
www.elsevier.com/locate/comcom

Computer Communications 30 (2007) 2314–2341
A survey of key management schemes in wireless sensor networks

Yang Xiao a,*, Venkata Krishna Rayi b, Bo Sun c, Xiaojiang Du d, Fei Hu e,
Michael Galloway a

a Department of Computer Science, University of Alabama, Tuscaloosa, AL 35487, USA
b XINOPT Co., 6421 brightlea dr, lanham, MD 20706, USA

c Department of Computer Science, Lamar University, Beaumont, TX 77710, USA
d Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA

e Computer Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA

Available online 10 May 2007
Abstract

Wireless sensor networks have many applications, vary in size, and are deployed in a wide variety of areas. They are often deployed in
potentially adverse or even hostile environment so that there are concerns on security issues in these networks. Sensor nodes used to form
these networks are resource-constrained, which make security applications a challenging problem. Efficient key distribution and manage-
ment mechanisms are needed besides lightweight ciphers. Many key establishment techniques have been designed to address the tradeoff
between limited memory and security, but which scheme is the most effective is still debatable. In this paper, we provide a survey of key
management schemes in wireless sensor networks. We notice that no key distribution technique is ideal to all the scenarios where sensor
networks are used; therefore the techniques employed must depend upon the requirements of target applications and resources of each
individual sensor network.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Wireless sensor network; Key management; Security
1. Introduction

Wireless Sensor Networks (WSNs) are going to be
widely used in the near future due to their breadth of appli-
cations by military, exploration teams, researchers, and so
on. It is not possible to use general wireless techniques for
WSNs since they are resource-constrained and security
measures are required. Distribution techniques that are
applicable employ assorted key management methods,
such as public key cryptography, and require numerous
communication and computation capabilities. Therefore,
it is important to examine the different requirements, con-
straints and evaluation metrics of sensor networks as well
as single network-wide key scheme, which is the simplest
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.04.009

* Corresponding author.
E-mail addresses: yangxiao@ieee.org (Y. Xiao), Krishna.rayi@gmail.

com (V.K. Rayi), bsun@cs.lamar.edu (B. Sun), dxj@ieee.org (X. Du),
fxheec@rit.edu (F. Hu), mgalloway@cs.ua.edu (M. Galloway).
of key management techniques, before discussing the vari-
ous germane key management techniques.

Sensor networks must arrange several types of data
packets, including packets of routing protocols and packets
of key management protocols. The key establishment tech-
nique employed in a given sensor network should meet sev-
eral requirements to be efficient. These requirements may
include supporting in-network processing and facilitating
self-organization of data, among others. However, the
key establishment technique for an secure application must
minimally incorporate authenticity, confidentiality, integ-
rity, scalability, and flexibility.

• Authenticity: The key establishment technique should
guarantee that the communication nodes in the network
have a way for verifying the authenticity of the other
nodes involved in a communication, i.e., the receiver
node should recognize the assigned ID of the sender
node.

mailto:yangxiao@ieee.org
mailto:Krishna.rayi@gmail. com
mailto:Krishna.rayi@gmail. com
mailto:bsun@cs.lamar.edu
mailto:dxj@ieee.org
mailto:fxheec@rit.edu
mailto:mgalloway@cs.ua.edu


Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2315
• Confidentiality: The key establishment technique should
protect the disclosure of data from unauthorized parties.
An adversary may try to attack a sensor network by
acquiring the secret keys to obtain data. A better key
technique controls the compromised nodes to keep data
from being further revealed.

• Integrity: Integrity means no data falsification during
transmissions. Here in terms of key establishment tech-
niques, the meanings are explained as follows. Only
the nodes in the network should have access to the keys
and only an assigned base station should have the priv-
ilege to change the keys. This would effectively prevent
unauthorized nodes from obtaining knowledge about
the keys used and preclude updates from external
sources.

• Scalability: Efficiency demands that sensor networks
utilize a scalable key establishment technique to allow
for the variations in size typical of such a network.
Key establishment techniques employed should pro-
vide high-security features for small networks, but also
maintain these characteristics when applied to larger
ones.

• Flexibility: Key establishment techniques should be able
to function well in any kind of environments and sup-
port dynamic deployment of nodes, i.e., a key establish-
ment technique should be useful in multiple applications
and allow for adding nodes at any time.

One of the challenges in developing sensor networks is to
provide high-security features with limited resources. Sensor
networks cannot be costly made as there is always a great
chance that they will be deployed in hostile environments
and captured for key information or simply destroyed by
an adversary, which, in turn, can cause huge losses. Part of
these cost limitation constraints includes an inability to make
sensor networks totally tamper-proof. Other sensor node
constraints that must be kept in mind while developing a
key establishment technique include battery life, transmis-
sion range, bandwidth, memory, and prior deployment
knowledge.

• Battery life: Sensor nodes have a limited battery life,
which can make using asymmetric key techniques, like
public key cryptography, impractical as they use much
more energy for their integral complex mathematical cal-
culations. This constraint is mitigated by making use of
more efficient symmetric techniques that involve fewer
computational procedures and require less energy to
function.

• Transmission range: Limited energy supply also restricts
transmission range. Sensor nodes can only transmit mes-
sages up to specified short distances since increasing the
range may lead to power drain. Techniques like in-net-
work processing can help to achieve better performance
by aggregating and transmitting only processed informa-
tion by only a few nodes. This way save the dissipated
energy.
• Bandwidth: It is not efficient to transfer large blocks of
data with the limited bandwidth capacity of typical sen-
sor nodes, such as the transmitter of the UC Berkeley
Mica platform that only has a bandwidth of 10Kbps.
To compensate, key establishment techniques should
only allow small chunks of data to be transferred at a
time.

• Memory: Memory availability of sensor nodes is usually
6–8 Kbps, half of which is occupied by a typical sensor
network operating system, like TinyOS. Key establish-
ment techniques must use the remaining limited storage
space efficiently by storing keys in memory, buffering
stored messages, etc.

• Prior deployment knowledge: As the nodes in sensor net-
works are deployed randomly and dynamically, it is not
possible to maintain knowledge of every placement. A
key establishment technique should not, therefore, be
aware of where nodes are deployed when initializing
keys in the network.

A key establishment technique is not judged solely based
upon its ability to provide secrecy of transferred messages,
but must also meet certain other criteria for efficiency in
light of vulnerability to adversaries, including the three
Rs of sensor networks: resistance, revocation, and resil-
ience. Though scalability may be considered an evaluation
metric, it is not discussed here since we have included it in
WSN requirements.

• Resistance: An adversary might attack the network by
compromising a few nodes in the network and then rep-
licating those nodes back into the network. Using this
attack the adversary can populate the whole network
with his replicated nodes and thereby gain control of
the entire network. A good key establishment technique
must resist node replication to guard against such
attacks.

• Revocation: If a sensor network become invaded by an
adversary, the key establishment technique should pro-
vide an efficient way to revoke compromised nodes, a
lightweight method that does not use much of the net-
work’s already limited capacity for communication.

• Resilience: If a node within a sensor network is captured,
the key establishment technique should ensure that
secret information about other nodes is not revealed.
A scheme’s resilience is calculated using the total num-
ber of nodes compromised and the total fraction of com-
munications compromised in the network. Resilience
also means conveniently making new inserted sensors
to join secure communications.

We classify key management schemes [1–34] in wireless
sensor networks as follows, while details of the schemes will
be discussed in later sections: (1) Single network-wide key,
(2) Pairwise key establishment, (3) Trusted base station,
(4) Public key schemes (elliptic curve cryptography)
[25–28], (5) Key predistribution schemes (random key pre-



2316 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
distribution scheme [1], q-Composite random key predistri-
bution scheme [2], Multipath reinforcement scheme [2],
Random pairwise key scheme [2], Polynomial pool-based
key predistribution [3], Random subset key predistribution
[3], Grid-based key predistribution [3], Hypercube key dis-
tribution scheme [31], Key management schemes using
deployment knowledge [8], Location dependent key man-
agement scheme [32], Location aware combinatorial key
management [33], etc.), (6) Dynamic key management
[30], and (7) Hierarchical key managements (LEAP [6],
Heterogeneous sensor networks [24,25]), etc.

The key establishment technique employed in a given
sensor network should take into consideration all the
requirements, constraints, and evaluation metrics dis-
cussed. In our work we have assessed different types of
key establishment techniques, each ranging in efficiency
by providing various necessary characteristics.

In Section 2 of this chapter we explain single network-
wide key, pairwise key establishment, trusted base station,
and authentication. Section 3 discusses public key
schemes, in particular elliptic curve cryptography
schemes. Section 4 presents various key predistribution
schemes. In Section 5, we introduce dynamic key manage-
ment schemes. We survey hierarchical key management
schemes in Section 6. Finally, we conclude this paper in
Section 7.

2. Single network-wide key, pairwise key establishment,

trusted base station, authentication

In this section, we briefly introduce single network-wide
key, pairwise key establishment, and trusted base station.
Finally, we also introduce an authentication scheme since
it is used by many schemes in the later sections.

2.1. Single network-wide key

Using a single network-wide key is by far the simplest
key establishment technique. In the initialization phase of
this technique, a single key is preloaded into all the
nodes of the network. After deployment, every node in
the network can use this key to encrypt and decrypt mes-
sages. Some of the advantages offered by this technique
include minimal storage requirements and avoidance of
complex protocols. Only a single key is to be stored in
the nodes’ memory and once deployed in the network,
there is no need for a node to perform key discovery
or key exchange since all the nodes in communication
range can transfer messages using the key which they
already share.

Though a single network-wide key may seem advanta-
geous, the main drawback is that compromise of a single
node causes the compromise of the entire network through
the shared key. This scheme counters several constraints
with less computation and reduced memory use, but it fails
in providing the basic requirements of a sensor network by
making it easy for an adversary trying to attack.
2.2. Pairwise key establishment scheme

The pairwise key establishment scheme, however, is one
of the most efficient key establishment schemes in wireless
sensor networks because it does offer many additional fea-
tures compared to other schemes, including node-to-node
authentication and resilience to node replication.

For a network of n nodes in the Pairwise Scheme, the
key predistribution is done by assigning each node a unique
pairwise key with all the other nodes in the network, i.e.,
n � 1 pairwise keys, which are retained in each node’s
memory so that each node can communicate with all the
nodes in its communication range. With each node sharing
a unique key with every other node in the network, this
scheme offers node-to-node authentication. Each node
can verify the identity of the node it is communicating with.
This scheme also offers increased resilience to network cap-
ture as a compromised node does not reveal information
about other nodes that are not directly communicating
with the captured node. Through increased resilience, the
scheme minimizes the chance for node replication. The
drawback with the Pairwise Scheme is the additional over-
head needed for each node to establish n � 1 unique keys
with all the other nodes in the network and maintain those
keys in its memory. Utilizing such a scheme makes a net-
work size prohibitive since, as the number of nodes in the
network increases, so do the number keys that must be
stored in each node’s memory. If there is a network of
10,000 nodes, then each node must store 9999 keys in their
memory. Since sensor nodes are resource-constrained, this
significant overhead limits the scheme’s applicability, but it
can be effectively used for smaller networks.

2.3. Trusted base station

The main problem of using pairwise key establishment
scheme is that every node in the network has to store
n � 1 key pairs. This can be eradicated when we use a
trusted base station to send the session keys for the com-
munication between any two nodes. The scheme is also
called centralized key distribution center (KDC) approach.
The scheme has small memory requirement and perfectly
controlled node replication, It is resilient to node capture
and possible to revoke key pairs. The drawbacks are that
it is not scalable and the base station becomes the target
of attacks.

2.4. Authentication: lTESLA

Perrig, Szewczyk, Tygar, Wen and Culler [5] at UC
Berkeley presented a suite of security protocols optimized
for sensor networks that they called ‘SPINS’. The suite is
built upon two secure building blocks, each performing
individual required work: SNEP and lTESLA. SNEP
offers data confidentiality, authentication, integrity, and
freshness, while lTESLA offers broadcast data authentica-
tion. The lTESLA protocol, used on regular networks, is



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2317
modified as a SPINS for use in resource-constrained
WSNs. SPINS incorporates TinyOS (operating system) in
each node, all of which communicate with a base station.
Most WSN communications pass through the base
station and involve three communication types: node-to-
base station, base station-to-node, and base station-to-all
nodes.

The main goal of SPINS protocol is to design a key
establishment technique based on SNEP and lTESLA to
prevent an adversary from spreading to other nodes in
the network through a compromised node. Each node in
this scheme shares a secret key with the base station that
is initialized before deployment. The following are some
of the representations in this scheme used to illustrate
how this works:

• Node A and node B are two communicating nodes in
the network;

• Na is generated by node A;
• Xab is the master key shared between nodes A and B;
• Kab and Kba are the encryption keys shared between

node A and node B, which are derived from the master
key Xab;

• K 0ab and K 0ba are the secret MAC keys shared between
node A and node B, which are derived from the master
key Xab;

• {M}Kab denotes the encryption of message M with key
Kab;

• MACðK 0ab;MÞ denotes the computation of MAC for mes-
sage M with MAC key K 0ab.

