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Data transmission from sensor nodes to a base station or a sink node often incurs significant energy consumption, which critically
affects network lifetime. We generalize and solve the problem of deploying multiple base stations to maximize network lifetime
in terms of two different metrics under one-hop and multihop communication models. In the one-hop communication model,
the sensors far away from base stations always deplete their energy much faster than others. We propose an optimal solution and
a heuristic approach based on the minimal enclosing circle algorithm to deploy a base station at the geometric center of each
cluster. In the multihop communication model, both base station location and data routing mechanism need to be considered
in maximizing network lifetime. We propose an iterative algorithm based on rigorous mathematical derivations and use linear
programming to compute the optimal routing paths for data transmission. Simulation results show the distinguished performance
of the proposed deployment algorithms in maximizing network lifetime.

1. Introduction

Wireless sensor networks (WSNs) are becoming increasingly
pervasive in many military, civil, agricultural, and indus-
trial applications. In sensor networks deployed in harsh
or unstructured environments, sensor nodes are typically
powered by irreplaceable batteries with a limited amount of
energy supply. Minimizing the total energy consumption and
optimizing the network-wide load balance to prolong the
lifetime of sensor networks have been an essential task in
sensor network implementation.

Data transmission from a sensor node to a base station
(BS) or a sink node often consumes a significant amount of
energy and to a large degree determines the operation hours
of the sensor, which in turn affects the lifetime of the entire
network. Typically in large-scale sensor networks, it is not
always sufficient to deploy one single BS for the entire net-
work, and the advantages of deploying multiple base stations
(BSs) are fourfold: (i) shorten the distance between sensors
and BSs to cut down the amount of energy consumption
on data transmission; (ii) expand network connectivity to
improve communication coverage (iii) increase data rate

and reduce message delay of the network; and (iv) provide
backup routes and sinks for better fault tolerance. However,
determining the locations of these BSs is an extremely
complex task because their optimal locations depend on a
wide variety of factors including the network topology, com-
munication model, routing mechanism, and lifetime metric.

We generalize and solve the problems of deploying
multiple BSs in WSNs to maximize network lifetime under
both one-hop and multihop communication models for
different lifetime metrics. In the one-hop communication
model, data messages are directly sent to BSs without any
intermediate routing, and therefore the sensors far away
from BSs deplete their energy faster than those close to
BSs. We formulate the BS deployment problem as the NP-
complete p-center problem and present an optimal solution
for small-scale networks and design an efficient heuristic
approach for large-scale ones based on the minimal enclosing
circle (MEC) algorithm [1]. In the multihop communication
model, sensor nodes that are one-hop away from the BSs,
referred to as critical nodes, need to relay data packets for
all other nodes, resulting in much faster energy exhaustion
than other nodes. A good deployment strategy would place
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Table 1: A list of notations used in the network model.

Symbol Definition

s The size of one data message in bits

εelec Distance-independent term in energy model

εamp Distance-dependent term in energy model

di, j Euclidean distance between sensors i and j

eti, j Energy cost for transmitting one data message

from senor i to j

eri Energy cost for receiving one data message at

sensor i

N Number of sensors

K Number of base stations

(xi, yi) Coordinate of sensor i

η Maximum percentage of sensors allowed to

die before the network is deemed unusable

n∗ Maximum number (N · η) of sensors allowed

to die before the network is deemed unusable

T Network lifetime in rounds

e0 Initial energy of a sensor

fi, j Total number of data messages from sensor i

to j in T

fi,Bj Total number of data messages from sensor i

to base station Bj in T

Ci MEC for sensors within cluster i

C∗ MEC with maximum radius

ri Radius of Ci
r∗ radius of C∗

rc Radio communication range of sensor

wi Crowdedness of sensor i

the BSs in the dense areas of a network to mitigate this issue.
We propose an iterative algorithm based on rigorous mathe-
matical derivations and geometric optimization techniques
to maximize the network lifetime. Moreover, we develop
a linear programming model to compute optimal routing
paths for data transmission, which provides a theoretical
lower bound for evaluating the network lifetime of any
given BS deployment scheme. All these algorithms are
implemented and tested on a large set of randomly generated
simulation networks. Extensive simulation results illustrate
the superior performance of the proposed BS deployment
algorithms in comparison with existing methods.

