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Abstract—Security is an important issue for sensor networks 
deployed in hostile environments, such as military battlefields.  
The low cost requirement precludes the use of tamper resistant 
hardware on tiny sensor nodes. Hence, sensor nodes deployed 
in open areas can be compromised and used to carry out 
various attacks on the network. In this paper, we consider the 
collision attack that can be easily launched by a compromised 
(or hostile) node: a compromised node does not follow the 
medium access control protocol and cause collisions with 
neighbor transmissions by sending a short noise packet. This 
attack does not consume much energy of the attacker but can 
cause a lot of disruptions to the network operation. Due to the 
wireless broadcast nature, it is not trivial to identify the 
attacker. In this paper, we propose a distributed scheme that is 
based on low-cost hardware and can effectively identify the 
source of a collision attack. Our scheme is based on analyzing 
physical-layer Received Signal Strength Index (RSSI) readings. 
We show that correct identification of an adversarial node can 
be achieved with greater than 85% accuracy. We further 
present a technique that degrades gracefully as the background 
noise increases. 
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I. INTRODUCTION 

Security is an important and challenging issue in wireless 
sensor networks. A widely used attack model assumes that a 
sensor node does not have tamper resistant hardware (due to 
cost reason) and may be compromised in the field. A 
compromised node may be used to carry out various 
malicious attacks on the network. Several attacks on sensor 
nodes/networks have been studied, such as selective 
forwarding attack, wormhole attack, sinkhole attack, and 
Sybil attack [1].  

In this paper, we study the malicious collision attack that 
can be easily launched by a compromised (or hostile) sensor 
node. In a collision attack, an attacker node does not follow 
the medium access control protocol and cause collisions 
with neighbor node’s transmissions by sending a short noise 
packet. This attack does not consume much energy of the 
attacker but can cause a lot of disruptions to the network 
operation. Due to the wireless broadcast nature, it is not 
trivial to identify the attacker. In this paper, we present a 
distributed scheme that is based on low-cost hardware and 
can effectively identify the source of a collision attack. 
Basically, our scheme identifies the attacker by analyzing 
the physical-layer Received Signal Strength Index (RSSI) 

readings at neighbor nodes. RSSI readings are inherently 
unreliable due to the variability of the wireless medium. We 
overcome this unreliability through distributed sampling and 
centralized analysis of the RSSI readings. It has been shown 
that for multiple transmissions from a single source, the ratio 
of RSSI readings from neighbor nodes remains constant [2].  
We leverage this fact to create unique fingerprints for nodes 
in a sensor network. The fingerprints are used for identifying 
the source of a collision attack with high confidence.   

Most past work considered a homogeneous sensor 
network, where all nodes have the same (or similar) 
capabilities. In this work, we adopt a Heterogeneous Sensor 
Network (HSN) model that consists of a small number of 
powerful High-end sensors (H-sensors), in addition to a 
large number of small Low-end sensors (L-sensors). H-
sensors have better capabilities than L-sensors in terms of 
communication, computation, energy supply, storage space, 
and other aspects. In our research, we take advantage of the 
strong capabilities of H-sensors for designing efficient and 
effective security schemes. 

The rest of the paper is organized as follows: We discuss 
the related work in Section II, and describe the wireless 
fingerprinting framework in Section III. In Section IV, we 
present several effective schemes for identifying the source 
of a collision attack, and we report the experimental results 
in Section V. We conclude this paper in Section VI. 

II. RELATED WORK 
Demirbas and Song [2] developed a scheme for detecting 

the Sybil attack [1] by using the RSSI values from at least 
two detecting nodes. They showed that while the RSSI 
values for a given node vary greatly between transmissions, 
the ratio of RSSI values seen by two nodes for a given 
source is consistent. However, the goal in [2] is simply to 
determine whether two transmissions were from the same 
source, [2] did not present any practical techniques for 
determining the source of malicious transmission collisions 
in sensor networks. Furthermore, [2] only considered 
homogeneous sensor networks. Our work addresses a more 
difficult issue of identifying the source of a malicious 
collision. Also, we considered a HSN and utilized more 
powerful H-sensors.  