(1) SNEP: Data confidentiality/authentication/freshness:

A combination of two schemes forms SNEP including a
counter for semantic security and a bootstrapping scheme.
Using this combination, SNEP is able to offer a number of
advantages and only adds 8 bytes per message by reducing
the communication overhead of the network. It uses a
counter, like many other protocols, to offer authentication
and freshness, but does so using means that also provide
semantic security. Note that semantic security is nothing
new and it is a common technique in cryptography, such
as using the traditional counter mode. Two counters are
shared between nodes attempting to communicate with
each other for which some of the source node’s crypto-
graphic techniques send the shared counters with a message
to the destination node. General encryption can be used as
a simple form of confidentiality, but is not sufficient to pro-
tect messages; whereas, semantic security offers far greater
security by making it harder for an adversary to derive
the original data even after obtaining one or more
encrypted messages. In WSNs, sending messages with a
counter can cause overhead; but, the energy can be saved
by sharing the counter between both nodes and increment-
ing it each time the destination node receives a message. As
with other schemes, for better security the same keys
should not be used again and again. In SNEP, independent
keys are used for encryption and MAC operations. The
secret key shared between source node A and destination
node B is used for deriving the encryption and MAC keys
for each direction. The encrypted data has the form
E = D(K,C) where D is the data, K is the encryption key
and C is the counter. The MAC is M = MAC(K 0,CiE).

In SNEP, the total message that node A sends to node B
is: A! B : DðKab;CaÞ;MACðK 0ab;CajjDðKab;CaÞÞ.

The semantic security property is satisfied as each time
the message is encrypted, the counter value is incremented
to a different value; thus, though the same message is
encrypted, an adversary would not be able to decode the
message. This is exactly the same as the traditional counter
mode in cryptography.

With SNEP, an adversary does have a chance of per-
forming a DOS attack by constantly sending the requests
for counter synchronization, but this can be prevented
either by sending the counter value with each encrypted
message or by attaching a short MAC to the message that
does not depend on the counter. Data authentication is
done using the MAC. The counter value in the message
prevents an adversary from replaying old messages, which
would cause confusion and overhead in a WSN. As the
counter value is kept at both ends of communication
and the ID is not transferred with every message, commu-
nication overhead is negligible. The counter scheme also
allows achieving weak freshness. If the counter value is
verified correctly, it reveals the sequence of the messages,
but only guarantees the sequence of messages, not that
the reply from node B is caused by the message from
node A. To achieve strong freshness that includes delay
estimation, a none must be included with messages. To
achieve strong freshness, node A sends a nonce Na along
with a reply message to node B, which resends the nonce
with a reply message. This process can be optimized by
implicitly using the nonce in the MAC computation;
therefore, the entire SNEP protocol with strong freshness
is: A fi B : Na,Ra and B! A : fRbgðKba;CbÞ;MACðK 0ba;Na

jjCbjjfRbgðKba;CbÞÞ.
If the MAC correctly verifies, node A will know that the

reply from B is a reply to its message. In this method, it is
assumed that both communicating parties know the coun-
ter value so that it need not be sent with every message;
though, in reality, messages might get lost or tampered
and cause inconsistencies in the counter value. Protocols
needed to synchronize the counter value include bootstrap-
ping the counter value in the following manner: A fi B : Ca

with B! A : Cb;MACðK 0ba;CajjCbÞ and A! B : MAC
ðK 0ab;CajjCbÞ.

The counter value need not be encrypted since the pro-
tocol needs strong freshness for which both communicating
parties use the counter as nonce. Also, MAC need not
include the names A and B as the keys they use, Kab, state
which nodes are participating in the communication. If
node A realizes that the counter Cb of node B is not syn-
chronized, it may request the counter of B with a message
including Na for strong freshness, or A fi B : Na and
B! A : Cb;MACðK 0ba;NajjCbÞ.



2318 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
(2) lTESLA: Authenticated broadcasts: Authenticating
broadcasted data is a critical issue in WSNs, but previous
solutions to this problem suffer from too much communi-
cation and computation overhead, and therefore, are not
so useful in resource-constrained WSNs. TESLA, one of
these solutions, provides an inefficient scheme for broad-
casting data with authentication by using the digital signa-
tures technique, which adds 24 bytes of overhead to each
message that are typically only allotted a packet size of
30 bytes. Thus, using TESLA can cause almost all of the
packet size to be occupied for the code only. Also, TESLA
discloses the key with every message packet it sends and
receives, which can use a great deal of a WSN’s energy.
Finally, TESLA authenticates keys using a one-way key
chain, which is not possible to be stored in each sensor
node. Perrig et al. modified TESLA for authenticating
broadcasted data in a way that involves no significant over-
head, called lTESLA, this method reduces energy needed
by authenticating data using asymmetric mechanisms. Also
unlike TESLA, which discloses the key every time a packet
is sent or received, lTESLA does so only once in an epoch.
The only limit with lTESLA is that it restricts the number
of authenticated senders as it is expensive to store the one-
way key chain in a sensor node.

lTESLA is able to provide the asymmetric crypto-
graphic type of authenticated broadcast through delayed
disclosure of symmetric keys. For broadcasting authenti-
cated information between the base station and nodes of
a WSN, lTESLA requires that the base station and nodes
are loosely time synchronized and that each node knows an
upper bound on the maximum synchronization error.
When the base station wants to sends a packet to all the
nodes in a given network, it computes a MAC on the
packet beforehand. Since all the nodes in the network are
sure that only a base station can compute the MAC, the
MAC key is not disclosed at this point in time so they will
not be vulnerable to attacks from an adversary. The pack-
ets sent to the nodes are stored in their buffers until the
base station discloses the corresponding keys. Once dis-
closed, the keys can be authenticated by the nodes’ using
the one-way function F. If a key is correct, a node can
use it to authenticate the packet stored in its buffer.

Each MAC key is a sequence of keys generated by the
function F. The sender chooses the last key Kn of the chain
randomly and then generates the one-way key chain by
repeatedly applying F. Supposing that the base station
has sent packets P1 and P2 in the time interval t1, P3 and
P4 in t2, P5 in t3, and P6 in t4, the nodes receiving the pack-
ets cannot verify their authentication immediately, so the
nodes store them in buffers. Packets sent in a particular
time interval are authenticated using the key that corre-
sponds to that time interval. Let the difference of the time
interval be two in this case, and the receiver node is loosely
time synchronized with the base station and knows key K0.
Assuming that all the messages sending the key informa-
tion about packets P1 � P5 are lost and only the message
that carries the key information about packet P6 arrives,
the receiver node can still authenticate the keys of the other
packets by deriving the key information supplied for P6.
Thus, though some of the packets may have been lost,
the nodes can still authenticate them using the keys
received. To do this, lTESLA has multiple phases that per-
form a particular job each, including Sender Setup, Broad-
casting Authenticated Packets, Bootstrapping New
Receivers, and Authenticating Broadcast Packets.

• Sender setup: In this phase, the sender wanting to broad-
cast messages in the WSN generates a one-way key
chain, randomly selects the last key Kn, and generates
the other values by applying the one-way function F

on the chain for generating a length n. As F is a one-
way function that any node can compute, the keys are
generated forward but not backward; i.e., given Kj+1

keys (K0, . . . ,Kj) can be computed, not Kj+2.
• Broadcasting authenticated packets: The sender uses the

particular key for the corresponding time interval. For
example, in the time interval I the sender uses the key
K1 and in the time interval I + 1, the node uses the
key K2. The packets sent in the particular time interval
are authorized using the corresponding key.

• Bootstrapping new receivers: The keys in a one-way key
chain are self-authenticating. If the receiver has one key
in the key chain it can efficiently authenticate the other
keys in the chain. If the receiver has value Kj in the
key chain, it can easily authenticate Kj+1. Also, the sen-
der and the receiver are required to be loosely time syn-
chronized with the receiver having the knowledge of the
sender’s time disclosure schedule. Authenticating the
key chain and having loose time synchronization estab-
lish strong freshness and point-to-point authentication.
A receiver R sends a nonce NR in the request message
to the sender S, which replies to the message containing
the following components: TS fi the current time of the
sender, Ki fi a key in the one way key chain, TI fi start-
ing time, Tint fi duration of time interval, and d fi dis-
closure delay. The secret key shared between the node
and the base station is used as the key for the MAC.

• Authenticating broadcast packets: An adversary some-
times knows the key used in the time interval I and
may also have knowledge about the one-way key chain,
so the receiver should ensure that the packet received is
from an authenticated sender and not from an adversary
before the key is released by that sender. This is achieved
through loose synchronization of the sender and recei-
ver. If the packet is legal, the receiver stores it; if it is
spoofed, it is dropped. Once the receiver verifies the
key, it authenticates the packets with the key and
replaces that new key with the key it already has.

(3) Considerations for SPINS: SPINS uses less of a sen-
sor node’s memory; i.e., while crypto routines occupy 20
percent of the space, lTESLA occupies 574 bytes and
2 Kbytes is the acceptable total used memory [5]. The
scheme’s performance is also efficient, as the bandwidth



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2319
of the WSNs is adequate for the cryptographic primitives
which SPINS uses. Additionally, most of the SPINS design
may be used in other networks of low-end devices. Finally,
the communication costs for SPINS are small, with security
properties like data freshness, authentication and confiden-
tiality only adding an overhead of 6 bytes in a 30-byte
packet, which allows for inclusion in each packet [5].
SPINS can offer even greater advantages when restrictions
on bandwidth and memory are slightly relieved.

Broadcasting and authenticating data are not very easy
for individual nodes, as storing a one-way key in a node’s
memory is not possible, computation of the keys using a
function generates much network overhead, and each node
does not share a common key with every other node in the
network. However, there are two solutions for this prob-
lem. First, the base station is used by a node to transmit
all data that has to be broadcasted to other nodes. Second,
the node broadcasts the data to the base station while the
base station generates the authenticating keys using the
one-way key chain. It is efficient to implement the crypto-
graphic primitives in a single block cipher as WSNs are
resource-constrained and, therefore, can not afford addi-
tional overhead for security. Yet, a strong cryptographic
base is necessary for SPINS.

• Block cipher: Using RC5 can be very efficient in WSNs
because of its small size and high efficiency. Moreover,
as an algorithm it has been subject to scrutiny under
many attacks. Using TEA could also work for block
ciphers, but it is not subject to cryptanalysis scrutiny.
DES and other algorithms are not usable for block
ciphers due to their large size and high computation
requirements that cannot be met in WSNs.

• Encryption function: The counter (CTR) mode of block
ciphers can use the same function for both encryption
and decryption, and the size of the cipher text is the
same as the data in this mode. These two properties
make this mode very useful while working in the encryp-
tion function of SPINS. Also, CTR mode offers seman-
tic security, which is a strong cryptographic property
already discussed. To use the CTR mode, both the sen-
der and receiver nodes must maintain counters in their
memory and possess an efficient way to synchronize
the counters if needed. One advantage of maintaining
a counter at both ends is that the messages now will
not have an overhead of carrying the counter with them.

• Freshness: Using a counter and incrementing it every
time a message is sent automatically provides weak
freshness. For strong freshness, the sender must create
a nonce and should include it in the request message
to the receiver. SPINS uses a MAC function for gener-
ating random numbers and a counter is created to keep
track of those created.

• Message authentication: Not only is a good encryption
function necessary for data, but also a secure MAC is
needed. As the block cipher is used more than once,
CBC-MAC is used for MAC. An efficient way of
message construction must be used to achieve authenti-
cation and message integrity. The construction {M}k,
MAC(k 0,{M}k), in which M is the data, K is the encryp-
tion key, and K 0 is the MAC key, is secure and protects
the nodes from decrypting erroneous ciphered text.

Advantages of this scheme include that it is one memory
efficient scheme, provides strong security features with less
complexity, universal design allows use in many low-end
devices, incurs low communication cost, and offers authen-
tication and strong data freshness with a minimum over-
head. Disadvantages of this scheme include lTESLA
overhead from releasing keys after a certain delay, possible
message delay.

