from the
traditional WSNs, the BS in UWSNs is mobile and it visits
the network at infrequent intervals. BS is supposed to visit
the network every e rounds. However, BS might cancel a
visit for its safety considerations. Once entering the network,
BS collects sensing data from each node, re-initialize secret
seed values for each node and reset the round counter to 1.
During the interval between two BS visits, sensors are left
unattended and they may be attacked.

B. Attack Model
We consider a powerful attacker. The attacker’s goal is

to learn as many nodes’ privates as possible while keeping
himself unobservable. He may decrypt stored data, forge
data and authentication using obtained keys without being
noticed. More specifically, we consider an attacker with
following capabilities:
• Resource rich - The attacker has adequate computation

capability. He can also move at will.
• Local monitoring - The attacker can eavesdrop

messages within its transmission range.
• Active attack - Each round, the attacker may select g

nodes, attack them and obtain all their privates.
We consider an attack strategy the same as in DISH [1].

Each round the attacker chooses to attack g sensors that
have not been compromised in the past. If all sensors have
been attacked before, he chooses sensors that were attacked
a long time ago, because with high probability these sensors
may obtain secure privates by a self-healing protocol.

III. THE EFFICIENT AND SUSTAINABLE SELF-HEALING
PROTOCOL

A. Motivation
First, we give some definitions.
Definition 1: A V-data is a random data that is received

by a node for key update.
Definition 2: A secure V-data is a V-data that is

unknown to the attacker.
Definition 3: An unsecure V-data is a V-data that is

directly obtained or indirectly inferred (i.e., known) by an
attacker.

Definition 4: pr denotes the node self-healing capability
in round r (r>0). pr is defined as the probability that a node
receives at least one secure V-data in round r.

DISH/POSH generates random data by a PRNG. Thus,
once a node is attacked, it will never provide secure V-data.
Recall that the attacker can infer the node’s future keys by
the obtained PRNG. Depending on whether a node is
controlled by an attacker and whether a node can generate
secure V-data, a node could be in one of the following four
states:
• Healthy：The node has never been attacked and it can

provide secure V-data to other nodes.
• Sub-healthy: The node has been attacked but it has

updated its key based on some received secure V-data.
However, it can only provide unsecure V-data.

• Sick: The node is controlled by an attacker and any V-
data comes from it is not secure.

• Released: The node has been attacked and it hasn’t
received a secure V-data since then. Hence, its future
keys can be inferred by the attacker and it only provides
unsecure V-data.

Table I lists the status (secure or unsecure) of a V-data
provided by a node in different states under DISH and
POSH. We can see from Table I that only nodes in Healthy
state can provide secure V-data.

TABLE I. V-DATA PROVIDED BY A NODE IN DIFFERENT
STATES

 DISH POSH
Healthy secure secure
Sub-healthy unsecure unsecure
Released unsecure unsecure
Sick unsecure unsecure

Fig.1 is the state transition diagram for DISH/POSH. It
can be seen from Fig.1 that once a node is compromised, the
attacker can predict its future key by using PRNG obtained
from the node. Hence, even if received a secure V-data, the
compromised node can only transit to the Sub-healthy state
but not the Healthy state. With more rounds of attacks, in
DISH/POSH the number of nodes that can provide secure
V-data decreases. After several rounds, no healthy node
exists in the network and no secure V-data can be provided.
As a result, the node self-healing capability decreases to
zero. Therefore, DISH/POSH cannot provide sustainable
self-healing capability for a WSN.

To address this issue, we propose the ESSH protocol
that provides sustainable node self-healing capability.

5357

RELEASED

Co
mp
ro
mi
se
d
by

ad
ve
rs
ar
ie
s

Receive secure or
unsecure V-data

Re
ce
iv
e
at
 l
ea
st

on
e
 s
ec
ur
e
V-
da
ta

Receive secure or
unsecure V-data

Receive no
secure V-data

Released by

adversaries

Receive secure or
unsecure V-data

SUBHEALTHY

SICK

HEALTHY

Fig.1. State transition for DISH/POSH

B. Overview of ESSH
Different from POSH/DISH, in ESSH a V-data is jointly

generated by several nodes instead of one node. For
example, in round r+1, the V-data comes from node i to j is
generated by all nodes in Ri,j, where Ri,j={i,...} denotes the
set of nodes on the route from i to j. For ∀𝑙𝑙 ∈ 𝑅𝑅𝑖𝑖 ,𝑗𝑗 , l
contributes a value 𝑇𝑇𝑟𝑟

(𝑙𝑙) to the V-data. 𝑇𝑇𝑟𝑟
(𝑙𝑙) is computed by

some random physical parameters of node l, such as the
number of error bits in the received message, and the
message transmission delay in round r. The attacker cannot
predict these parameters. Hence, 𝑇𝑇𝑟𝑟

(𝑙𝑙) and the V-data are
unpredictable.