Law, et al., [3] considered an attack where an outsider 
deploying a jamming network in the same area as the target 
network. They presented schemes for efficient jamming, 
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with near 100% message suppression, while giving the 
jamming nodes a lifetime similar to the target network. 
Suggestions for more robust MAC layer protocols are given 
in [3]. 

A number of literatures have discussed methods for 
wireless fingerprinting by analyzing characteristics of the 
radio signal. Some are discussed below: 
� Frequency shift – Due to the cost of manufacturing, 

every radio transmits at a slightly different frequency 
[4], and this can be used to identify a radio device. 

� Transients – During power up and power down, 
wireless radios emit a noise signal. The noise signals 
are referred to as transients and are unique to each 
physical device [5].    

� Signal strength – A closer node usually has a stronger 
signal than one far away [2] when similar 
transmission powers are used.   

� Clock skew – Due to manufacturing reasons, each 
node has a unique clock skew, and the skew can be 
used to identify a node [6].   

Techniques (e.g., those in [4 - 6]) relying on analysis of 
the physical radio signal typically require expensive 
hardware to obtain the necessary accuracy. However, the 
RSSI is a notable exception and the RSSI value is available 
in many wireless devices. On the other hand, RSSI is also 
unreliable for two reasons:  1) A common energy saving 
technique is to vary the transmission power to only the level 
needed for reaching the desired neighbor. If sensors 
dynamically change their transmission powers, the RSSI 
value itself is not very useful for node identification. 2) The 
signal strength of a transmission also varies due to 
environmental conditions, and can be unreliable even if the 
transmission power is fixed. 

Faria and Cheriton [7] developed a RSSI based 
fingerprinting scheme, in which a fingerprint is the RSSI 
values recorded by multiple Access Points. Similarly to [2], 
they want to decide whether multiple transmissions came 
from the same source. In order to combat the effects of 
varying transmission power, the difference between RSSI 
readings from the same transmissions is used to determine 
an attacker. However, the actual differences between RSSI 
readings vary a lot and are not reliable.  In our scheme, we 
use the fact that the ratio of RSSIs from two observers 
remains constant, regardless of the source transmission 
power.  Yedavalli et al. [8] utilized RSSI for localization. 
The scheme in [8] is referred to as Ecolocation, and it is 
based on the distance-based rank-ordering by detector nodes 
with known locations. The assumption is that RSSI is 
correlated with distance, and the rank-ordering is determined 
by the location of the unknown node. 

 
III. WIRELESS FINGERPRINTING FRAMEWORK 

A. Network Model 
After sensor deployment, clusters are formed in a HSN. 

An efficient cluster formation scheme for HSNs can be 

found in [9]. Each cluster contains one H-sensor and a 
number of L-sensors, and the H-sensor is the cluster head. L-
sensors respond to queries from and send data to its cluster 
head.  A cluster head (H-sensor) aggregates data and then 
send it to the base station. An H-sensor is a more powerful 
node, and can communicate directly to all (or most) L-
sensors in its cluster.  L-sensors are small, low-power nodes 
and they send data to the cluster head via multi-hop 
communications.   

B.  Attack Model 
An L-sensor may be captured and compromised, and 

then all the data, software and security materials will be 
revealed. Zhu et al. [10] suggested that there is a minimum 
time for an adversary to compromise a sensor node, and 
within the time period the network is assumed to be secure. 
In this paper, we make the same assumption as [10]. In 
addition, we assume that H-sensors are trustworthy. For 
example, H-sensors may be installed with tamper-resistant 
hardware. This is a reasonable assumption for powerful H-
sensors.  

Our main goal is to identify the source of a malicious 
collision attack, where an adversarial node makes 
transmissions timed to cause collisions with legitimate 
neighbor communications, for the purpose of disrupting 
traffic. For example, suppose the IEEE 802.11 MAC is used, 
and node u wants to send a packet to a neighbor node v. 
Based on the RTS/CTS exchanges, a neighboring adversarial 
node x knows the timing of u to transmit the data packet, and 
x can transmit a noise that overlaps with the data packet and 
hence cause collisions. The malicious collision attack also 
allows an attacker to carry out the selective forwarding 
attack [1] for routes that it isn't actually on. Since the 
attacker may not follow any protocol, we make no 
assumptions about the format of the collision packet other 
than that it has measurable signal strength to all neighbors.  