3. Public key schemes

An MICA2 mote developed by the University of Cali-
fornia at Berkeley has an 8-bit 7.3 MHz processor with
4 KB RAM and 128 KB of programmable ROM [26].
WSNs have mostly been using symmetric key and other
non public-key encryption schemes [28]. A drawback to
these schemes is that they are not as flexible as public-key
schemes, but they are computationally faster. With limited
memory, computing and communication capacity, and
power supply, sensor nodes cannot employ sophisticated
cryptographic technologies such as typical public key cryp-
tographs. The use of public key cryptography on WSNs
has not been tested enough to rule it out completely.
Through the use of the MICA2 mote and TinyOS, pub-
lic-key schemes are tested to determine their performance.
Elliptic curve cryptography (ECC) has a faster computa-
tion time, smaller keys, and uses less memory and band-
width than RSA [27]. Both ECC and RSA can be
accelerated with dedicated co-processors. Recently, ECC
has been used [25–28] for WSNs. The authors in [27] have
implemented a way to execute public key schemes on
WSNs with 8 MHz processors, using elliptic curves in com-
puting encryption keys. The MICA2 mote is also able to
use elliptic curve cryptography on their 8-bit processor.
On these sensor nodes, public keys can be computed in less
than 34 s using 1 K of RAM and 34 K of ROM [26].

3.1. Public-key schemes: RSA and ECC

Both RSA and ECC have been in research for many
years. RSA stands for Rivest Shamir Adleman algorithm.
It was developed in 1977 and is still one of the most popu-
lar public-key encryption technologies currently available.
RSA relies on its strength due to the complication of fac-
toring very large numbers. ECC was developed in 1985
independently by Koblitz and Miller. Its approach to pub-
lic-key cryptography is based on the mathematics of elliptic
curves. ECC can obtain the same security level as RSA
while using a smaller key. A 160-bit ECC key has the same
security as a 1024-bit RSA key [27]. A 224-bit ECC key
compares to the 2048-bit RSA key [27]. This is due to the



2320 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
fact that it takes exponential algorithms to solve the elliptic
curve discrete logarithm problem as opposed to small run-
time algorithms to solve the large number factorization in
RSA [27].

The RSA scheme generally introduces keys of size 512–
2048 bits. Its takes a message M and composes a cipher text
C using the key K. A method called the Chinese Remainder
Theorem (CRT) can be used to accelerate RSA. Two prime
numbers q and p are multiplied together to get the modulus
n [27]. Computing these modular multiplications, CRT can
lower computation time by almost 3/4 [27]. Other factors
like the Montgomery multiplication and optimized squar-
ing can reduce RSA complexity by 25%.

ECC is computed by point multiplication on elliptic
curves over prime integer fields or binary polynomial fields
[27]. The implementation of ECC on WSNs is primarily
interested in prime integer fields since binary polynomial
field mathematics is poorly supported by the slow proces-
sors. Operations of ECC scale linearly. This gives ECC
an advantage over RSA on processors with small word
sizes. Also, ECC grows in advantage as the key size grows.

CRT and modular multiplications for ECC and large
integer mathematics for RSA are the most important oper-
ations in these cryptography schemes. Large numbers of
multiplication operations need high memory read and
writes due to the small word size of the processor. Compu-
tation time is therefore reduced by optimizing the number
of memory operations [27].

ECC was implemented on two 8-bit platforms. Perfor-
mance optimizations were applied due to limited resources.
RSA-1024 and RSA-2048 was also implemented for com-
parison [27]. ECC-160 resulted with a private-key faster
than RSA-1024. The performance was even more favorable
when comparing ECC-224 to RSA-2048 [27]. ECC, on
both platforms, outperforms RSA-1024 private-key opera-
tion. ECC also improves its performance over RSA as the
word size of the processor decreases.
3.2. TinyOS public-key implementation

TinyOS comes as a part of the MICA2 mote. It has a
link layer security mechanism based on SKIPJACK [26].
SKIPJACK is an 80-bit symmetric cipher introduced in
1994. The MICA2 offers access control, authentication,
integrity, and confidentiality through TinySec, which is
derived from SKIPJACK. Since TinySec allocates 80 bits
for the key space, attackers could potentially have to do
279 operations to find the key. TinySec actually uses 64-
bit computed keys, with a 16-bit padding [26].

TinySec does not contribute much overhead to the
MICA2 mote. On average, TinySec may decrease message
transmissions by only 0.28 messages per second [26]. Tiny-
Sec consumes about 7.9 KB of space on the mote. If pro-
grams do not need the entire 128 KB of programmable
ROM and 4 KB of RAM, TinySec is a feasible security
addition. Also, TinySec is not perfectly resilient to attacks.
It relies on a single key, and therefore is unable to securely
perform a rekey if necessary [26].

Discrete Logarithm Problem (DLP) is used to overcome
TinySec’s inability to securely distribute encryption keys.
The Diffie–Hellman scheme is based off the DLP scheme.
It allows two nodes to agree on a secret key over an inse-
cure communication channel. Using a variant of the Dif-
fie–Hellman scheme, two nodes can compute a key to use
as the TinySec secret key [26]. The MICA2 motes version
of Diffie–Hellman should include the modulus p of 1024
bits for security purposes.

The drawback of implementing this scheme is the com-
putational overhead involved. Running the Diffie–Hellman
scheme on a MICA2 mote with a modulus p being a 768-bit
prime number takes 31 s [26]. If the modulus p is increased
to 1024 bits, the computation time is 54.9 s. Computation
of this magnitude is unacceptable in terms of energy
requirements. The MICA2 mote, at full duty cycle, will
decrease its lifespan to only a few days. Also note, the
MICA2 mote uses 2 AA batteries, and dies when the volt-
age level drops below 2V [26].

Computations of this kind also take large amounts of
memory. The public-key space is as large as the modulus
p. To have pairwise keys for every node would exceed the
memory space for the mote.

A MICA2 mote using ECC can effectively and securely
distribute the 80-bit TinySec keys. ECC-163 is all that is
needed [26]. ECC is as secure as Diffie–Hellman while using
vastly smaller key sizes. ECC also offers perfect forward
security.

The first attempt of implementing ECC on the MICA2
mote was based on the work of Michael Rosing, EccM
1.0 [26]. Initially, it took around 1.8 s to generate 33-bit
keys. Unfortunately, larger key sizes caused the mote to
reset due to stack overflows [26].

The second attempt utilized jBorZoi 0.9, to reach the
163-bit keys needed to compare with the Diffie–Hellman
scheme. This contributes to EccM 2.0, which has a better
success rate than the 1.0 version [26]. Other than successful
compilation of 163-bit keys, EccM 2.0 uses less memory
than EccM 1.0 and beats the runtime of the Diffie–Hellman
scheme. Using EccM 2.0, it took on average 34.1 s to com-
pute the 163-bit encryption keys [26].

3.3. Key management using ECC

With ECC, key management becomes easy. In [25], Du
et al. propose a routing-driven key management scheme
using ECC, which only establishes shared keys for neigh-
bor sensors that communicate with each other. Both cen-
tralized and distributed key management schemes are
proposed in [25].

4. Key predistribution schemes

In a key predistribution scheme, some keys are pre-
loaded into each sensor before sensor deployment. After



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2321
deployment, sensor nodes undergo a discovery process to
set up shared keys for secure communications. This scheme
ensures to some probability that any two sensor nodes can
communicate using a pairwise key. This scheme does not,
however, ensure that two nodes always are able to compute
a pairwise key to use for secure communication.

In this section, we introduce many key predistribution
schemes in the following subsections.

4.1. Random key predistribution scheme (Basic scheme)

In this subsection, we introduce Random Key Predistri-
bution Scheme proposed by Eschenauer and Gligor [1].
This scheme is also referred to as Basic Scheme. First we
will describe the structure and features of the Basic Scheme
and then how it may be evaluated using two of the three Rs
of efficient sensor networks, revocation and resilience
(through rekeying). We will then analyze the pros and cons
of the Basic Scheme for key establishment in a sensor net-
work. In the Basic Scheme, key distribution is divided into
three stages: key predistribution, shared-key discovery, and
path-key establishment.

(1) key predistribution stage: In the key predistribution

stage, a large key pool of jSj keys and their identifiers are
generated. From this key pool, K keys are randomly drawn
and pre-distributed into each node’s key ring, including the
identifiers of all those keys. At the point that each node has
K keys and the identifiers of those keys, trusted nodes in
the network are selected as controller nodes, and all the
key identifiers of a key ring and the associated sensor iden-
tifiers on controller nodes are saved. Following this, the i-
th contoller node is loaded for each node with the key that
is shared with that node. This key predistribution process
ensures that, though the size of the network is large, only
a few keys need to be stored in each node’s memory,
thereby saving storage space. These few keys are enough
to ensure that two nodes share a common key, based on
a selected probability.

(2) Shared-key discovery stage: Once the nodes are initial-
ized with keys, they are deployed in the respective places
where they are needed, such as hospitals, war fields, etc. After
deployment, each node tries to discover its neighbors with
which it shares common keys. There are many ways for find-
ing out whether two nodes share common keys or not. The
simplest way is to make the nodes broadcast their identifier
lists to other nodes. If a node finds out that it shares a com-
mon key with a particular node, it can use this key for secure
communication. This approach does not give the adversary
any new attack opportunities and only leaves room for
launching a traffic analysis attack in the absence of key iden-
tifiers. More secure alternate methods exist for finding out
the common keys shared between two nodes though. For
example, for every key on a key ring, each node could broad-
cast a list fa;EKiðaÞ; i ¼ 1; . . . ; kg, where a is a challenge. The
decryption of EKi (a) with the proper key by a recipient would
reveal the challenge a and establish a shared key with the
broadcasting node [1].
(3) Path key establishment stage: A link exists between
two nodes only if they share a key, but the path key estab-

lishment stage facilitates provision of the link between two
nodes when they do not share a common key. Let us sup-
pose that node u wants to communicate with node v, but
they do not share a common key between them. Node u
can send a message to node y saying that it wants to com-
municate with node v; this message is then encrypted using
the common key shared between node u and node y and, if
node y has a key in common with node v, it can generate a
pairwise key Kuv for nodes u and v, thereby acting like a key
distribution center or a mediator between the communica-
tion of nodes u and v. As all the communications are
encrypted using their respective shared keys, there will
not be a security breach in this process. After the shared-

key discovery stage is finished there will be a number of
keys left in each sensor’s key ring that are unused and
can be put to work by each sensor node for path key
establishment.

(4) Key revocation: A compromised sensor node can
cause a lot of damage to a network and therefore, revoca-
tion of a compromised node is very important in any key
distribution scheme. In the Basic Scheme, node revocation
is conducted by the controller node. When a node is
revoked, all the keys in that particular node key ring have
to be deleted from the network. Let us assume that the con-
troller node has knowledge about a compromised node in
the network and broadcasts a message to all the nodes in
the network, the message includes a list of the key identifi-
ers of the compromised node’s key ring. To sign the list of
key identifiers, the controller node uses a signature Ke and
then encrypts its message with Kci , which is the key that the
controller node shares with the nodes during the key predis-

tribution stage. Once each node receives the message, it
decrypts the message using the key they already share with
the controller node. When the signature is verified, the
nodes search their key rings for the list of identifiers pro-
vided in the message and, if there is any match, the corre-
sponding keys are deleted from the key ring. After the
matching keys are completely deleted from all the nodes,
there may be links missing between different ones and they
then have to reconfigure themselves starting from the
shared key discovery stage so that new links can be formed
between them. As only few keys are removed from the net-
work, the revocation process only affects a part of it and
does not incur much communication overhead.

The keys used in a sensor network must be rekeyed to
lessen the chance that an adversary may access all of the
network keys when a few nodes and their keys are cap-
tured. Rekeying effectively increases a network’s resilience
without incurring much communication and computation
overhead.

(5) Analysis of the basic scheme: Let us assume that the
probability of a common key existing between two nodes in
the network is p, and the size of the network is n. The
degree of a node d is derivable using both p and n since
the degree of any node is simply the average number of



2322 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
edges connecting that node with other nodes in its neigh-
borhood; therefore, d = p · (n � 1). First we have to find
the value of d such that a network of n nodes is connected
with a given probability Pc. We then must calculate the key
ring size k and the size of the key pool jSj.