The rest of the paper is organized as follows. In Section 2,
we conduct a survey of BS deployment problems and
strategies that are closely related to our work. In Section 3, we
construct the energy models and formulate the BS deploy-
ment problems under different routing models. In Sections
4 and 5, we propose either optimal algorithms or heuristic
approaches to deploy BSs for maximizing the lifetime
of networks with one-hop and multihop communication
models. The simulation results are presented in Section 6
to evaluate the efficiency of the proposed algorithms. We
conclude our work in Section 7.

2. Related Work

The deployment of BSs is a fundamental and crucial task in
the implementation and operation of WSNs. The number
of BSs is a critical factor of the sensor network architecture
that significantly affects the network performance. There
exist several efforts in deploying a single BS [2, 3] or
multiple BSs [4–9]. Most of these studies assume that the
number of available BSs is known a priori. Sensor nodes
and BSs are usually deployed in a two-dimensional planar
area. In an arbitrary network graph, finding the optimal
locations for a given number of BSs to maximize network
lifetime is very challenging as the search space is considered
infinite. Researchers often formulate this problem as an
integer linear programming (ILP) task [6, 9] and restrict
the possible locations of BSs to a number of given feasible
sites or simply the locations of sensor nodes. Meanwhile, the
optimal multihop flow-based routing is calculated by solving
a linear programming-(LP) modeled problem with given BS
locations. However, this approach has several limitations.
First, ILP is NP-complete so it does not scale well for
networks with a large number of sensors. Second, since
the locations of BSs are restricted, the ILP solution can
only select the optimal locations among a limited set of
possible locations. Several other efforts in BS deployment
[4, 5, 7] employ iterative clustering algorithms such as k-
means algorithm.

The problems we consider and the solutions we propose
in this paper are different from those described above
in several aspects. In our problems, the locations of BSs
are not restricted to a set of given sites. We consider
both one-hop and multihop communication models for
evaluating different types of network lifetime. Furthermore,
we integrate a number of geometric optimization techniques
into our solutions to the BS deployment problems for
network lifetime maximization.

3. Energy Model and Problem Formulation

3.1. Energy Model. Table 1 lists all the notations used in
this paper. For a sensor node, we assume that the data
transmission consumes most of the energy. Each sensor
generates a fixed-sized data message of s bits in every round
(or period) and transmits it to one of the BSs via either a
one-hop or multihop path. We further assume that sensors
are able to adjust their transmission power levels on a
continuous scale according to the wireless link distance.
Our energy model is based on the first-order radio model
described in [10]. The energy dissipation in transmitting one
data message from sensor i to sensor j over a direct wireless
link can be modeled as

eti, j =
(
εelec + εamp · d2

i, j

)
· s, (1)

where εelec = 50 nJ/bit, εamp = 100 pJ/bit/m2, and di, j is
the Euclidean distance between sensors i and j. The energy
dissipation in receiving one data message at sensor i can be
modeled as

eri = εelec · s. (2)
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3.2. Network Lifetime Definition. In general, the lifetime of
WSNs is defined as the number of rounds until the network
operation terminates due to the increasing number of dead
sensor nodes. We use η to represent the maximum percentage
of sensors that are allowed to die before the network is
deemed unusable. When η = 0, the death of the first
node breaks down the entire network, which defines the
Cooperative Lifetime (CL) [10, 11]; when η > 0, a certain
number of nodes may run out of energy without interrupting
the normal operation of the network, which defines the
Whole Lifetime (WL) [7, 12].

3.3. Problem Formulation. The multiple BSs deployment
problem is formulated as follows. Given a WSN represented
as a graph G(V ,E), where V represents the set of N sensor
nodes and E represents the set of wireless links, coordinates
(xi, yi) of node vi (vi ∈ V), and the number K of BSs,
how to deploy K BSs so that the network lifetime is
maximized? Obviously, the optimal locations of BSs depend
on the communication models and lifetime metrics. For both
lifetime metrics, that is, CL (η = 0) and WL (η > 0),
we categorize the BSs deployment problems based on the
adopted communication model as follows.