Specifically, our ESSH protocol consists of three phases:
pre-deployment, random data receiving/forwarding and
random data compensate. In the random data
receiving/forwarding phase, ESSH generates secure V-data
by the unpredictable random data generation scheme.
Therefore, a compromised node can receive a secure V-data
with high probability. And also the recover ability of a node
doesn’t decrease as the number of attack rounds increases.
In the random data compensation phase, with the random
data compensation scheme, ESSH can cope with real
network issues (e.g., message losses and sensor failures) and
further improves node self-healing ability.

C. Pre-deployment
Before deployment, each node i is preloaded with several

parameters: random number βi, hash function H1 and pair-
wise key 𝑘𝑘𝑖𝑖0, where 𝑘𝑘𝑖𝑖0 is the initial key shared between i and
the BS. 𝑘𝑘𝑖𝑖0 is updated every round and it is re-initialized
when BS visits the network again. Node i is also preloaded
with a routing table Ti including the next hop from i to any
node in the network.

D. Random Data Receiving/Forwarding
In this phase, nodes generate V-data through cooperation

and update their keys by received V-data.
Data Receiving Phase. In round r, node i (as a

volunteer) generates t recipients by H1 and sends each of
them a V-data Generation (VDG) message. A VDG
message mainly includes a V-data field and is used to
generate unpredictable V-data.

In POSH/DISH, an attacker can predict a compromised
node’s future key by obtained PRNG. Thus once being

attacked, the node cannot provide secure V-data. If a V-data
is generated by different nodes using unpredictable value
(e.g. a value related to the network performance) instead of
a PRNG, an attacker cannot predict the V-data. So, we
propose a simple but effective random data generation
scheme: an unpredictable random data generation scheme
based on network performance (URDG-NP).

In URDG-NP, at the end of each round, each node say i
calculates a random number 𝑇𝑇𝑟𝑟

(𝑖𝑖)=F(e1,e2,…), where eu (u≥1)
denotes a parameter related to i’s local network performance
such as the average message transmission latency, message
retransmission times, the number of error bits from received
message, etc. F is a randomly chosen multivariate function.
Since 𝑇𝑇𝑟𝑟

(𝑙𝑙) changes with the network performance which is
undetermined, 𝑇𝑇𝑟𝑟

(𝑙𝑙) is unpredictable. In order to enhance the
unpredictability of a V-data, V-data is computed as the
accumulation of Tr from nodes which the VDG message
passes through. For example, if node j receives a V-data v’
comes from i in round r+1, then v’ is computed as
∑ 𝑇𝑇𝑟𝑟

(𝑙𝑙)
𝑙𝑙∈𝑅𝑅𝑖𝑖 ,𝑗𝑗 .

Different from POSH/DISH, in ESSH if a node is
compromised in some round and then released; it can still
contributes unpredictable value to generate secure V-data in
cooperation with other nodes. Therefore, a compromised
node in ESSH can recover with high probability and its self-
healing ability will not decrease (even disappear) with the
increase of attack rounds.

Data Forwarding Phase. When a node, say i receives t’
(t’≥0) VDG messages in round r, i updates its pair-wise key
for the next round by Eq. (1)
 𝑘𝑘𝑖𝑖𝑟𝑟+1 = 𝐻𝐻(𝑘𝑘𝑖𝑖𝑟𝑟 ||𝑉𝑉𝑖𝑖[1]|| … ||𝑉𝑉𝑖𝑖[𝑡𝑡′]) (1)
where 𝑉𝑉𝑖𝑖[𝑞𝑞] (1≤q≤t) denotes the q-th V-data received by i. If
node i has not received any V-data, i can obtain V-data by
the random data compensation scheme in the next phase.
After that, i encrypts and then stores the received V-data and
sensing data by 𝑘𝑘𝑖𝑖𝑟𝑟+1.