According to Random Graph Theory, a random graph
G(n,p) is a graph consisting of n nodes and p representing
the probability of establishing a link between two nodes.
Erdos and Renyi [12] showed that there exists a probability
state p, which moves from state zero to state one for large
random graphs. The function that defines p is called the
threshold function of a property. If we are given a desired
probability (Pc) for graph connectivity, then p is given as

P c ¼ lim
n!1

Pr½Gðn; pÞis connected� ¼ ee�c
, p ¼ lnðnÞ

n þ c
n, where

c is a real constant.
Then, to calculate the key ring size k and the size of the

key pool jSj, we need to first note that wireless constraints
limit the number of nodes in a range to be smaller than n,
represented by the value n 0. Now the probability of sharing
a key between two neighbor nodes varies to p 0 = d/(n 0 � 1),
for a given d value. Also, p 0 can be denoted as the difference
between the total probability and the probability that two
nodes do not share a common key; i.e., p 0 = 1 � Pr[two
nodes do not share any key] and, thus,

p0 ¼ 1� ð1�k
pÞ

2ðp�kþ1
2
Þ

ð1�2k
p Þ
ðp�2kþ1

2
Þ, where jSj is the size of the key pool

and k is the key ring size.
Eschenauer and Gligor [1] have shown that for a pool size

S = 10,000 keys, only 75 keys need to be stored in a node’s
memory to have the probability that they share a key in their
key rings to be p = 0.5. If the pool size is ten times larger, i.e.,
S = 100,000, then the number of keys required is still only
250. Thus, the Basic Scheme is a key management technique
that is scalable, flexible and can also be used for large net-
works. Trade-offs in the Basic Scheme can be made between
sensor memory and connectivity, but it does not provide the
node-to-node authentication property that ascertains the
identity of a node with which another node is communicat-
ing. This property is very useful when revoking misbehaving
nodes from the network and also helps in resisting the node
replication attack.

Many key management schemes [2,3,8,31–33], etc.) are
proposed as extensions of the Basic Scheme to make it even
more secure and reliable.

Advantages of this scheme include flexible, efficient, and
fairly simple to employ, while also offering good scalability.
Disadvantages of this scheme include that it cannot be used
in circumstances demanding heightened security and node-
node authentication.

4.2. Q-composite random key predistribution scheme

Chan, Perrig, and Song [2] have introduced two variations
of the Basic Scheme, Q-Composite Random Key Predistri-
bution and Multipath Key Reinforcement, and a variation
of the commonly known Pairwise Scheme, called Random
Pairwise Scheme. Each comes with a different kind of
trade-off and is not, therefore, widely applicable. The Q-
Composite Scheme achieves security under small scale
attacks while being vulnerable under large scale attacks
and is useful where large scale attacks are easily detected.
We will introduce Multipath Key Reinforcement scheme
and Random Pairwise Scheme in the next two subsections.

In the Basic Scheme, two nodes share a unique key for
establishing a secure communication link. A given network’s
resilience to node capture can be improved by increasing the
number of common keys that are needed for link establish-
ment. The Q-Composite Random Key Predistribution
Scheme does this by requiring that two nodes have at least
q common keys to set up a link [2]. As the amount of key
overlap between two nodes is increased, it becomes harder
for an adversary to break their communication link. At the
same time, to maintain the probability that two nodes estab-
lish a link with q common keys, it is necessary to reduce the
size of the key pool jSj, which poses a possible security breach
in the network as the adversary now has to compromise only
a few nodes to gain a large part of S. So the challenge of the
Q-Composite Scheme is to choose an optimal value for q
while ensuring that security is not sacrificed.

In the key predistribution stage of both the Basic and Q-
Composite Schemes, k random keys are picked from S and
initialized in each node’s key ring. In the shared-key discovery

phase, each node has to find the common keys which it shares
with other nodes by either making all the nodes broadcast
their key identifiers or by selecting a slower and more secure
method of posing puzzles such as the Merkle Puzzle [18]. For
this puzzle method, each node issues m client puzzles to each
neighboring node and any node that comes up with the
correct solution to the puzzle is identified as sharing the asso-
ciated key. After this, the two schemes differ in that the
Q-Composite Scheme requires each node to identify neigh-
boring nodes with which they share at least q common keys
while the Basic Scheme only requires one shared key. This
restriction in the Q-Composite Scheme allows the number
of keys shared to be more than q but not less, represented
by the value q. At this stage in the process, nodes will fail
to establish a link if the number of keys shared is less than
q; otherwise, they will form a new communication link using
the hash of all the q keys, i.e., K = hash(k1ik2i. . .ikq).

S, the size of the key pool, is the critical parameter that
must be calculated for the Q-Composite Scheme to be effi-
cient. If S is large, then the probability that two nodes
share a common key and therefore can communicate is
decreased. However, if S is decreased, an adversary’s job
may be easier as she can gather most of the keys in the
key pool by capturing only a few nodes. Thus, S must be
chosen such that the probability of any two nodes sharing
at least q keys is is larger than or equal to p.

Chan, Perrig, and Song’s [2] method to calculate S is

pðiÞ ¼
jSj
i

� �
jSj � i
2ðm� iÞ

� �
2ðm� iÞ
m� i

� �
� jSj

m

�2 , where p(i) is the



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2323
probability that any two nodes have exactly i number of
keys in common; and m is the key ring capacity for a given

node. There are
jSj
i

� �
ways to pick i and jSj � i is the

number of the remaining keys in the key pool after i is

picked. There are
jSj
m

� �
different ways to pick m and

jSj
m

� �2

total number of ways for both nodes to pick m.

Also, to assign the remaining keys 2(m � i) distinct keys
are picked from the key pool for each node and the number

of ways to do this is
jsj � i
2ðm� iÞ

� �
. There are 2(m � i) ways

to partition the keys equally between the two nodes.
Let Pc be the probability of any two nodes sharing suffi-

cient keys to form a secure connection. Therefore,
Pc = 1 � (the probability that the two nodes share insuffi-
cient keys to form a connection) or Pc = 1 � (p(0) + p(1) +
. . . + p(q � 1)). Now the largest jSj such that Pc P p is
chosen.

The evaluation of the Q-Composite Scheme can be done
by verifying its resilience to node capture. Even though this
scheme does not provide resistance to node replication or a
means for node-to-node authentication since the keys from
the key pool are used more than once, it does improve resil-
ience to node capture when an adversary has successfully
captured some other nodes in the network. As the same
keys are used repeatedly in a network, a situation may arise
in which two nodes effectively have their communications
exposed due to the compromise of other two nodes that
share the same key(s). Chan, Perrig, and Song [2] have cal-
culated the probability that a secure link that is established
between two uncompromised nodes will be compromised
as
Pm

i�qð1� ð1� m
jSj Þ

xÞi pðiÞ
p , where x is the number of nodes

captured, i is the number of keys in common, m is the num-
ber of keys in the key ring of a node, and p is the probabil-
ity of setting up a secure link.

The Q-Composite Scheme offers greater resilience com-
pared to the Basic Scheme when a small number of nodes
have been captured in the network. The amount of com-
munications that are compromised in a given network with
the Q-Composite Scheme applied is 4.74 percent when
there are 50 compromised nodes, while the same network
with the Basic Scheme applied will have 9.52 percent of
communications compromised. Though the Q-Composite
Scheme performs badly when more nodes are captured in
a network, this may prove a reasonable concession as
adversaries are more likely to commit a small-scale attack
and preventing smaller attacks can push an adversary to
launch a large-scale attack, which is far easier to detect.

Still, random key predistribution schemes like Q-Com-
posite and Basic cannot be securely used for large networks
because they use keys more than once, which results in the
compromise of a larger fraction of communications when
just a few nodes are compromised. Since random key pre-
distribution schemes are not scalable, the maximum net-
work that can be supported should be measured using
the Limited Global Payoff Requirement, which states that
given a secure network, an adversary should not learn any-
thing about the communications of nodes in the network
other than those of captured nodes. Let fm be the maximum
compromise threshold above which the adversary gains an
unacceptable high confidence of guessing the sensor read-
ings of the entire network. If xm is the number of nodes
compromised, then the total fraction of secure links com-
promised after the key setup phase due to these xm nodes
being compromised is f(xm); if the total fraction of secure
links compromised reaches the threshold value with the
xm nodes being compromised, i.e., fm = f(xm), then Chan,
Perrig, and Song [2] have calculated the maximum allow-
able size of the network to be n 6 2xmð1þ 1

fm
Þ. For example,

when p = 0.33, fm = 0.1, and m = 200, the maximum sup-
portable network size for a Q-Composite Scheme (q = 2)
is 1,415 nodes. Compared to the 1,159 node maximum of
the Basic Scheme, the advantage is obvious. Thus, the Q-
Composite Scheme is more efficient than the Basic Scheme
in providing more resilience to node capture and signifi-
cantly increases the maximum allowable size of a network.
Since both schemes fail to provide node-to-node authenti-
cation or resistance against node replication, it is important
to review other schemes that work more efficiently in net-
works requiring such security measures.

Advantages of this scheme include that it provides better
security than the Basic Scheme by requiring more keys for
two nodes to share one for communication, which makes it
difficult for an adversary to compromise a node. Disadvan-
tages of this scheme include that it is vulnerable to break-
down under large-scale attacks, and does not satisfy
scalability requirements.

4.3. Multipath key reinforcement scheme

The Multipath Reinforcement Scheme [2] offers good
security with additional communication overhead for use
where security is more of a concern than bandwidth or
power drain.

The idea of using a multipath to reinforce links in a ran-
dom key establishment scheme was first explored by
Anderson and Perrig [10]. Chan, Perrig, and Song [2] fur-
ther developed the Multipath Key Reinforcement Scheme
for establishing a link between two nodes of a given net-
work that is stronger than that in the Basic Scheme. The
links formed between nodes after the key discovery phase
in the Basic Scheme are not totally secure due to the ran-
dom selection of keys from the key pool allowing nodes
in a network to share some of the same keys and, thereby,
possibly threaten multiple nodes when only one is compro-
mised. To solve this problem, the communication key
between nodes must be updated when one is compromised
once a secure link is formed. This should not be done via
the already established link, as an adversary might decrypt
the communication to obtain the new key, but should be
coordinated using multiple independent paths for greater
security.



2324 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
If node A needs an updated communication key with
node B, all possible disjointed paths to node B must be
used. Assume that there are h such disjointed paths from
node A to node B. Then node A generates h random values
(g1,g2, . . . ,gh), each equal to the size of an encryption key,
and sends one down each available disjointed path to node
B. When node B has received all h random values, it com-
putes the new encryption key at the same time as node A
does form a new and secure communication link with
k 0 = k ¯ g1 ¯ g2 ¯ . . . ¯ gh, where k is the original key.

With the new link in place, the only way an adversary
can decrypt the communications is to compromise all the
nodes involved in the formation of the key. The larger h

is, the more paths and nodes involved and the greater the
security of the new link. This increase in network commu-
nications causes excessive overhead in finding multiple dis-
jointed paths between two nodes. Also, as the size of a path
increases, it may grow so long as it leaves a chance for an
adversary to eavesdrop, which makes the whole path inse-
cure. A 2-hop approach to the Multipath Key Reinforce-
ment Scheme considers only 2-link paths to minimize the
overhead of path length by using disjointed paths that
are only one intermediate node away from the two original
nodes (A and B).

To take such an approach, first the number of common
neighbors between the original nodes must be calculated in
a planar deployment of sensors. In [2], Chan, Perrig, and
Song calculated the overlap of communication radius
between two nodes in a network to be 0.5865p r2 in a pla-
nar deployment where r is the communication range of sen-
sors; therefore, the expected number of common neighbors
with whom both nodes share a secure link is 0.5865p2n 0,
where p is the probability of sharing sufficient keys to com-
municate and n 0 is the number of neighbors in each node.
Expressed as 0.5865d2/n = k, both nodes share a secure link
with an expected k neighbors, e.g., if d = 20 and n 0 = 60,
then k = 3.91. To assess the efficiency of the 2-hop

approach, the new probability for compromising the link
between two nodes needs to be derived. If an adversary’s
basic probability of compromising the link is b, then the
probability of compromising at least one hop on any given
2-hop path is the probability of compromising hop 1 in the
path plus the probability of compromising hop 2 in the
path minus the probability of compromising both hops in
the path or 2b � b2 [2]; hence, the final probability of
breaking the link will be b 0 = b(2b � b2)k.

If b = 0.1 and the number of neighbors (k) is 3, then the
chance of eavesdropping after reinforcement improves to
6.86 · 10�4, that is about 1 in 1,458. Chan, Perrig, and
Song [2] calculated the total additional communication
overhead incurred to be at least 2 · 0.5865p2n 0 times more
in the 2-hop approach compared to the normal setup. If,
for instance, p = 0.33 and n 0 = 60, additional overhead
can be at least 7.66 times. Given these results, the minimal
network overhead of finding the neighbors that share a
common key becomes a reasonable trade-off when using
a 2-hop Multipath Key Reinforcement Scheme to increase
the security of wireless sensor networks, although this
scheme remains constrained by certain vital factors, includ-
ing the deployment density characteristics of the network.

Advantages of this scheme include that it offers better
security than the Basic Scheme or the Q-Composite. Disad-
vantages of this scheme include that it creates communica-
tion overhead that can lead to depleted node battery life
and to the chance for an adversary to launch DOS attacks.

4.4. Random pairwise key scheme

Compared to the Q-Composite scheme and the Multi-
path scheme, the Random Pairwise Scheme [2] offers the
best security features in its resilience to node capture with
the only drawback being limited scalability.