(i) BS deployment using one-hop communication
(BSD-1). In this model, every sensor sends its data
directly to the closest BS, which means that no
routing is needed within the cluster.

(ii) BS deployment using multihop communication
(BSD-M). In this model, data generated by sensors
is routed to BSs via multihop paths. To achieve the
performance optimality, the routing path from each
sensor to the BS is not fixed so that data may go
through different paths at different times to reach the
BS.

BSD-M needs to jointly consider the BS deployment and
routing mechanism. Let T represent the network lifetime
measured as the number of rounds, (xBi , yBi) represent the
coordinates of BS Bi, and fi, j and fi,Bj represent the total
number of data messages from sensor i to sensor j and BS
Bj during T , respectively. At each round, every sensor node
generates and sends one data message of the same size. We
consider an optimal routing mechanism where data messages
are allowed to be transmitted to the BSs via multiple paths so
that fi, j and fi,Bj are not restricted to be integers, neither is T .
We formulate this problem as a quadratic programming task:

Objective : Max(T) (3)

subject to

N∑

j=1, j /= i
f j,i + T =

N∑

j=1, j /= i
fi, j +

K∑

j=1

fi,Bj , (4)

eri ·
N∑

j=1, j /= i
f j,i +

N∑

j=1, j /= i
eti, j · fi, j +

K∑

j=1

eti,Bj · fi,Bj ≤ e0. (5)

At every sensor node i, any valid routing solution must
respect both flow balance defined in (4) and energy con-
straint defined in (5). The transmission cost eti,Bj in (5) can
be expressed as

eti,Bj =
(
εelec + εamp ·

[(
xi − xBj

)2
+
(
yi − yBj

)2
])
· s, (6)

which is a quadratic function of BS coordinates. Since
quadratic programming is NP-complete [13], so is BSD-M.
We would like to point out that this optimal routing mecha-
nism is limited to CL and is intended to provide a theoretical
lower bound for evaluating the lifetime performance of any
given BS deployment scheme. For WL with η > 0, we can
employ a general minimal energy cost routing algorithm
that minimizes the total transmission energy cost for lifetime
evaluation.

4. Algorithm Design for BSD-1

In the one-hop communication model, each sensor sends its
data to the closest BS directly. Thus, the sensors far away from
the BSs drain their energy faster than others. The problem
of deploying a single BS in one-hop communication model
has been well studied in the literature [2]. Here, we consider
deploying multiple BSs to maximize the network lifetime,
which is denoted by parameter η, η ∈ [0, 1]. Note that BSD-
1 can be reduced to the Euclidean p-center problem in R2

when η = 0, but not when η > 0. Therefore, the optimal
BS locations may not be the same under these two lifetime
metrics. We propose different algorithms to BSD-1 problems
with different values of η.

4.1. BSD-1 with η = 0. For η = 0, all sensors must
cooperate with each other so that the entire network fails
when the first sensor runs out of energy, which is identified
as the critical node and determines the network lifetime. In a
homogeneous WSN where all sensors have identical initial
energy, we prove that BSD-1 with η = 0 can be reduced
to the Euclidean p-center problem, which is NP-complete
when p is part of the input [14]. When p = 1, it is called
one-center problem, or Minimal Enclosing Circle (MEC)
problem, which is polynomially solvable.

Theorem 1. BSD-1 with η = 0 is NP-complete.

Proof. In the one-hop communication model, each sensor
only consumes energy on transmitting data to its closest BS,
so the network lifetime can be calculated by

T = min
1≤i≤N

e0

min1≤ j≤Keti,Bj
, (7)

where e0 is a constant. Obviously, the network lifetime T is
determined by the sensor that consumes the most energy
on transmitting one data message to its closest BS. The
transmission cost in (1) and lifetime measurement in (7)
indicate that maximizing T is equivalent to minimizing the
maximum distance of a sensor to its closest BS. Therefore,
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the optimal BS locations can be determined by minimizing
the following objective function:

max
1≤i≤N

min
1≤ j≤K

√(
xi − xBj

)2
+
(
yi − yBj

)2
, (8)

which is exactly the Euclidean p-center problem whereK BSs
are the supply points and N sensors are the demand points.
Since Euclidean p-center problem is NP-complete, so is BSD-
1 with η = 0.