C. Building the Fingerprints 
In this paper, we propose a scheme that can identify the 

source of a malicious collision attack by using the RSSI 
readings. The scheme is based on the fact that the ratios of 
the RSSI readings between two neighbor nodes remain the 
same (or very close) for different transmissions from the 
same source, even the transmissions use different powers. 
Denote R (1)u  as the RSSI reading at node u for 
transmission #1. Suppose that neighbor nodes u and v record 
the RSSIs from two transmissions, if the following result 
holds:     

R (1) R (1) R (2) R (2)u v u v�                (1) 
then we can claim that the same source node transmitted 
packet #1 and #2.  

The RSSI ratio in equation (1) is a fingerprint of a node. 
In this subsection, we discuss how to build the fingerprints 
for the identification. During the initiation phase (assumed 
no attacks), all L-sensors send hello messages with a 
sequence number by using the same power. Each L-sensor 
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records the RSSIs of neighbors’ hello messages and the 
corresponding sequence numbers. Then the RSSI values are 
sent to the cluster head (denoted as H).  

A sample set of RSSI readings [11] is given in Table I. 
These RSSI readings are data from actually wireless 802.11 
transmissions experimented by the Orbit test-bed [12] at 
Dartmouth College. The experiment layout is shown in 
Figure 1, where 29 nodes are deployed in a grid of 8x8 cells, 
and the cell length is 1 meter. Xs denote nodes, and Os 
denote noise generators. The node is labeled by its 
coordinates in the grid, e.g., 1-2 is the node locates at row 1 
and column 2. In Table I, the first row is the node label x-y. 
Rows 2 – 6 list the RSSI readings of five hello messages 
sent by the node at location 1-2, as recorded by all of its 
neighbors.   

TABLE I.  RSSI OF TRANSMISSIONS FROM NODE 1-2  

1-2 1-4 1-6 1-8 2-1 2-5 3-2 3-4 3-6 3-8 4-1 
r-1 -1 38 19 21 23 27 35 25 20 22 26
r-2 -1 38 18 20 21 26 34 24 18 22 26
r-3 -1 37 14 18 19 24 30 22 16 19 23
r-4 -1 37 12 16 16 20 32 20 14 16 21
r-5 -1 36 11 15 16 21 32 20 13 16 20
ave -1 37.2 14.8 18 19 23.6 32.6 22.2 16.2 19 23.2  

 

 
Figure 1. The network topology 

The set of RSSIs for a given transmission from multiple 
neighbors are referred to as a report. For example, in Table I, 
report 1 includes all RSSIs in row 2. When a node logs a 
RSSI, the timestamp is recorded as well. The timestamp is 
sent to H along with the RSSI value. The fingerprint of a 
node is the set of all reports corresponding to hello messages 
sent by that node.   

To reduce the overhead of RSSI fingerprint generation, 
the following schemes may be used: 

1) If the IEEE 802.11 MAC is used, then the RTS/CTS 
packets can be used for recording the RSSIs and 
hence generating the fingerprint of a node. 

2) If there are no MAC control packets being sent before 
the data packet (e.g., TDMA is used), then the RSSI 
can be obtained from the packet header. The header 
should be received by all neighbors such that a 
neighbor node knows whether this packet is intended 
for itself.   

In both cases, no dedicated packets (e.g., hello messages) 
are used to generate the RSSI fingerprints, and hence the 
communication overhead is reduced.  