Node-to-node authentication not only helps to reduce
overhead since sensor nodes instead of a base station take
actions when a node is compromised in the network, but
also entails that each node use a unique identity, which
helps nodes to identify exactly which ones are compro-
mised. We have seen that though the Basic Scheme is some-
what efficient, it does not provide node-to-node
authentication. The Q-Composite extension and 2-hop
Multipath approach do not provide node-to-node authen-
tication either. As we introduced before, the Pairwise Key
Establishment Scheme, however, is one of the most efficient
key establishment schemes because it does offer many addi-
tional features compared to other schemes, including node-
to-node authentication and resilience to node replication.
However, since sensor nodes are resource-constrained, this
significant overhead limits the scheme’s applicability, but it
can be effectively used for smaller networks.

Chan, Perrig, and Song [2] developed the Random Pair-
wise Scheme as an extension of the Pairwise Scheme to help
overcome this drawback. They stated that not all n � 1
keys are required to be stored in a node’s key ring. As we
have already seen with the Basic Scheme, not all nodes
must be connected as long as node connections meet some
desired probability Pc, which dictates that only np keys are
needed to be stored in a given node’s key ring, where n

being the number of nodes in the network and p being
the probability that two nodes can communicate securely.
Given this, if k is the number of keys in a node’s key ring,
the maximum allowable network size can be determined
with n = k/p for the Random Pairwise Scheme.

In the initialization stage of this scheme, n unique node
identifiers are created, each paired with m other randomly
selected node identities. A pairwise key is then generated
for each such pair. Both the generated pairwise key and
the identity of the other node that shares the key are stored
in each node’s memory. Additional identifiers can be gener-
ated to allow for scalability of the network, i.e., the number
of nodes may originally be fewer than n created to allow for
adding nodes. In the key discovery phase, each node broad-
casts its identity to the other nodes in the network. For
example, if node A wants to communicate with other nodes
in the network, it broadcasts its identity to other nodes in



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2325
the network; if the neighboring nodes share a pairwise key
with node A, they perform a cryptographic handshake with
node A, thereby forming a secure communication link.
This process of broadcasting can also be extended beyond
the communication range of a node by making the interme-
diate nodes rebroadcast the node identity to a certain num-
ber of hops, which in turn helps in increasing the maximum
allowable size of the network. This process of range exten-
sion must be done cautiously as it leaves a vulnerable open-
ing for an adversary to perform a denial of service attack.
The attack involves the adversary’s introducing foreign
nodes into the network to generate random node identities
that flood the network with rebroadcasted identities, mak-
ing the whole scheme slow and inefficient. This type of
attack can be avoided by restricting the number of hops
for range extension.

Revoking compromised nodes from a network helps
avert various attacks such as denial of service, implanting
clones, dropping legitimate reports, etc. Revocation of sen-
sor nodes through the base station can be a slow process
due to the high latency in communications with the sensor
nodes. To overcome this difficulty, Chan, Perrig, and Song
[2] also developed a distributed node revocation method
for the Random Pairwise Scheme. Assume that the scheme
can detect compromised nodes. If node A finds a certain
node B to be compromised then it casts a public vote
against node B. If a threshold of t such votes have been cast
against node B by other nodes in the network, node A will
disconnect all its communication with node B. This process
continues until all the nodes in the network break their
links with node B, thereby ‘deleting’ node B from the net-
work. All the nodes that vote against node B are called the
‘voting members’ of node B and, as node B shares exactly k

pairwise keys with other nodes, there will be k voting mem-
bers of node B.

This voting method of node revocation must have cer-
tain important properties to function properly: make the
broadcasted public votes without replay value, disallow a
voting member from forging another vote, provide a means
for each voting member to verify the validity of the votes
that are being broadcasted, etc. In this voting method, each
of the k voting members of node B is initialized with a ran-
dom key Ki, and should know the hash values of the
remaining k � 1 voting members. To revoke node B from
the network, node A broadcasts its Ki key. All other voting
nodes verify the key by calculating the hash value of the
key. Once verified, the key is replaced with a flag signifying
the vote has already been used.

Given this process, the nodes in the network must store
an additional k � 1 hash values, a voting key and the pair-
wise keys, which drastically increases the overhead in a sen-
sor node’s memory. Chan, Perrig, and Song [2] proposed
using a Merkle Tree [11] to authenticate the k hash values
to reduce overhead by requiring verification and storing of
only one hash value, which reduces the memory size
required on the node, but also increases the size of the vot-
ing information to O(log(k)) as each node must still recall
which ones have already been received from public vote
to remove possible replay.

Other precautionary measures with the Random Pair-
wise Scheme taking the public voting approach include
the critical issue of choosing the threshold or t value. If t

is high, there may not be enough neighboring nodes to
revoke a node that has been compromised; however, if t

is low, then a group of compromised nodes may cause
the revocation of many legitimate nodes. For instance, a
network of 1,000 to 10,000 nodes should have a t value
from 1 to 5. Also, since this approach requires a node have
at least t neighbors in its communication range to be
revoked, an adversary can attack the network by selectively
disrupting a given node such that only t � 1 legitimate
nodes are able to communicate with it so that it cannot
be revoked.

Beyond problems with t value, in the public voting
approach every vote that is cast is being transmitted to
all the nodes in the network, which may lead to a denial
of service attack. To solve this, only the voting members
should be required to rebroadcast votes between each other
while the remaining nodes are forced to ignore the commu-
nication. In this way, the degree of vulnerability to falsely
rebroadcasted identities can be decreased. Additionally,
the node that first receives the correctly verified vote
rebroadcasts it only a fixed number times to increase the
probability of successful transmission to neighboring vot-
ing members.

In a similar action, an adversary that tries to compro-
mise a fixed number of nodes can compromise a signifi-
cant portion of a network when public voting is used to
perform distributed node revocation since each node can
potentially cast a vote against k others. To prevent this
problem, only nodes that establish direct communication
are given the ability to revoke a compromised node by
distributing masked revocation keys to voting members
in a non-working form. Each node would then complete
the key discovery phase by sharing the secret key only
with other nodes with whom they already share a pairwise
key connection.

Advantages of this scheme include that is offers the best
security of all the above schemes with perfect resilience to
node capture as the keys used by each node are unique,
and also provides resistance against node replication. Dis-
advantages of this scheme include that it does not support
networks of large size, and does not satisfy scalability
requirements.

4.5. Polynomial pool-based key predistribution

Every key distribution scheme previously discussed has
one or more trade-offs to be considered and what they fun-
damentally lack is a greater probability of key establish-
ment despite part of the network being compromised. To
this end, Liu and Ning [3] proposed the Polynomial Pool-
Based Key Predistribution Scheme that offers several effi-
cient features the other schemes lack, including:



2326 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
• Any two sensors can definitely establish a pairwise key
when there are no compromised sensors;

• Even with some nodes compromised, the others in the
network can still establish pairwise keys;

• A node can find the common keys to determine whether
or not it can establish a pairwise key and thereby help
reduce communication overhead.

In the initialization stage of the Polynomial Pool-Based
Scheme, the setup server randomly generates a bivariate t-
degree polynomial f (x,y) over a finite field Fq, where
f ðx; yÞ ¼

Pt
i;j¼0aijxiyj.

The value of q is a prime number which can accommo-
date a cryptographic key. The equation f(x,y) has the prop-
erty f(x,y) = f(y,x). The setup server then generates a
polynomial share of the equation for every node in the sen-
sor network; e.g., node i in the network receives an f(i,y)
share and node j receives an f (j,y) share. If both nodes i

and j want to establish a common key f(i,j) between them,
then node i can compute the common key by computing
f(i,y) at node j and then node j can compute f(j,y) at node
i for the common key f(i,j). This methodology is secure and
reveals nothing about the communication between other
nodes until t nodes have been compromised, making it t

collusion resistant where the t value depends upon the
memory available in the sensors.

Each node in this scheme must store a t-degree polyno-
mial which occupies (t + 1)log(q) storage space. Increasing
the size of the network increases the chance of compromis-
ing more than t nodes, but modifications based on the
Basic Scheme can earn good results. For this, instead of
using a single t-degree polynomial, a pool of polynomials
is used. During the initialization phase, randomly selected
polynomials are deployed into each node’s memory. When
there is only one polynomial remaining in the pool, the
scheme falls back to the Polynomial Pool-Based Key Dis-
tribution; but, if all of the polynomials are 0-degree, then
distribution resembles the Basic Scheme.

In the key predistribution stage of the Polynomial
Scheme, the setup server generates a set of bivariate t-
degree polynomials over a field Fq. Each polynomial is then
assigned with a particular ID for the server. A subset of
these polynomial shares are then picked up by the server
and placed in each of the network’s nodes. While polyno-
mial placement is the main issue of this stage, in the key dis-

covery stage each sensor node finds a node with which it
shares the same bivariate polynomial and both nodes
establish a common key. The complex issue is to find
whether two nodes share the same polynomial or not, for
which there are two techniques: predistribution and real-

time discovery.
In the predistribution approach, the knowledge of the

nodes with which each node will share a polynomial is
pre-loaded. This is a basic method in which each node car-
ries the node IDs of those with which they share a polyno-
mial. The concessions of this method are that it does not
offer the flexibility of adding new nodes into a network
and it leaves the network vulnerable to attack. Since infor-
mation is predistributed in this approach, an adversary
may attack a node and gain access to the stored data,
which would help in targeting certain nodes in the network.
Conversely, nodes must uncover with which others they
share a polynomial after deployment when applying the
real-time discovery method. This discovery can be done
by broadcasting the IDs of the polynomials that nodes
share or by challenging the nodes with puzzles that are only
solvable if the nodes share part of the bivariate t-degree
polynomial. Even though this handles problems faced with
the predistribution approach, real-time discovery increases
the communication overhead of the network, which makes
weighing these factors critical in choosing a method.

After key discovery, if two nodes do not find a common
polynomial share, they must communicate through a path
key. If node P wants to communicate with node Q and the
two nodes do not have a common polynomial share, node
P must find a path through which it can communicate with
node Q and either node can then send a request to establish
a pairwise key for communication. The problem with this
stage is that intermediate nodes should be able to commu-
nicate with both nodes and, similar to the previous stage,
there are two customary techniques for finding intermedi-
ate nodes: predistribution and real-time discovery.

In the predistribution approach, the setup server pre-
loads each node with information such that, if a node is
given an ID, each node can find a path to it. In this stage,
the predistribution method suffers from the same problems
as faced in key predistribution no scalability and vulnera-
bility to attack. With real-time discovery, nodes try to find
a communication path on-the-fly. A source node sends a
message to adjoin intermediate nodes that it wants to
establish a pairwise key with the destination node and, as
the source node already shares a common key with the
intermediate nodes, there is no security threat in this com-
munication. If an intermediate node of the source node
shares a common key with the destination node, then a
communication path has been discovered between the
source and destination nodes through which they may dis-
cover a common key. Again, the concession of real-time
discovery is additional overhead of communication.

Polynomial Pool-Based Key Predistribution using ran-
dom subsets offers greater security and flexibility when
compared to other schemes until a certain number (60 per-
cent) of compromised nodes has been reached at which
point any scheme would prove ineffective. Compared to
the Random Pairwise Scheme, which offers perfect resil-
ience to node capture as no key in the network is used
twice, the Polynomial Pool-Based offers the same resilience
if a polynomial share is used no more than t times. Also,
the Polynomial Pool-Based Scheme offers certain advanta-
ges over Random Pairwise in that sensors can be added
dynamically without consulting the already deployed sen-
sors while dynamically deploying nodes in Random Pair-
wise demands that the server has predesignated
unassigned space for additional nodes, which may never



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2327
be deployed. Because of this, the Random Pairwise Scheme
can only offer limited scalability, while the more attractive
Polynomial Pool-Based Scheme allows for undetermined
network growth.

Advantages of this scheme include that it allows the net-
work to grow to a larger size after deployment. Disadvan-
tages of this scheme include t-collision resistance
(compromising more than t polynomials leads to network
compromise).
4.6. Random subset key predistribution

Random Subset Scheme [3] is an extension of the Poly-
nomial Pool-Based Scheme using a random subset key
assignment and the Basic Scheme [1], in which random
keys are selected from a large key pool and then assigned
to each node in a network. In the Random Subset Scheme,
random polynomials are selected from a polynomial pool
and assigned to each node in a network to avoid the Basic
Scheme’s vulnerability in possibly using a key in more than
one node. With the Random Subset scheme, the pairwise
keys generated by each node are unique and based upon
the each node’s ID. If no more than t shares of the same
polynomial have been disclosed, it is very difficult to attack
the communication between two nodes.