By reducing BSD-1 with η = 0 to the Euclidean p-center
problem, we convert lifetime optimization to geometric
optimization. The Euclidean p-center problem has been
well studied and there exist a number of algorithms in the
literature. For a fixed value K , the best known optimal
algorithm using slab dividing approach proposed by Hwang
et al. runs in O(NO(

√
K)) [15].

Algorithm 1 (IMEC Algorithm).

Step 1. Initially deploy K BSs at the locations of K sensors
randomly chosen out of N sensors.

Step 2. Cluster the sensors by assigning each of them to its
closest BS.

Step 3. Compute the MEC for the sensors within each cluster
and move the BS to the center of the circle if the BS is not
located there.

Step 4. If any BS moves at the previous step, go to Step 2;
otherwise, return the BS locations.

For small-scale WSNs, we can apply the optimal algo-
rithm in [15] to solve the BSD-1 problem. Unfortunately,
this algorithm does not scale well for WSNs with a large
number of sensors. Based on the heuristic proposed in
[16] for Euclidean p-center problem, we propose an iter-
ative heuristic algorithm, which calls MEC algorithm for
large-scale WSNs. We refer to this algorithm as Iterative
Minimal Enclosing Circle algorithm (IMEC), as shown in
Algorithm 1.

At each iteration of IMEC algorithm, N sensors are
divided into K clusters, each of which contains one BS and at
least one sensor. In fact, each BS defines a Voronoi polygon.
For those sensors within the same cluster, we compute the
MEC to cover them using the algorithms proposed in [1]. In
order to minimize the maximum distance between a sensor
and the BS, we have to deploy the BS at the center of the
circle. Let Ci represent the MEC for cluster i, ri represent
the radius of Ci, and r∗ = max1≤i≤Kri, which corresponds to
circle C∗. Obviously, r∗ determines T . We have the following
lemma.

Lemma 1. At each iteration of IMEC, r∗ decreases, T inc-
reases.

Proof. Let {C1,C2, . . . ,CK} be the MECs at the current
iteration and r∗old the corresponding maximum radius. Step 3

in Algorithm 1 moves BSs to the centers of these circles. At
the next iteration, the sensors are clustered by reassigning
each of them to its closest BS, so the distance from any sensor
to its closest BS can not exceed r∗old; otherwise, this sensor can
not be covered by any Ci. Therefore, the radius of any new
MEC that covers all the sensors within the same cluster is at
most r∗old. It follows that the updated radius r∗new ≤ r∗old. Since
r∗ decreases at each iteration, from (1) and (7) we conclude
that T increases.

The time complexity of an iteration consists of two main
components: one is to divide sensors into K clusters, which
can be done in O(K · N), the other is to compute the MEC,
which can be done in linear time O(N) by using the prune-
and-search techniques proposed in [1]. Therefore, the time
complexity of each iteration is O(K ·N), and the overall time
complexity of the heuristic also depends on the number of
iterations, which can be preset by the optimization progress
as employed in most iteration-based algorithms.

4.2. BSD-1 with η > 0. For η > 0, the WSN fails when at
least n∗ = N · η sensors run out of energy. Therefore, those
sensors far away from BSs are allowed to die first. Obviously,
it is not necessary to deploy the BS at the geometric center of
each cluster. BSD-1 with η > 0 is at least as hard as BSD-1
with η = 0.

A naive optimal algorithm for this problem would run in

time O((N − n∗)
√
K · Cn∗N ), where considers Cn

∗
N possibilities

to choose N − n∗ out of N sensors and takes O((N − n∗)
√
K )

to deploy K BSs on N − n∗ sensors. This algorithm can be
applied to small-scale WSNs but does not scale well to large-
scale ones. We propose a heuristic by shrinking MECs and
refer to it as Shrink MEC algorithm (SMEC), as shown in
Algorithm 2.

Algorithm 2 (SMEC Algorithm).

Step 1. Initialize the BS locations using IMEC algorithm and
cluster the sensors by assigning each of them to its closest BS;
compute C1,C2, . . . ,CK ; n = 0.

Step 2. Compute C∗ with the largest radius.