After receiving all the reports, the cluster head H will 
compare the reports based on the timestamp to make sure 
RSSIs from the transmission is used to build the fingerprint. 
When a collision attack happens, there are two transmissions 
(the legitimate packet and the collision packet) occurring 
simultaneously. Suppose node u transmits to v, and node x 
causes a collision. When node v detects a collision, it 
assumes that there is a collision attack. However, v does not 
know who the attacker is. After detecting a collision attack, 
node v sends to all of its 2-hop neighbors an alarm message, 
which includes the legitimate sender ID u and the time t of 
the collision attack. Each 1-hop neighbor of node u should 
hear the legitimate transmission from u (or the collision). 
Hence, u’s 1-hop neighbors will not response to the alarm 
message (i.e., do NOT report to H). When other nodes 
receive the alarm message, each sends to the cluster head H 
a report message that includes the RSSI and the timestamp 
of a transmission around the time t. H will use the 
timestamps to correlate the readings. After collecting the 
RSSI readings from the report messages, H will build a 
RSSI ratio, and compare it with the RSSI ratio fingerprint. 
The node that has the closest match is considered as the 
attacker. We discuss the details of several identification 
schemes in Section VI. 

IV. EFFECTIVE SCHEMES FOR IDENTIFYING THE ATTACKER  

A.  The Average RSSI Value Scheme 
To reduce the communication overhead of building 

fingerprints, each L-sensor should aggregate the RSSI 
readings from all its neighbors and only send a single report 
to H. A simple way to do this is for each L-sensor to take the 
average RSSI of multiple hello messages and send the 
average instead of the individual RSSIs. To minimize the 
variations of RSSI readings, hello messages are transmitted 
with a constant power. The above scheme is referred to as 
the Average RSSI Value (ARV) scheme. For example, for 
the RSSI data in Table I, each L-sensor computes the 
average of the RSSI values, as listed in the last row, and 
sends the average to H.   

  When a collision attack happens, H collects the event 
reports from L-sensors, and builds the RSSI ratio of the 
attacker. Then H compares the attacker’s RSSI ratio with 
that of each candidate node y (neighbors of node v). A score 
is used to indicate the magnitude of the difference between 
the RSSI ratios. The RSSI ratios are computed for every pair 
of nodes i and j that have valid RSSI readings stored in the 
fingerprint and are listed the event reports. A candidate y’s 
score is the average of the differences of RSSI ratios for all 
nodes i and j. The candidate y with the lowest score is 
identified as the source of the collision attack. Figure 2 lists 
the ARV scheme. In Figure 2, Report is the event report 
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being analyzed, FPy is the fingerprint of node y, and i, j, y 
are L-sensors.   

 
1   foreach candidate node y 
2      score[y] := ∞ 
3      foreach iє(FPy and Report) 
4         scorej := 0,    n := 0 
5         foreach jє(FPy and Report), j≠i 
6             ������ += �	
��[�]

�	
��[�] − ���[�]
���[�]     

7            n := n + 1 
8         scorej := scorej / n 
9         if scorej < score[y] then  score[y] = scorej 

Figure 2.  The ARV scheme 

B.  The Constraint-based Average RSSI Value Scheme 
Ecolocation [8] uses the concept of constraints to 

estimate a node’s position. In [8], a constraint is given by the 
distance-based rank ordering of a pair of neighbors. I.e., if 
neighbor i is closer than neighbor j to a node u, then the 
constraint match requires that the distance between u and i 
is less than that between u and j. In [8], a set of constraints is 
used to estimate the location of a node.  

We apply the constraint technique to the ARV scheme, 
and refer to this new scheme as Constraint-based Average 
RSSI Value (CARV) scheme. During network initiation, 
each L-sensor collects RSSI readings from their neighbors, 
and sends the average RSSI to its cluster head H. When a 
collision attack is detected, neighbor L-sensors send RSSI 
reports to H for analysis.   

We define a constraint function c(s, t) as follows: 
1 ( )

( , ) 0 ( )
1 ( )

if s t
c s t if s t

if s t

� �� �
� 	
 
� 	
� 	�� 

                               (2) 

Basically, the constraint function c(s, t) compares two 
input values s and t and determines which is larger. A 
constraint is matched if and only if for two pairs of RSSI 
values (s1, t1) and (s2, t2), the following holds: 

c(s1, t1) = c(s2, t2)                                           (3) 

 
1   foreach candidate node y 
2      score[y] := 0 
3      foreach iє(FPy and Report) 
4         foreach jє(FPy and Report), j>i 
5            if c(FPy[i], FPy[j])=c(Report[i], Report[j])  
6                then  score[y] := score[y] + 1 
7                else score[y] := score[y] – 1 

Figure 3.  The constraint based average RSSI value scheme 

Constraints are calculated once for every pair of nodes i 
and j that have RSSI readings for each candidate node y in 
both the fingerprint and the event report. For each candidate 
node y, H computes a score that is the number of matched 
constraints minus the number of violated constraints. The 

candidate node y with the highest score is selected to be the 
best match. Figure 3 shows the algorithm.   