The Random Subset scheme works similarly to the Poly-
nomial Pool-Based scheme in the three stages of key estab-
lishment. In the key predistribution stage, the setup server
generates a set F of s-bivariate t-degree polynomials and
then initializes each node with a subset of s 0 polynomials
from F. In the key discovery stage, each node attempts to
determine the nodes with which they share a common
key by employing the real-time discovery technique as
information is not preloaded in the nodes prior to deploy-
ment. In the path key establishment phase, a source node
sends a message to its intermediate nodes seeking to estab-
lish a connection with a destination node and, if an inter-
mediate node shares a common key with both the source
and destination nodes, then a communication path is
formed between the two. Generally, the communication
range of the source node is limited to lessen vulnerability.

The probability of two sensors sharing the same bivari-
ate polynomial is the same as the probability of the two
sharing a common key as described in the Basic Scheme

discussion, p ¼ 1�
Qs0�1

i¼0
s�s0�i

s�i .

This can also be applied to calculate the probability that
any two sensors can establish a common pairwise key using
both the key discovery and path discovery stages. If there
are d neighbors to a node and any one of them can act
as the intermediate node, the probability that one of them
share a common key with the source and destination will be
p2; therefore, the probability that the sensor nodes establish
a pairwise key in either the key discovery or the path key
establishment stage will be Ps = 1 � (1 � p)(1 � p2)d.

If p = 0.3 and d = 30, then Ps = 0.959. Assuming that an
attacker has compromised Nc sensors in the network,
where Nc > t, the scheme is known to be secure until the
adversary compromises fewer than t sensors. With a pool
of F polynomials, the probability that a polynomial is used
i times and its probability of being compromised when
more than t nodes are compromised must be calculated
to determine security efficiency. Given this, the probability
that a polynomial is chosen for a sensor node will be s 0/s
and the probability that this polynomial is chosen exactly
i times among the Nc compromised nodes is

pðiÞ ¼ Nc!
ðNc�iÞjij ðs

0

s Þ
ið1� si

s Þ
Nc�i. Thus, the probability of a

polynomial being compromised is P c ¼ 1�
Pt

i¼0pðiÞ.
Even though this makes the network more secure, it is

still vulnerable to attack because if an adversary somehow
knows the distribution of polynomial shares, specific nodes
can be targeted for attack to compromise communications.
It is enough for an adversary to compromise t + 1 particu-
lar nodes to compromise a polynomial and, in effect, the
network. This problem is addressed by restricting the use
of polynomial shares to a maximum of t + 1 times in the
network so that an attacker must now compromise all
the t + 1 nodes to compromise a polynomial. Though effi-
cient, use of random subsets like this decreases the poten-
tial size of a network. The maximum number of nodes in
a network when random subsets are implemented is
(t + 1)s/s 0; however, using this scheme is unnecessary as it
is relatively difficult for an adversary to compromise t + 1
selected nodes.
4.7. Grid-based key predistribution

A Polynomial Pool-Based Scheme [3] using a grid-based
key assignment offers all the attractive properties of the
Polynomial Pool-Based key predistribution and guarantees
that two sensors can establish a pairwise key when there
are no compromised nodes and the nodes can communi-
cate with each other. Even if some nodes are captured,
there will still be a great chance for key establishment
between uncompromised nodes using this approach, which
also reduces network communication overhead. With grid-
based key predistribution, a sensor node can determine
whether it can establish a pairwise key with another node
or not, and can say which polynomial should be used for
key establishment.

If a network consists of N sensor nodes, the approach
involves constructing an m · m grid with a set of 2m poly-
nomials, calculated as ff c

i ðx; yÞ; f r
i ðx; yÞg; i ¼ 0; . . . ; m� 1,

where the value of m is the square root of N; each row i

in the grid is associated with a polynomial f r
i ðx; yÞ and each

column of the grid is associated with a polynomial share
f c

i ðx; yÞ. The setup server distributes an intersection in the
grid to each node, and then distributes the polynomial
shares of that particular column and row to the node to
provide each node with the information required for key
discovery and path key establishment. Although the
Grid-Based Scheme can be extended to n-dimension, Liu



2328 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
and Ning [3] considered only a 2-dimension with many
polynomials, so that is the example discussed here.

In the first stage of key establishment, the setup server
generates 2m t-degree bivariate polynomials over a finite
field Fq and assigns each node to an unoccupied intersec-
tion in the grid for deployment in the network. If the inter-
section is Æi,jæ, then the node ID is Æi,jæ. The server provides
each node with its ID and the row and column polynomial
shares of that grid intersection. To facilitate path discov-
ery, all nodes are densely placed in a rectangular area in
the grid.

In the second stage, polynomial share discovery, if node
i wants to establish a pairwise key with node j, it checks for
common rows or columns with j, i.e., ci = cj or ri = rj. The
pairwise key can be established using the polynomial shares
of a row or column that matches. Should none match, then
nodes i and j must find an alternate path to each other in
the path key establishment stage. To do so, node i finds
an intermediate node through which it can establish a pair-
wise key with node j. Even if some intermediate nodes are
compromised, node i can still find a path to node j since
there are many connecting paths in the grid between the
two nodes; but, as the number of compromised nodes
increases, so does the length of the path.

In this case the nodes remember the graph composing
the grid; however, with large networks, it is not feasible
for a node to remember the entire graph or run an algo-
rithm for finding the path between the nodes. Discovering
key paths using two intermediate nodes limits the demands
on the nodes for this scheme to function in large networks
also. If, for instance, there are two sensor nodes attempting
to establish a path key between them, the source node S
determines the set of N nodes with which it can communi-
cate, and then selects some nodes randomly from that set.
Node S also generates a random number r and a counter c.
Node S sends each node U of the subset N a message con-
taining the IDs of nodes S and D, the counter value c and
Kc in an encrypted form.

Here the value of Kc = F(r,c) where F is a pseudo ran-
dom function. Encryption of the message is done using
the pairwise key that node S shares with the intermediate
node U. After receiving the message from node S, node
U checks for the authentication of the message and if the
message is authenticated, node U attempts to find a non-
compromised node V. It then sends to node V the message
sent by node S in the encrypted form using the pairwise key
which it shares with node V. If node V receives the message
and discovers that it can establish a pairwise key with node
D, it sends the message to node D in encrypted form using
the shared key. Once the destination node D receives the
message, it knows that node S wants to establish a pairwise
key with it and then sends node S the counter value c and
the new communication key Ks,d = Kc.

With grid-based key predistribution, an adversary may
try to attack the connection between two nodes by either
compromising the pairwise key or by preventing the two
nodes from establishing a shared key. If an adversary
wishes to attack the entire network, the foe may attempt
to lower the probability of establishing a pairwise key
between nodes. This may be done through attacking a pair
of nodes and finding their common key without actually
compromising the nodes by compromising the polynomial
which the two nodes share. To discover the polynomial
share, the adversary must compromise at least t + 1 nodes
as stated previously. The network may avert such an attack
even when the adversary successfully finds out the polyno-
mial which two nodes share by the nodes’ establishing a
common key through path key establishment.

From the scheme we can see that there are still m � 1
nodes that can help nodes U and V establish a common
key. An adversary must compromise at least one node in
each pair to arrest path key establishment; thus, the adver-
sary must compromise t + 1 nodes to learn the pairwise key
and t + m sensor nodes to prevent two from establishing a
pairwise key via intermediates. An adversary can also com-
promise the polynomial shares in a pool by knowing the
subset assignment mechanism. Supposing that the adver-
sary has compromised some l polynomials from the pool,
there are about ml sensors with at least one polynomial
share disclosed. The attacker has compromised about
(t + 1)l sensor nodes, but only affects the common keys
in ml sensors, including those of the compromised nodes.
The adversary may also attack the sensors randomly to dis-
rupt path establishment and thereby make key establish-
ment an expensive process. If Pc nodes have been
compromised, then the probability that exactly k polyno-
mial shares on a particular polynomial are disclosed is
PðkÞ ¼ m!

k!ðm�kÞ! p
k
cð1� pcÞ

m�k. The probability that one par-
ticular polynomial is compromised would be calculated
as P c ¼ 1�

Pt
i¼0pðiÞ.

This grid-based approach to the Polynomial Pool-Based
Scheme has reasonable overhead when compared to other
schemes. Each node must store 2 bivariate t-degree polyno-
mials and IDs of the compromised nodes with which it can
establish a pairwise key; therefore, the total overhead for
each node is, at most, 2(t + 1)log(q) + 2(t + 1)l bits. The
network overhead is almost null when there is direct key
establishment between nodes. There is slight communica-
tion overhead when two nodes must find a common key
through path key establishment and this overhead
increases with each additional node compromised. The
approach offers many attractive properties other schemes
do not, including nice resilience to node capture until a cer-
tain percentage of nodes are compromised (60 percent).
The Basic Scheme and Q-Composite Scheme offer this
same resilience, but the grid-based approach offers less
overhead on both network communication and computa-
tions. Compared to Random Pairwise Scheme, the grid-
based method offers the same degree of security when the
same number of sensors and storage overhead are consid-
ered. More than any other scheme, the grid-based approach
offers greater probability of key establishment when there
are no compromised nodes as well as greater probability
of key establishment with some nodes compromised.



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2329
Finally, there will be a greater chance for nodes to esta-
blish a pairwise key with others without communication
overhead as the sensors are deployed in a grid-like
structure.

Thus, the Polynomial-Based Key Predistribution and
the two instantiations of the scheme, polynomial pool-
based and grid-based, provide some attractive and efficient
properties for key establishment in networks. In the near
future, these schemes might be further extended. For exam-
ple, the grid-based approach may be extended into n-
dimension or hypercube-based. Also, research must be
done for networks with Polynomial-Based Key Predistribu-
tion scheme and mobile properties.

Advantages of this scheme include that it offers low com-
munication and computation overhead on the network,
guarantees a total connected graph when there are no com-
promised nodes and all the nodes are in transmission range.
Disadvantages of this scheme include overhead of node stor-
age as each must not only share the polynomial keys but also
the ID’s of compromised nodes to avoid attack.

4.8. Hypercube key distribution scheme

Hypercube Key Distribution Scheme [31] guarantees
that any two nodes in the network can establish a pairwise
key if there are no compromised nodes present as long as
the two nodes can communicate [31]. Also, nodes can still
communicate with high probability if compromised nodes
are present. Nodes can decide whether or not they can
directly communicate with other nodes and what polyno-
mial they should use when transmitting messages [31].

If we denote the total the number of nodes in the net-
work to N, then this scheme computes an n-dimensional
hypercube with mn�1 polynomials [31]. Before node distri-
bution, a setup server assigns each node an exclusive coor-
dinate in a matrix. Also the setup server assigns each node
a set of polynomials in which it can compute a pairwise key
with other nodes for communication.

To compute the initial polynomials, the setup server
makes n · mn�1 number of polynomials over a space of
Fq. Each node occupies an empty space in the matrix. If
nodes a and b share a common polynomial, they can make
a direct connection and compute a pairwise key to commu-
nicate. If the two nodes do not share a common polyno-
mial, they have to use the path discovery method to
compute an indirect key [31].

(1) Dynamic path discovery: Predetermined paths can be
used for pairwise key generation for nodes that are unable
to communicate directly. Also it is feasible for a node to
flood the network to find a key path but this is impractical
due to the resource constraints on the sensor nodes [31].

An alternative path discovery algorithm described in
[31] finds paths between nodes a and b dynamically. In this
method, the source and other nodes communicate with a
node that is uncompromised and has a closer match to
the destination node compared to the Hamming distance
of their IDs [31], where the Hamming distance is defined
as a measure of the difference between two binary
sequences of equal length. If there are no compromised
nodes in the WSN, this scheme will always work as long
as any two nodes can communicate. The following scheme
can be run multiple times to increase the probability of suc-
cess in generating a successful communication path
between nodes.

First the source node generates a random number r and
a counter c that initially starts at 0. Each round the source
node increments c and computes the variable Kc, where
Kc = F(r,c) [31]. Next the source node generates a message
M. This message contains the source and destination node
IDs, Kc, c and a flag variable. The flag variable is used to
govern the length of the path discovered and the number
of messages sent [31].

Assume that another sensor node, u, receives the mes-
sage m. This node initially tries to find a non-compromised
node, node v, which it can compute a direct key. If this is
successful, node u sets the flag variable in m to 1 [31]. It
then sends the message to node v. If node u is unable to find
a node that meets these requirements, and the flag variable
in the message is set to 0, the path discovery stops [31]. On
the other hand, it picks a non-compromised node v in
which it can compute a direct key with. This path discovery
continues until it reached the destination node d. When
node d receives the key request, it sets the pairwise key as
KS,D = Kc and tell the source node s the value of c. Finally,
they two nodes s and d share a pairwise key [31].