Step 3. Select and ignore one of the sensors located on the
boundary of C∗ and recalculate MEC for the remaining
sensors within C∗ such that the updated MEC achieves
minimum radius; move the BS to the center of the updated
MEC; n = n + 1.

Step 4. If n < n∗, go to Step 2; otherwise, return the BS
locations.

SMEC uses IMEC to initialize the BS locations. At Step 2,
we compute the MEC C∗ with the largest radius and shrink
it at Step 3. In general, an MEC is determined by at least
two and at most three sensors. Hence, at Step 3, we only
need to compare at most three sensors on the boundary of
C∗, which are the critical nodes and will run out of energy
first. At each iteration, we ignore one of the critical nodes to
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minimize the radius of MEC for the remaining sensors. Note
that ignoring a sensor on the boundary in MEC calculation
does not physically remove that sensor from the network,
so the actual network topology is not changed. We have the
following lemma.

Lemma 2. At each iteration of SMEC, r∗ decreases, but T does
not necessarily increase.

Proof. Let r∗old be the corresponding maximum radius at
the current iteration. A critical node is removed from C∗

and then the radius of the updated MEC of the remaining
sensors within C∗ decreases. Meanwhile, the radius of other
MECs are smaller than r∗old. Therefore, the maximum radius
of the next iteration can not exceeded r∗old. It follows that the
updated r∗new ≤ r∗old. The example in Figure 1 shows that T
does not necessarily increase at each iteration. Consider the
network in Figure 1 where we allow at most two sensors to
die, that is, η = 2/N . At the current iteration, the largest
MEC shrinks by not considering either sensor A or sensor
B. Therefore, the SMEC algorithm moves the BS to the
center of the shrunk MEC, which, however, will produce a
worse lifetime performance than fixing the BS at the original
location. In the latter case with the fixed BS location, sensor
A and sensor B run out of energy first, but the remaining
sensors within the MEC have shorter distances to the BS and
therefore achieve a longer lifetime.

The iteration terminates when n∗ sensors are taken out
of consideration in MEC calculation. The time complexity
of each iteration is O(N). Since there are n∗ iterations,
excluding the time for initialization, the total complexity of
the algorithm is O(n∗ ·N).

5. Algorithm Design for BSD-M

In the multihop communication model, the maximum
network lifetime depends on both BS locations and data
routing paths. We have formulated BSD-M as an NP-
complete quadratic programming problem in Section 3.3.
Nevertheless, for given BS locations, since transmission cost
eti, j and eti,Bj in (4) and (5) are known, we can use linear
programming based on the simplex algorithm to efficiently
compute the theoretically maximum achievable network life-
time T and determine fi, j and fi,Bj for optimal data routing.

We first consider a single BS deployment scenario and
rigorously derive the BS location, which is then used in a
heuristic designed for the deployment of multiple BSs.

5.1. Single BS Deployment. In the multihop communication
model, besides transmitting its own data, a sensor also relays
data from other sensors to BSs. Thus, the sensors that are one
hop away from a BS need to relay all the data generated by
other sensors. Different from the one-hop communication
model, the sensors close to a BS may actually run out of
energy first. Therefore, a good deployment strategy would
consider placing the BS in an area with a high sensor density
to prolong the network lifetime. We introduce a new concept,
crowdedness, denoted as wi to describe the density level in

A B

BS

Sensor

Figure 1: An example that supports Lemma 2.

sensor i’s neighborhood, which is defined as the number of
sensors within the radio range of this sensor. Obviously, the
BS should be deployed at a place with high crowdedness.
Meanwhile, we wish to minimize the total distance from
sensors to the BS to reduce the number of data relays. We
have the following deployment objective where the distance
di,B between sensor i and BS B is weighted by the sensor’s
crowdedness:

Min

⎛
⎝

N∑

i=1

wi · di,B
⎞
⎠. (9)

It follows that the optimal BS location is given by

(
x∗B , y∗B

) = argmin
(xB ,yB)

N∑

i=1

wi ·
√

(xi − xB)2 +
(
yi − yB

)2
. (10)

The objective is achieved by setting the partial derivatives to
zero as follows:

∂

∂xB

N∑

i=1

wi · di,B
∣∣
xB=x∗B =

N∑

i=1

wi · xi − x
∗
B

di,B
= 0,

∂

∂yB

N∑

i=1

wi · di,B
∣∣
yB=y∗B =

N∑

i=1

wi · yi − y∗B
di,B

= 0.