E. Random Data Compenstation
As we introduced before, each node selects some

recipients randomly in ESSH. So, some nodes might receive
no VDG message in a round. Furthermore, network issues
such as node failures or message losses might also cause
VDG message missing. We propose a simple random data
compensation scheme. If node i doesn’t receive any VDG
message in round r, i selects t nodes and sends a V-data
Request message to each of them. Once a node receives a
V-data Request message, it sends a VDG message back to i.

IV. PERFORMANCE ANALYSIS
ESSH has low computation cost using hash function and

symmetric cryptography. Therefore, we only analyze the
communication cost and security performance for ESSH in
this section.

A. Communication Cost
The communication cost is the total number of

transmissions of a process. The communication cost of
ESSH includes two parts.

5358

1) In the random data receiving/forwarding phase, each
node sends a VDG message to each of t recipients. The
communication cost is

nt�̅�𝑑 (2)
where n is the total number of nodes in the network and �̅�𝑑
denotes the average shortest hop between any two nodes.

2) In the random data compensation phase, if a node
receives no VDG message, it sends t V-data Request
messages to t randomly chosen nodes. Hence, the
communication cost is 2npt�̅�𝑑, where p is the probability that
a node doesn’t receive a VDG message. For arbitrary two
nodes, say i and j (j≠i), j receives a VDG message from i
with probability t/(n-1) in round r. So, j cannot receive a
VDG message from i with probability 1- t/(n-1). Then, the
probability that j cannot receive a VDG message from any
node in round r is [1 − 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1) . Thus, the
communication cost in the random data compensation phase
is
 CESSH(t)=2nt�̅�𝑑[1 − 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1) (3)
Combining Eq.(2) and Eq.(3), we have that the
communication cost for ESSH is CESSH(t)=nt �̅�𝑑+2nt �̅�𝑑[1 −
 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1).

In DISH, each node obtains t random V-data by
sending t data request message. Thus the communication
cost is CDISH(t)=2nt �̅�𝑑 . Compared with DISH, the
communication cost of ESSH is reduced by

[CDISH(t)- CESSH (t)]/CDISH(t)
={2nt�̅�𝑑-nt�̅�𝑑-2nt�̅�𝑑[1 − 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1)}/2nt�̅�𝑑
=0.5-[1 − 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1) (4)

Let f(x)= [1 − 𝑡𝑡/(𝑥𝑥 − 1)](𝑥𝑥−1), the derivative of f(x) with
respect to x is
 f’(x) = f(x) {𝑙𝑙𝑛𝑛[1 − 𝑡𝑡/(𝑥𝑥 − 1)] + 𝑡𝑡/(𝑥𝑥 − 𝑡𝑡 − 1)} (5)
Let z=t/(x-1) and z∈(0,1), then we have that
 𝑙𝑙𝑛𝑛[1 − 𝑡𝑡/(𝑥𝑥 − 1)] + 𝑡𝑡/(𝑥𝑥 − 𝑡𝑡 − 1)=ln(1-z)+z/(1-z) (6)
Let
 g(z)= ln(1-z)+z/(1-z) (7)
and the derivative of g(z) with respect to z is g’(z)=𝑧𝑧/(1 −
𝑧𝑧)2>0. It is obvious that g(z) is monotonically increasing.
As z>0, we thus have g(z)>g(0)=0. Combining Eq. (5), (6)
and (7), we obtain f’(x) >0. Therefore, f(x) is monotonically
increasing too and we have

f(n)=[1 − 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1)
 <lim𝑛𝑛→+∞[1 − 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1)

=lim𝑛𝑛→+∞[1 + 1
(1−𝑛𝑛)/𝑡𝑡

][(1−𝑛𝑛)/𝑡𝑡](−𝑡𝑡) (8)
Let

y=(1 − 𝑛𝑛)/𝑡𝑡 (9)
Combining Eq. (8) and Eq. (9) gives

f(n) =[1 − 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1)
< lim𝑛𝑛→+∞[1 + 1

𝑦𝑦
]𝑦𝑦(−𝑡𝑡)=𝑒𝑒−𝑡𝑡 (10)

according to the exponential limit equation limn→∞[1 +
 1/𝑛𝑛]𝑛𝑛=e. Then, combining Eq.(4) and (10), we have