C. The Hybrid Scheme  
The ARV scheme is based on the fact that the RSSI ratio 

between two detector nodes for a given node should remain 
the same. The CARV scheme relaxes this requirement, and 
only considers if the one RSSI is larger than the other, 
instead of considering the actual ratio value. In this 
subsection, we present a Hybrid Average RSSI Value 
(HARV) scheme. The HARV scheme is similar to CARV 
scheme, but we change the way constraints are verified. As 
shown in Figure 4, only line 5 of the scheme is different 
from CARV, where a constraint is matched if the difference 
of two RSSI ratios is less than a threshold ε. In [2], a 
threshold of 5σ was used in the Sybil attack detection 
experiments, where σ is the Standard Deviation of the 
difference in RSSI ratios of consecutive messages as 
recorded by two detector nodes. In their experiments, 5σ = 
0.5. We conducted experiments by varying ε, and found 0.5 
to be a good value. The results shown below were collected 
with the parameter ε = 0.5. Again, the candidate node y with 
the highest score is selected as the source of the attack.   

D.  The Localization-based Scheme 
In this subsection, we present a Localization-based 

(LOC) scheme. The LOC scheme is an implementation of 
the location estimation scheme described in [13].  If each L-
sensor knows its own location, then it is possible to estimate 
the location of the source of any transmission that is 
observed by at least four L-sensors. Basically, we can 
estimate the location by solving the following equation for x 
and y: 

� � � �
� �

� � � �

� � � �
� �

� � � �� �
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� �
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� �
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 � � �� �

� �

   

(4)

 

where Ri is the RSSI recorded by node i; i, j, k, and l are the 
L-sensors that observed the transmission made by the node 
located at (x, y); and α is the distance-power gradient.   

1   foreach candidate node y 
2      score[y] := 0 
3      foreach iє(FPy and Report) 
4         foreach jє(FPy and Report), j>i 
5            if  ��	
��[�]

�	
��[�] − ���[�]
���[�]� < � 

6                then  score[y] := score[y] + 1 
7                else score[y] := score[y] – 1 

Figure 4. The hybrid scheme 
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H obtains the Ri from event reports, and then derives the 
location of the source node based on Equation (4). The L-
sensor closest to the source location is considered to be the 
attacker. One distinct advantage of this scheme is that it does 
not rely on any fingerprint. The location is derived based on 
a single, independent transmission. Also, it is not the identity 
of the node that is revealed, but the location. 

V. PERFORMANCE EVALUATION 
In this Section, we present the performance evaluation of 

the four schemes in Section IV. We utilize the RSSI data 
collected by Kaul et al. [11] on the ORBIT test bed [12]. 
The test-bed topology is shown in Figure 1, where 29 nodes 
were deployed in a grid of 8x8 cells with 1 meter cell size. 

Five sets of RSSI data were collected, varying the power 
of the noise from -20 dbm to 0 dbm in an increment of 5 
dbm. Each node made 300 transmissions; the RSSI for each 
transmission was recorded by the remaining nodes. We use 
the first 100 transmissions as our training set, and the 
remaining 200 transmissions as our data set. In our 
evaluations, 20 data sets were used for test purpose. The 20 
transmissions were chosen by taking every 10th message 
from transmission 100 to 300.  A close inspection of the 
generated fingerprints shows that the data set includes one 
node that was failed.  That is, there are no valid readings for 
that node. Further, there are three nodes that have poor 
quality fingerprints. These four nodes cause the vast 
majority of the inaccuracy in the test. 
 