(11)

The optimal location (x∗B , y∗B ) of BS can be obtained by
solving the nonlinear (11) using Newton-Raphson method.
Let f1(xB, yB) and f2(xB, yB) be the left sides of (11),
respectively. Let (xB, yB) and (x′B, y′B) be the BS coordinates
at the current and next iterations, respectively. The iterative
procedure of Newton-Raphson is defined as

(
x′B
y′B

)
=
(
xB
yB

)
− J−1

(
xB, yB

) ( f1
(
xB, yB

)

f2
(
xB, yB

)
)

, (12)
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where J−1(xB, yB) is the inverse of the Jacobian matrix
defined as

J
(
xB, yB

) =

⎛
⎜⎜⎜⎝

∂

∂xB
f1
(
xB, yB

) ∂

∂yB
f1
(
xB, yB

)

∂

∂xB
f2
(
xB, yB

) ∂

∂yB
f2
(
xB, yB

)

⎞
⎟⎟⎟⎠. (13)

We use MEC algorithm [1] to determine the initial values of
(xB, yB). The iteration process terminates when the variation
of the coordinates is smaller than a specified threshold. Each
iteration has a linear time complexity with respect to the
number of sensors N .

5.2. Multiple BSs Deployment. The multiple BSs deployment
problem is more challenging than the single BS deployment
problem, as we need to consider sensor clustering. We pro-
pose an iterative algorithm, Iterative Analytical Derivation
(IAD), based on the analytical derivation results of the single
BS deployment problem, as shown in Algorithm 3.

Algorithm 3 (IAD Algorithm).

Step 1. Initialize the BS locations using IMEC algorithm.
Initialize the number of iterations i = 0.

Step 2. Compute the minimal energy consumption path
from each senor to each BS; cluster the sensors by assigning
each of them to the BS with the least energy consumption.

Step 3. Compute the BS location using analytical derivation
for each cluster; i = i + 1.

Step 4. If i < Imax, go to Step 2; otherwise, return the BS
locations.

At each iteration of IAD algorithm, we assign each sensor
to the BS with highest energy efficiency to minimize the
total energy consumption of the network. Inside each cluster,
the new BS location is obtained using the same method
presented in the single BS deployment scenario. The total
energy consumption within each cluster is also minimized
by simultaneously considering the deployment of BS in
a crowded area to prolong the network lifetime. We set
the maximum number of iterations to be Imax. The time
complexity of each iteration is O(N · (N +K)2 · log(N +K)),
which is dominated by the time complexity of Step 2.

6. Simulation Results

In this section, we present the simulation results from the
BSs deployment experiments on a number of randomly
generated networks with various sizes. We implement and
evaluate the performance of the proposed deployment
algorithms in comparison with several existing ones.

In the simulation setup, we consider a network of sensors
that are randomly placed in a square-shaped planar area. Dif-
ferent networks are created by varying the network size and
the number of given BSs. Each sensor has a communication
radio range of 60 m and an initial energy capacity of 2J , and
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Figure 2: Performance comparison of IMEC and the optimal
algorithm in 200 sample networks with N = 15 and K = 3.
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Figure 3: Performance comparison of SMEC and IMEC algorithm
in 200 sample networks with N = 300, K = 6, and η = 2%.

generates a data message of 200 bytes during each round. The
energy cost model for data transmission between each pair of
sensors conforms to (1) and (2).