[CDISH(t)- CESSH (t)]/CDISH(t)>0.5-𝑒𝑒−𝑡𝑡 (11)
Different from DISH, nodes in POSH don’t have to send

extra data request message. Thus the communication cost
for POSH is CPOSH(t)=nt �̅�𝑑 . Compared with POSH, the
communication cost of ESSH increases

[CESSH (t)-CPOSH(t)]/CPOSH(t)
={nt�̅�𝑑+2nt�̅�𝑑[1 − 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1)-nt�̅�𝑑}/nt�̅�𝑑
=2[1 − 𝑡𝑡/(𝑛𝑛 − 1)](𝑛𝑛−1) < 2𝑒𝑒−𝑡𝑡 (12)

According to Eq. (11), we conclude that the
communication cost of ESSH decreases at least 0.5-𝑒𝑒−𝑡𝑡
(nearly 50%) compared with DISH. Meanwhile, compared
with POSH, the communication cost of ESSH increases
only 2𝑒𝑒−𝑡𝑡 by Eq. (12). If t < 6, many sensors do not receive
any random data in POSH and hence the node self-healing
ability is not good [2]. Therefore, we set t=6 as POSH does.
When t=6, the communication cost of ESSH decreases
49.75% compared with DISH and increases only 0.5%
compared with POSH. Therefore, ESSH incurs small
communication cost.

B. Security Analysis
In this section, we will analyze the security performance

of ESSH.
Theorem 1：Node self-healing ability doesn’t change

with the growth of attack rounds in ESSH.

Proof: For arbitrary two nodes, say i and j (j≠i), j
receives a VDG message from i with probability t/(n-1) in
round r. So, j cannot receive a VDG message from i with
probability 1- t/(n-1). Then, the probability that j receives t’
VDG messages in round r is
𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡′) = 𝐶𝐶𝑛𝑛−1

𝑡𝑡 ′ [𝑡𝑡/(𝑛𝑛 − 1)]𝑡𝑡′ [1 − 𝑡𝑡/(𝑛𝑛 − 1)]𝑛𝑛−𝑡𝑡′ −1 (13)
If j has ever been compromised, j can recover on condition
that j receives at least one secure V-data. Let 𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡′)
denote the probability that j receives at least one secure V-
data from t’ VDG messages. Then, according to Def. 4, we
have that

 Pr=𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(0)𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡) + ∑ 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡′)𝑛𝑛−1
𝑡𝑡 ′=1 𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡′) (14)

As each V-data is generated by all nodes on the route Ri,j
from i to j, the V-data is unsecure only if the last node in Ri,j
is controlled by the attacker currently. The probability that
the last node in Ri,j is under control by an attacker is g/n.
Thus a V-data is unsecure with probability g/n. We thus
have
 𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡′) = 1 − (𝑔𝑔/𝑛𝑛)𝑡𝑡‘ (15)
Combining Eq. (13), (14) and (15) gives
Pr=[1 − 𝑡𝑡/(𝑛𝑛 − 1)]𝑛𝑛−1[1 − (𝑔𝑔/𝑛𝑛)𝑡𝑡]
 +∑ 𝐶𝐶𝑛𝑛−1

𝑡𝑡 ′ [𝑡𝑡/(𝑛𝑛 − 1)]𝑡𝑡‘[1 − 𝑡𝑡/(𝑛𝑛 − 1)]𝑛𝑛−𝑡𝑡′ −1𝑛𝑛−1
𝑡𝑡 ′ =1 [1 −

 (𝑔𝑔/𝑛𝑛)𝑡𝑡’] (16)
 Eq. (16) shows that Pr is not a function of r. We thus
conclude that node self-healing ability in ESSH doesn’t
change with varying r in ESSH. □

In POSH/DISH, once a node has been compromised, it
cannot provide secure V-data. When1≤r<⌈𝑛𝑛/𝑔𝑔⌉, the number
of nodes in Healthy state is H(r)=n-gr. When r≥⌈𝑛𝑛/𝑔𝑔⌉, all
nodes in the network have been attacked and hence H(r)=0.
In DISH, each node receives t V-data in a round. A
compromised node j transits to Sub-healthy state with
probability

pr=�
1 − (𝑔𝑔𝑟𝑟/𝑛𝑛)𝑡𝑡 1 ≤ 𝑟𝑟 < ⌈𝑛𝑛/𝑔𝑔⌉

 0 𝑟𝑟 ≥ ⌈𝑛𝑛/𝑔𝑔⌉
� (17)