(2) Performance and overhead for the hypercube scheme:

In this hypercube key predistribution scheme, nodes
accommodate n number of polynomials in their local mem-
ory. Each polynomial is shared by about m number of
nodes in the network. Nodes can therefore establish
n(m � 1) direct keys with other nodes [31]. The probability
that two nodes can create a direct pairwise key decreases if
the network size or the number of nodes in the network
increases. This is offset by the fact that if there are no com-
promised nodes in the network, this scheme is guaranteed
to establish a pairwise key between any two nodes either
directly or indirectly [31].

Nodes in the hypercube key management need to store n

polynomials and t number of compromised node IDs. The
total storage overhead in this predistribution scheme is at
most n(t + 1)log q + ntl bits, where l = ceil (log2m) [31].

There is no communication overhead if the two nodes
can compute a direct key. In computational overhead, a
node has to do 2(L + 1) polynomial evaluations where
L = length of the key path. The first evaluation is the
encryption, and the second evaluation is the decryption
process in message communication [31].

(3) Security evaluation for the hypercube scheme:

According to [31], there are two different attacks an adver-
sary can launch against the hypercube key distribution
scheme. The first is an attack on the pairwise key itself.
The second is an attack on the entire network. The second
attack attempts to lower the probability that two nodes can
achieve a pairwise key altogether.



2330 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
The first attack is an attempt to compromise the polyno-
mials used in key generation between nodes a and b with-
out compromising the nodes themselves. To accomplish
this, the attacker must first compromise t + 1 other sensor
nodes. If the nodes a and b have computed an indirect key,
the attacker must compromise the nodes used in the path
detection that established the key. In total, the attacker
must compromise n · (t + 1) sensor nodes to effectively
prevent nodes a and b from communicating with each other
[31].

The second attack against this scheme is an attack
against the network as a whole. One way to do this is to
compromise a number, b, of the polynomials distributed
to the nodes in the network. This will affect the indirect
keys computed. Another way to attack the network as a
whole is to randomly compromise individual sensor nodes.
This could compromise the path discovery process and
make it more expensive to create pairwise keys [31].

4.9. Key management schemes using deployment knowledge

Throughout the discussion in this paper, a significant
piece of information regarding networks has not yet been
mentioned, i.e., the deployment knowledge of these net-
works. As sensor nodes are randomly deployed in an area,
it is difficult to obtain deployment knowledge. Some infor-
mation on deployment knowledge is achievable if deploy-
ment followed a particular order. For example, if sensor
nodes are scattered using an airplane pattern, these nodes
might be grouped or placed in a particular order before
deployment and, based on this pattern, an approximate
knowledge of node positions can be acquired.

Deployment knowledge offers numerous advantages
when used in networks such as achieving better storage,
better resilience to node capture and more. In their study
of key establishment techniques in sensor networks, Du,
Deng, Han, Chen, and Varshney [8] propose a scheme
using deployment knowledge that is based on the Basic
Scheme [1]. Deployment knowledge in this scheme is mod-
eled using probability density functions (pdfs). All the
schemes discussed until now considered the pdf to be uni-
form; and when uniform, knowledge about the nodes can
not be derived from it. Du et al. [8] consider non-uniform
pdfs, which means that they assume the positions of sensor
nodes to be at certain areas. Their method first models
node deployment knowledge in a network and then devel-
ops a key predistribution scheme based on this model.

(1) Modeling of the deployment knowledge: The deploy-

ment point and the resident point are two terms that must be
briefly understood when discussing the deployment model.
deployment point of a sensor node is the point at which the
sensor node is actually deployed; i.e., the node is dropped
where the deployment is done through an airplane deploy-
ment point. resident point is the point at which the sensor
actually resides after deployment. Let us assume the
deployment area to be a 2-dimensional region X · Y. The
pdf for node I, for I = 1, . . . ,N over the two-dimensional
area is found by fi(x,y), where x 2 [0,X] and y 2 [0,Y]. Gen-
erally nodes are deployed in groups, therefore the pdfs of
the final resident points of all the sensors in a group is
the same as the group of sensors deployed in a single
deployment point. The group deployment model is
designed as following in Du et al. [8]:

• N sensor nodes that are deployed in a place are divided
into t · n equal size groups. Each group Gi,j for
i = 1, . . . , t and j = 1, . . . ,n is from the deployment point
with index (i,j); and (xi,yj) is the deployment point for
this group.

• The Deployment Model follows a grid-based approach
with all deployment points arranged in a grid.

• The pdf of the resident points for node K in group Gi,j is
f ij

K ðx; yjK 2 Gi;jÞ ¼ f ðx� xi; y� yiÞ.

Two groups that are deployed close together share some
common keys. The amount of key overlap decreases as the
deployment distance between the groups increases. When
using the Basic Scheme, keys are drawn from the same
key pool S; but, using the Deployment Model, different
key pools are allowed for different groups so that the key
pool can be divided into sub-key pools of jScj keys each.
The combination of all the sub-key pools still yields S.

Sensor nodes can be deployed in many different ways
such as deployment through an airplane, using a vehicle,
etc. In this scheme, deployment is considered as a Gaussian
distribution, which is widely studied and practiced. The
deployment distribution for any node k in group Gi,j fol-
lows a two dimensional Gaussian distribution. The pdf of
the resident points for the node k in group Gi,j is [22]
f ij

k ðx; yjk 2 Gi;jÞ ¼ f ðx� xi; y� yjÞ.
When f(x,y) is uniform, we cannot determine which

nodes are close together prior deployment as the resident
points of the nodes are uniformly distributed over the
region. When f(x,y) is random we can tell which nodes
are close together. Though the distribution function is
not uniform, the sensor nodes still need to be deployed
evenly through the entire region. By selecting an appropri-
ate distance between deployment points, the probability of
finding a node in each small region can be made equal.

(2) Key predistribution using deployment knowledge: In a
key predistribution scheme based on the Deployment
Model, it is assumed that N sensor nodes are deployed in
a place (point) and are divided into t · n equal size groups,
each group Gi,j for i = 1, . . . , t and j = 1, . . . ,n. It is also
assumed that the deployment points are arranged in a grid.

As with the Basic Scheme, key predistribution in the
Deployment Model also consists of three phases: key pre-
distribution, shared key discovery, and path key establish-
ment. This scheme differs only in the first stage while the
other two stages are similar to that of the basic scheme.

• Key predistribution: The most important step in this
phase is to divide the key pool into t · n key pools.
The goal of dividing the key pools is to ensure that



½1� ð2aþ bÞ� � jScj; for j ¼ n

Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2331
neighboring key pools have more keys in common. Two
key pools are neighbors if their deployment groups have
nearby resident points. After the key pool is divided,
each node in a group is selected and keys are installed
from corresponding subset key pools.

• Shared discovery phase: In this phase each node must
find its common keys shared with neighbors. There are
many ways for doing this, but the simplest is to make
the nodes broadcast their identifiers list to other nodes.
If the nodes discover that they share a common key with
other nodes, this key can be used as their communica-
tion link. When disclosing the nodes’ identities is not
desired, Merkle’s Challenge Response Technique can
be employed [9] in which each node sends a puzzle to
neighboring nodes for each stored key and, if those
nodes share a key in common with the source node, they
will respond with the correct solution creating a key link
for secure communication.

• Path key establishment: When two neighboring nodes do
not share a common key, they can discover one using
Path Key Establishment. If node U wants to communi-
cate with node V and the two do not share a common
key, node U must communicate with its neighbor node
I, saying that it wants to communicate with node V.
Node U then sends its ID and a secret key to node node
I and, if node I shares a common key with node V, it
sends the message to node V encrypted with that shared
key. Through this path U fi I fi V or V fi I fi U, both
nodes U and V can communicate with each other using
a secret key.

(3) Creating key pools: Key pools that are deployed
nearby should share certain keys in common. To assign
keys to each key pool Si,j for i = 1, . . . , t and j = 1, . . . ,n,
it is assumed that the pools are deployed in a grid: (a)
key pools that are horizontal or vertical share ajScj keys,
where 0 6 a 6 0.25; (b) Key pools that are diagonal share
bjScj keys, where 0 6 b 6 0.25 and 4a + 4b = 1; (c)Two
non-neighboring key pools share no keys.

Here, (a) and (b) are overlapping steps and to achieve
the properties stated, the key pool is divided into eight total
partitions, each with keys that are shared by the other
nodes. Du et al. [8] developed a method to select keys for
each subset key pool Si,j, considering a grid scheme and
given a global key pool S (the subset of key pools for each
deployment point). The keys for the first subgroup (the
group placed in the first row and first column) S1,1 are
selected from the global key pool S, and then keys for
the second group in the same row are selected from the
row left to it and S. This process continues for each row
from left to right:

• Select jScj keys for the group placed in S1,1 and remove
those keys from S;

• Select ajScj keys for group S1,2 from the key pool S1,1,
and the remaining keys w from the global key pool S,
and then remove the selected w keys from S.
• Select ajScj keys for group S2,1 from the key pools
S1,1,S3,1,S2,2 and select bjScj from the key pools S1,2

and S3,2. Then select and remove the remaining w keys
from the global key pool S.

If w is the remaining keys that are to be selected
from S, and Si,j be the group number in a grid, the
selection procedure for different groups will be:

W ¼
( ½1� ðaþ bÞ� � jScj; for j ¼ 1
½1� 2ðaþ bÞ� � jScj; for 2 < j 6 n� 1 .
Selecting the size of the key pool jScj from S is also crit-
ical in this scheme. To ensure that no key in the network is
shared between more than two nodes, a rule must be estab-
lished: if a group G1 selects the required keys from its
neighbor G2, no other group is allowed to select those keys.
Since each group selects distinct keys from their neighbors,
the size of jScj is equal to the sum of all those keys and is
calculated as jScj ¼ jSj

tn�ð2tn�t�nÞa�2ðtn�t�nþ1Þb.

In their paper, Du et al. [8] analyzed the performance of
their scheme based upon the connectivity, communication
overhead, and resilience to node capture of the network.
Two parameters for connectivity called the Global Connec-
tivity and Local Connectivity are defined for analyzing the
performance of connectivity in the Deployment Model.
Global Connectivity is the ratio between the nodes that
are isolated and the total number of nodes in the network.
Local Connectivity refers to the probability of any two
nodes sharing at least one key. Both Global and Local
Connectivity are affected by the key predistribution scheme
where B(ni,nj) is the event that two nodes share at least one
key, and A(ni,nj) is the event that both the nodes are neigh-
bors, hence plocal = Pr(B(ni,nj)jA(ni,nj)).

Let k be the ratio of the shared key pool between two
nodes and jScj. Du et al. [8] calculated the probability
p(k) that two nodes share at least one key when they have
kjScj in common as p(k) = 1 � Pr(two nodes do not share
any key).

Global Connectivity is also required for better efficiency.
The key sharing in a wireless network the using Deployment
Model is not uniform, so uniform distribution techniques
like Erdos’ Random Graph Theory cannot be applied.
Shakkottai et al. [23] determined the connectivity of a wire-
less network with unreliable nodes that can be used for ran-
dom distribution. The authors [8] simulated the results for
Global Connectivity using m for the number of nodes in a
node’s key ring, which showed that when m = 200, no nodes
are wasted due to a lack of security links while only 0.12
percent of nodes are wasted when m = 100. The overlapping
factors a and b has to be selected carefully, when a = 0.25
and b = 0, each group shares keys only with horizontal
and vertical neighbors only; when a = 0 and b = 0.25, each
group shares keys only with diagonal neighbors only. The
values of a and b depend upon many factors like the size
of the nodes key ring m, different types of neighbors, etc.



2332 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
Advantages of this scheme include that only to consider
deployment knowledge that can minimize the number of
keys and help increase resilience or resistance to node cap-
ture and reduce network overhead, it increases overall con-
nectivity of the network graph, and offers same pros as the
Basic Scheme on which it is based. Disadvantages of this
scheme include complexity.

4.10. Location dependent key management scheme

Most key management schemes in sensor networks do
not consider locations of the sensor nodes after they are
deployed into the environment. A location dependent key
management scheme proposed in [32] decides which keys
to put on each node depending on their locations in the
environment.

In this scheme, nodes are determined to be static. They
communicate only through encrypted channels, and nodes
can be added at any time. Also nodes in this scheme are
assumed to be capable of transmitting at different power
levels giving different transmission ranges. Also there exist
special nodes called anchors. The only difference between
the anchor nodes and the other nodes in the network is that
the anchor nodes transmit at different power levels and
they are tamper proof [32]. There are fewer anchor nodes
than normal nodes in the network. There are Ns sensor
nodes and Na anchor nodes. There are three phases to this
type of WSN. They are the predistribution phase, initializa-
tion phase, and communication phase [32]. In the predistri-
bution phase, a key server computes a set of keys to be used
by the nodes. It places the keys into a key pool. Each sen-
sor node is then loaded with a subset of these keys along
with a single common key every node shares. Anchor nodes
do not get keys from the key pool.