 
Figure 5. Identification accuracy vs. training set size 

A.  Finding the Optimal Size of Training Set  
A parser was written in C++ to build the fingerprints and 

analyze the data against the test set.  In order to compare the 
various schemes discussed in Section III, trials were run by 
varying the size of the training set.  A training set of size n 
used the first n messages for training. The test set remained 
the same for comparison purpose. Figure 5 plots the 
accuracy of identifying the attacker Vs the size of the 
training set, and it shows that the training set size does NOT 

have significant impact on the accuracy. Note the accuracy 
varies between 0.86 and 0.89.  

B.  Evaluation of the LOC Scheme 
Since the LOC scheme does not rely on RSSI 

fingerprints, it is considered different from the other three 
schemes. The algorithm used to solve Equation (4) is given 
in Figure 6, and is explained below:  First, we rearrange the 
equations and move the terms to one side. We seek to find 
values for x and y that minimize the error. Four detector 
nodes i, j, k, l are chosen at random, and α is set to 2. The 
locations of the four detector nodes are given as (xi, yi), (xj, 
yj), (xk, yk), (xl, yl), respectively. For each transmission, the 
algorithm is run to estimate the sender’s location, and the L-
sensor closest to the computed location (in terms of 
Euclidean distance) is considered as the sender.   

TABLE II.  LOCALIZATION ERRORS 

 Dataset Error (meter) Standard Deviation 
dbm -20 3.88 1.89 
dbm -15 3.75 1.82 
dbm -10 3.85 1.88 
dbm -5 3.48 1.87 
dbm -0 3.18 1.87 

 
As shown in Figure 7, the performance of the LOC 

scheme is quite poor. In order to better understand why the 
performance was poor, we examine the average error of the 
resulting coordinates versus the actual coordinates of the 
source for each transmission. The results are listed in Table 
II. For all data sets, the average localization error was 
greater than 3 meters. This is consistent with the results in 
[14], which found that a median error of 10 feet (3 meters) 
can be expected with localization based on IEEE 802.11. 
devices. Given that the nodes are placed on a 1-meter grid, 
an average error of 3 meters renders the LOC scheme 
useless. 

1   minErr :=  
2   for x = 0 to 10 step 0.1 
3        for y = 0 to 10 step 0.1     

4    
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5            if err < minErr  
6                then  bestX := x,   bestY := y,   minErr := err 

Figure 6.  The algorithm for computing the location 
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C.  The Accuracy of the Schemes 
We evaluate the accuracy of the four schemes under 

different noise levels. The accuracy is defined as the 
percentage of a scheme correctly identifying the source node 
of a transmission. Specifically, we tested the accuracy of the 
four schemes under five different ambient (background) 
noise levels, from -20 dbm to 0 dbm, with an increase of 
5dbm. The results are reported in Figure 7. As we can see 
the HARV performs better than other schemes, especially 
when the noise level increases. HARV has accuracy between 
0.8 and 0.9. ARV and CARV perform reasonably well, but 
degrade a little bit when noise level increases. LOC 
performed poorly in all cases.   
 

 
Figure 7. Identification accuracy vs. ambient noise level*  

VI. CONCLUSION 
In this paper, we studied the malicious collision attack in 

wireless sensor networks. The attack can be easily launched 
by a compromised or hostile node by timing its transmission 
of a short noise and cause a collision with neighbor’s 
transmission. This attack does not consume much energy of 
the attacker but can seriously disrupt communications in the 
network. Due to the wireless broadcast nature, it is not trivial 
to identify the attacker. In this paper, we proposed three 
effective schemes (ARV, CARV, and HARV) for 
identifying the source of the collision attack. The schemes 
only require low-cost hardware and very suitable for small 
sensor nodes. The schemes are based on the physical-layer 
Received Signal Strength Index (RSSI) readings and utilized 
the fact that the ratio of RSSIs from two neighbors is 
consistent for the same send. One of the schemes – the 
HARV scheme degrades gracefully as the ambient noise 
increases. We evaluated the performance of the schemes 
based on RSSI data collected from real wireless 
transmissions. Our results showed that the three schemes can 
correctly identify the source of a collision attack with greater 
than 85% accuracy. Our results also showed that the 
traditional localization scheme performed poorly. 
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