5359

As for POSH, the probability that each node receives t’
(t’≥0) V-data is 𝑃𝑃𝑉𝑉−data (𝑡𝑡′)=𝐶𝐶𝑛𝑛−1

𝑡𝑡 ′ [𝑡𝑡/(𝑛𝑛 − 1)]𝑡𝑡′ [1 − 𝑡𝑡/(𝑛𝑛 −
1)]𝑛𝑛−𝑡𝑡′ −1 . A compromised node transits to Sub-healthy
state if it receives at least one secure V-data. Hence, the
node self-healing probability is

pr=�
1 − ∑ 𝑃𝑃𝑉𝑉−data (𝑡𝑡′)𝑛𝑛−1

𝑡𝑡 ′ =1 (𝑔𝑔𝑟𝑟/𝑛𝑛)𝑡𝑡‘1 ≤ 𝑟𝑟 < ⌈𝑛𝑛/𝑔𝑔⌉
 0 𝑟𝑟 ≥ ⌈𝑛𝑛/𝑔𝑔⌉

� (18)

We use the same parameters as in POSH [2]: n=400, t=6
and g=80, and by Eq. (14), we have

Pr=𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(0)𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡) + ∑ 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡′)𝑛𝑛−1
𝑡𝑡 ′ =1 𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡′)

 >𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(0)𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(6) + ∑ 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡′)399
𝑡𝑡 ′ =1 𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑙𝑙𝑡𝑡 ℎ(𝑡𝑡′)

>0.9995
Therefore, compromised nodes in ESSH can transit to

Healthy state with a high probability. Fig. 2 shows the node
self-healing ability of ESSH, DISH and POSH with the
increase of attack rounds. It can be seen from Fig. 2 that
ESSH provides high and sustainable node self-healing
ability regardless of r.

Fig.2: Self-healing probability comparison

V. SIMULATION RESULTS
We evaluate the performance of ESSH by an event-

driven sensor network simulator written in C++. For
uniform sensor deployment, we divide the monitored area
into small grids and place one node in each grid. For fair
comparison, our simulation uses the same setting as POSH
[2]: a sensor network of 400 nodes with g=80.

Fig. 3 plots the communication cost of ESSH, POSH
and DISH for varying t. As shown in Fig. 3, for ESSH,
POSH and DISH the communication cost increases with the
increase of t. The communication cost of ESSH is very close
to that of POSH. This is consistent with our analysis in
section IV. Fig. 3 also shows that compared with DISH
ESSH reduces the communication cost by 50%.

In Fig. 4, we compare the number of nodes that receive
at least one secure V-data under the three protocols. We can
see that at the beginning the numbers of nodes in the three
protocols are very close. However, as the attack round
increases, the number of nodes in both POSH and DISH
decreases significantly. After five rounds, nodes in both
POSH and DISH cannot receive any secure V-data. This is
because all nodes have been attacked after five rounds and
no nodes in the network can provide secure V-data. On the
other hand, we observe that almost all nodes in ESSH can
receive secure V-data regardless of the attack round.

Fig. 5 shows that ESSH performs much better than
POSH and DISH, in term of the number of self-healing
nodes each round. It can be seen that the increase of attack
rounds has a significant impact on POSH and DISH: The
number of self-healing nodes quickly decreases with the
increase of attack rounds. After five rounds, no nodes in
both POSH and DISH can recover. On the other hand, the
number of self-healing nodes in ESSH doesn’t change much.

Fig. 6 shows the number of nodes in Healthy state. Note
that for POSH and DISH, nodes in either Healthy or Sub-
healthy state are considered as healthy nodes in our
experiment. Fig. 6 shows that with the increase of attack
rounds, the number of healthy nodes in POSH and DISH
decreases dramatically, and after ten rounds there is no
healthy node in the network. In contrast, the curve for ESSH
is almost flat and the number of healthy nodes in ESSH is
always more than that in POSH and DISH. This is no
surprise since almost all nodes in ESSH can receive at least
a secure V-data each round and thus most of nodes remain
in healthy state or can return to healthy state.