6.1. Performance of IMEC Algorithm. IMEC algorithm is
designed for BSD-1 problem to maximize CL performance
when η = 0, where the network lifetime is determined
by the maximum radius of the MECs for all clusters. We
randomly generate 200 sample networks with 15 sensors
and 3 available BSs placed in 100 m × 100 m region. For
each of these networks, we run our IMEC algorithm and
the optimal algorithm proposed in [16], and compute their
corresponding lifetime. Note that this optimal algorithm is
only used as a comparison base in small-scale networks.
We do not compare these two algorithms in large-scale
networks because the optimal algorithm has a computational
complexity of O(N2K+1) and is prohibitively expensive when
network sizes are large. The histogram-like performance
comparison is shown in Figure 2, where the x-axis represents
the ratio of lifetime obtained by the optimal algorithm and
IMEC, and y-axis represents the number of sample networks
fall in each ratio range. We observed that IMEC achieves the
optimal performance in 54 out of total 200 sample networks
and achieves near-optimal performance (when the ratio of
lifetimes is less than 1.2) in more than 130 sample networks.
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Figure 4: Performance comparison of IAD, k-means, and Global
algorithms with 5 BSs in response to various sensor distributions.

These measurements show that the IMEC algorithm has a
probability of 27% to achieve the global lifetime optimality
and 65% to achieve near-optimality in a statistical sense.

6.2. Performance of SMEC Algorithm. SMEC algorithm is
designed for BSD-1 problem to maximize WL performance
when η > 0. It employs IMEC algorithm to initialize the
BS locations and then shrinks the largest cluster at each
iteration. Again, we randomly generate 200 sample networks
with 300 sensors and 6 available BSs placed in 500 m×500 m
region. For each of the sample networks, we run both SMEC
and IMEC algorithms, and compute their corresponding
lifetime. The lifetime performance comparison is shown in
Figure 3, where the x-axis represents the ratio of lifetime
obtained by SMEC and IMEC, and y-axis represents the
number of sample networks fall in each ratio range. We
observed that SMEC outperforms IMEC in 174 sample
networks, achieves the same performance in 6 sample
networks, and underperforms in 20 sample networks. In
light of Lemma 2, we know that SMEC does not guarantee
the lifetime be improved at each iteration. If we build a 2-
3 search tree [2] by removing one critical sensor at each
iteration, this tree-based search process will have guaranteed
better performance than IMEC. However, the complexity of
this tree search is exponential, and hence not scalable to
large-scale WSNs. These simulation results show that the
SMEC algorithm outperforms the IMEC algorithm with a
probability of 87% in a statistical sense.

6.3. Performance of IAD Algorithm. IAD algorithm is
designed for BSD-M problem that uses multihop commu-
nication model to maximize network lifetime. We compare
it with two existing algorithms: k-means algorithm [7]
and Global algorithm [4]. Again, the sample networks are
randomly generated with the placement of 500 sensors in
500 m×500 m region. After the sensors are generated and BSs
are placed by using these algorithms, the BSD-M problem
with network topology and energy information is converted
into an LP task (3), (4), and (5), and the network cooperative
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Figure 5: Performance comparison of IAD, k-means, and Global
algorithms with fixed sensor placement in response to various
numbers of BSs.

lifetime (η = 0) is computed by using the GNU Linear
Programming Kit (GLPK) package. In the simulation, we set
the maximum number of iterations for these three iterative
algorithms to be 5. We conducted two sets of experiments:
(i) fix the number of BSs but varying the sensor distribution;
and (ii) fix the sensor placement but vary the number of
BSs. In each set of experiments, we produce one performance
curve for each of these three algorithms as shown in Figures
4 and 5, respectively. In Figure 4, the case number along the
x-axis represents the sample networks with different node
distributions. The performance curves of all three algorithms
in Figure 5 show that the lifetime performance increases
almost linearly as the number of BSs increases, which justifies
the motivation of deploying multiple BSs in the network. We
observed that the proposed IAD algorithm outperforms the
other two existing methods. Since neither Global algorithm
nor k-means algorithm considers crowdedness, they may not
place the BSs in dense areas, hence resulting in few critical
nodes around the BSs. The IAD algorithm jointly considers
minimizing the total energy cost and maximizing the num-
ber of critical nodes, therefore achieving better performance.

7. Conclusion

In this paper, we investigated the problems of deploying
multiple BSs in WSNs to maximize the network lifetime
under one-hop and multihop communication models.
We formulated the multiple BSs deployment problems as
optimization problems and proposed various optimal or
heuristic solutions based on geometric optimization tech-
niques and rigorous mathematical derivations. The extensive
simulation results illustrated the efficacy of these proposed
deployment algorithms.
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