Fig.3: Comparison of communication cost

Fig.4: Number of nodes receiving secure V-data vs. attack rounds

Fig.5: Number of self-healing nodes comparison

0 1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1

Round (r)

Se
lf-

he
al

in
g

Ab
ilit

y
(p

r)

ESSH
DISH
POSH

1 2 3 4 5 61
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5x 104

Number of V-data (t)

C
om

m
un

ic
at

io
n

C
os

t

DISH
POSH
ESSH

2 4 6 8 10 120

50

100

150

200

250

300

350

400

Round (r)

H
ea

lth
y

V-
da

ta
 R

ec
ip

ie
nt

s

DISH
POSH
ESSH

2 4 6 8 10 120

10

20

30

40

50

60

70

80

Round (r)

Se
lf-

he
al

in
g

N
od

es

DISH
POSH
ESSH

5360

Fig.6: Number of healthy nodes vs. attack rounds

In summary, our simulation results show that ESSH
provides efficient and sustainable node self-healing ability
while incurring small overhead.

VI. CONCLUSION
In this paper, we studied the node compromise attack in

UWSNs and we presented an efficient and sustainable self-
healing (ESSH) protocol. We showed analytically and
through simulation experiments that ESSH is efficient,
sustainable and lightweight. Furthermore, ESSH copes well
with reliable issues in UWSNs, e.g., message losses and
sensor failures.

ACKNOWLEDGMENT
This research was supported in part by the China

National Basic Research Program (973 Program) under
grants 2011CB302605, the China National High
Technology Research and Development Program (863
Program) under grant 2010AA012504 and 2011AA010705,
the National Natural Science Foundation of China under
grant 61073194, 61173145 and 61173144; and by the US
National Science Foundation under grants CNS-0963578,
CNS-1002974, CNS-1022552, and CNS-1065444, as well

as the US Army Research Office under grant W911NF-08-
1-0334.

REFERENCES
[1] D. Ma and G. Tsudik, “Dish: Distributed self-healing,” in Proc. of

International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS’08), 2008.

[2] R. Di Pietro, D. Ma, C. Soriente, and G. Tsudik, “POSH: Proactive
cooperative self-healing in unattended wireless sensor networks,” in
Proc. of IEEE Symposium on Reliable Distributed Systems (SRDS’08),
2008.

[3] D. Ma, C. Soriente and G. Tsudik. “New Adversary and New Threats:
Security in Unattended Sensor Networks,” IEEE Network, vol. 23, no.
2, pp. 43-48, 2009.

[4] R. Latif, and M. Hussain, “Hardware-Based Random Number
Generation in Wireless Sensor Networks(WSNs),” in Proc. of ISA,
2009.

[5] A. Suciu, D. Lebu and K. Marton, “Unpredictable Random Number
Generator Based on Mobile Sensors,” in Proc. of IEEE International
Conference on Intelligent Computer Communication and Processing
(ICCP), 2011.

[6] M. Bellare and B. Yee, “Forward integrity for secure audit logs,”
Technical Report, Computer Science and Engineering Department,
University of San Diego, November, 1997.

[7] R. Dutta, Y. D. Wu, and S. Mukhopadhyay, “Constant storage
selfhealing key distribution with revocation in wireless sensor
network,” in Proc. of IEEE International Conference on
Communications (ICC’07), 2007, pp. 1323–1328.

[8] M. Bellare and A. Palacio, “Protecting against key-exposure: strongly
key-insulated encryption with optimal threshold,” Appl. Algebra Eng.
Commun. Comput. vol. 16, no. 6, pp. 379–396, 2006.

[9] R. Di Pietro, G. Oligeri, C. Soriente and G. Tsudik, “Intrusion-
Resilience in Mobile Unattended WSNs,” in Proc. of IEEE
INFOCOM’10, 2010.

[10] W. Liu, R. Luo, and H. Yang, “Cryptography Overhead Evaluation
and Analysis for Wireless Sensor Networks,” in Proc. of
International Conference on Communications and Mobile Computing,
2009.

2 4 6 8 10 120

50

100

150

200

250

300

Round (r)

H
ea

lth
y

N
od

es

DISH
POSH
ESSH

5361