The next two phases occur after the nodes have been
deployed into the environment. All of the nodes and
anchors are randomly distributed. The anchor nodes now
transmit a beacon at different power levels. The sensor
nodes receive these beacons and compute new keys using
their old keys and the beacon received from the anchor
node. The original subset of keys is deleted from the mem-
ory of the sensor node after they compute their new keys.
Also, all of the sensors, except the anchor nodes, delete
the one common key they all share [32]. When this is fin-
ished, the initialization phase is complete. When a node
needs to update its keys, it follows this pattern again. Since
it computes its keys from an anchor node that is close to its
location, the keys that are in the sensors memory are
directly connected with the sensors’ physical locations in
the network [32].

Next is the communication phase. In this phase, the
nodes compute pairwise keys to establish secure communi-
cation among them.

One of the key advantages of this location aware key
management scheme is that compromised nodes do not
affect nodes in a different location in the network. If an
adversary compromises a node, they are unable to commu-
nicate with other nodes that are attached to different
anchor nodes. Therefore compromised nodes only affect
other local nodes, but not the entire network [32]. This is
because keys in different physical locations are generated
by other anchor nodes and are therefore different.

(1) Performance of the location dependent scheme: The
impacts of different power levels, common key thresholds,
anchor transmission radius, and sensor node transmission
radius are examined in [32].

The first evaluation is the impact of the number of
power levels on anchor nodes. The number of keys in the
key pool, P, and the number of keys on each node, R,
are chosen to yield a high connectivity ratio. When the
P/R ratio is increased, the impact of a compromised node
is decreased [32].

The next evaluation is the impact of the common key
threshold Nc. If the common key threshold Nc is increased,
the connectivity ratio decreases when R is low.

The anchor transmission range also has an impact on
performance of this scheme. If the maximum range of the
anchor node is increased, initially the compromise ratio
decreases, and then it increases as the range of the anchor
node grows [32]. This is caused by the fact that if the
anchor nodes transmission range was large enough to cover
the entire network, all nodes would have beacons from all
anchor nodes and keys would not be as diverse.

The sensor transmission range is last to be evaluated.
It is shown in [32] that the connectivity ratio and com-
promise ratio decreases when the sensor nodes transmis-
sion range is larger than the anchor node transmission
range.

(2) Location dependent schemes versus other schemes:

When P and R equal 1, this is the worst case for the loca-
tion dependent scheme since an adversary only has to com-
promise one node to gain access to the entire network. This
scheme also performs worse than a random key distribu-
tion scheme where the other scheme has a key pool of
5000 and 175 keys on each node [32]. As the numbers of
nodes in the network that are compromised are increased,
the performance of the random key distribution scheme
deteriorated faster than the location dependent scheme
[32].

In the location dependent key management scheme, an
adversary can launch a denial of service attack if they
jam the anchor nodes and transmit false beacons. This is
fairly hard to accomplish since anchor nodes are randomly
dispersed in the environment [32].

Location dependent key management schemes can have
a positive effect on the security of the network. It can also
increase the direct connectivity ratio of neighboring
nodes. By knowing where nodes reside in the network,
keys can be generated for specific areas. This quarantine
node compromises because keys for different areas of
the network will be different. Also since the location of
nodes are known, the keys generated for each area allow
neighboring nodes to communicate with each other with
higher probability.



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2333
4.11. Location aware combinatorial key management

The authors in [33] proposes a lightweight combinatorial
construction of the key management scheme for clustered
WSNs, called SHELL. In SHELL, collusion is reduced
by using the nodes’ physical locations in computing their
keys. This scheme uses a command node to govern the
entire network. The command node directly communicates
with the gateway nodes which are in charge of the individ-
ual clusters. Nodes can be added to this network at any
time. The gateway nodes are powerful enough to commu-
nicate with the command node and do the required key
management functions.

(1) Threat model: The threat model is assumed to be an
adversary that tries to capture and compromise a number
of the nodes in the network. There also is no unconditional
trust on any sensor node. If an adversary compromises a
node, the memory of that node is known to them. Gateway
nodes can also be compromised. The goal of the adversary
is to uncover the keys used in the network for secure com-
munication [33]. To aid the adversary in doing this, they
attempt to get nodes to collude with each other.

(2) SHELL key management scheme: Each gateway
node can communicate with at least two other gateway
nodes in the network, and has three types of keys [33].
The first key type is a preloaded key that allows the
gateway to directly communicate with the command
node. The second type allows the different gateway nodes
to communicate. The third key type allows the gateway
to communicate with all of the sensor nodes in its
cluster.

The command node is assumed that it is unable to be
compromised [33]. Some of the responsibilities of the com-
mand node are to act as a key repository, authenticate
gateway and sensor nodes, distribute keys to all other
nodes, and it performs key renewal when needed.

The first thing that happens after deployment is that the
gateway nodes establish a connection back to the com-
mand node. When the command node has made connec-
tions with all gateway nodes, it then computes link
specific keys for inter-gateway communication [33]. The
command node then sends these keys to each of the gate-
way nodes. The command node also sends the gateway
nodes the keys to use for communication with the sensor
nodes in their particular clusters. When all of the gateway
nodes have been established and linked, they begin inter-
cluster sensor discovery.

The gateway node that governs a particular cluster does
not generate the keys for its cluster. The command node
assigns two other cluster heads to generate keys for this
cluster. Once the keys are computed, each node is notified
about the set of administrative keys that it was assigned
[33]. The cluster heads then transmit the keys that were
generated to the sensor nodes in their cluster.

When this is finished, the network bootstrapping phase
is over. This bootstrap is run every time rekeying is neces-
sary or when new nodes are added to the network [33].
Sensor nodes can be added to the network at any time.
When a new node is added to the network, the command
node lets the gateway node to broaden its power range
and gives it the key to communicate with the new node
[33]. The gateway nodes decide among themselves on which
cluster the new node will join.

(3) Attacks on the SHELL scheme: If nodal compromise
or fault is detected, a key revocation is initialized. The gate-
way node watches the nodes in its cluster for failure or
compromise and the command node does the same thing
for the gateway nodes [33].

If the gateway is compromised, the command node is
notified. The command node then assumes the responsibil-
ity of initializing a rekeying of the intergateway nodes.
There are two ways of accommodating for a compromised
gateway node [33]. The first is to deploy a new gateway
node. The other way is to distribute the nodes headed by
the compromised gateway node to other clusters. If the
option to replace the gateway node is used, and the nodes
in its governed cluster cannot communicate with it, a key
redistribution is required.

In the case a sensor node is compromised, it is given that
the gateway node can detect it. If a single sensor in a cluster
is compromised, all of the senor nodes keys have to be
replaced. This is done to protect the rest of the network
for the adversary [33].

In some key management schemes if a few nodes col-
lude, the adversary can gain knowledge about the entire
network. If this happens this is considered as a network
capture. SHELL attempts to correct this problem by
increasing the number of nodes that need to collude in
order to reveal information about the network [33]. In
order for any two or more sensor nodes to collude, they
must be within transmission range of each other. This is
most likely to happen when a neighboring node has been
compromised and the adversary can manipulate this node.
When two nodes collude, they both know all keys that are
common to each other [33]. Nodes need to be in direct
transmission range of each other to collude.

5. Dynamic key management

In [30], Eltoweissy et al. propose a dynamic key manage-
ment system, called exclusion-based system (EBS). Some of
the advantages of using a dynamic key management
scheme are improved network survivability and better sup-
port for network growth [30]. The issue in creating a
dynamic key management system is being able to make it
secure and efficient.

The EBS assigns each node k keys from a key pool of
size k + m. If node capture is detected, rekeying occurs
throughout the network. A disadvantage to this EBS
scheme is that if even a small number of nodes in the net-
work are compromised, information about the entire net-
work could be uncovered by an adversary.

The first application of the EBS scheme was done with
anonymous nodes in the network. The nodes did not have



2334 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
IDs [30]. Instead, nodes were identified by their locations.
This scheme is heterogeneous and depends on a central
base station for key distribution. This EBS scheme is very
efficient, but it does not prevent collusion among nodes
that are compromised.

Since there is a collusion problem in the standard EBS
system, a new proposed system called SHELL [30] uses
node location information to compute keys. Clusters and
gateways are used. The clusters in this scheme track key
assignments but not the keys themselves [30]. The actual
keys are stored in the gateways of other clusters. This sys-
tem is collusion-resilient. SHELL gathers node locations
after employment and uses this information while assigning
keys. Nodes that are located closer to each other share a
higher number of keys than nodes that are located longer
distance from each other [30].

LOCK, localized combinatorial keying, is a dynamic
key management scheme based on the EBS scheme [30].
This wireless sensor network model consists of a three level
hierarchy, base station, cluster heads, and sensor nodes.
LOCK does not use location information in the generation
of keys. When the nodes are initially released into the envi-
ronment, they create a set of backup keys. These sets of
backup keys are only shared with the base station, not
the local cluster leader nodes. If a node is captured, other
nodes are rekeyed locally so that the compromised node
is unable to communicate with them. If a cluster leader is
compromised, the base station initiates a rekeying on at
the cluster head level. Also, nodes within the group gov-
erned by the compromised cluster leader rekey with the
base station [30]. In LOCK, if an adversary compromises
any node, it does not have an effect on the operations of
other nodes in other clusters.

Static key management schemes rely on predistribution
of the keys and the probabilistic chance that two nodes that
want to communicate share at least one of these keys.
These static key schemes typically have a large value of
keys (250 or higher according to [30]) to ensure a high
probability that nodes can communicate. In some cases
though, the storage capacity of the sensor nodes is not be
able to hold a very large number of keys. The keys that
each node gets before distribution, k, is randomly chosen
from a key pool, m. m needs to be large so the number
of nodes an adversary would need to compromise to gain
information about the entire network has to be large. On
the other hand, if m gets very large, the probability that
two nodes receive a common key is lowered [30]. Dynamic
schemes work in generally the same way, but with lower
values of m [30]. This guarantees the dynamic schemes a
higher probability of connectivity.

The static and dynamic schemes both use random
assignment of keys to nodes. Static schemes just use a lar-
ger k values from a larger key pool. The dynamic schemes
use smaller k values on the nodes and a small key pool [30].

Some of the differences in static and dynamic key
schemes are now examined. Static schemes typically have
short-lived network life, larger key pools and keys in local
nodes, and may have a large rekeying cost since the key
pool is large. Dynamic schemes usually have longer net-
work life spans, smaller key pools and fewer keys on each
node, and only require a few messages for rekeying [30].

6. Hierarchical key management

6.1. LEAP: Efficient security for large-scale WSNs

One of the important mechanisms in sensor networks,
in-network processing, is not considered in the previous
schemes. This critical issue must be handled while dealing
with the resource-constrained property of WSNs. Most of
the data has to be collected by an aggregator node and then
passed on to other nodes in a WSN; however, data fusion
through in-network processing can be used to save network
energy and reduce communication overhead. The key
establishment techniques that have been discussed so far
do not support an In-Network Processing approach
because the nodes in this method are unable to communi-
cate with each other before transmitting data. Passive Par-
ticipation is a form of In-Network Processing in which a
sensor node takes certain actions based on messages from
other nodes. Zhu, Setia, and Jajodia [6] devised a scheme
called LEAP that would allow for data fusion, In-Network
Processing and Passive Participation.

Besides offering basic requirements like confidentiality
and authentication, LEAP supports various communica-
tion patterns, including unicast (addressing a single node),
local broadcast (addressing a group of nodes in a neighbor-
hood), and global broadcast (addressing all the nodes in a
WSN). Sometimes WSNs are deployed in an adversary’s
arena and, where most of the time compromised nodes
are undetected, LEAP provides survivability such that
compromising of some nodes does not cede the entire net-
work. LEAP is energy efficient since it supports techniques
like In-network Processing and Passive Participation that
greatly reduce network communication overhead and, in
turn, increase node battery life. Furthermore, LEAP
ensures that messages transferred are not fragmented,
which would increase packet losses in transmission as well
as make protocol implementation more complex and
difficult.

LEAP is based on the theory that different types of mes-
sages exchanged between nodes need to satisfy different
security requirements. All the packets transferred in a sen-
sor network need to always be authenticated where a sen-
sor node knows the sender of the data since an adversary
may attack a WSN with false data at any time. On the
other hand, confidentiality, like encryption of packets car-
rying routing information, is not always needed. Different
keying mechanisms are necessary to handle the different
types of packets. For this, Zhu, Setia, and Jajodia [6] estab-
lish LEAP with four types of keys that must be stored in
each sensor: individual, pairwise, cluster, and group. Each
key has its own significance while transferring messages
from one node to another in a WSN and by using these



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2335
keys, LEAP offers efficiency and security with resistance to
copious attacks such as the worm hole and the sybil.

• Individual key: This is a unique key that is shared
between the base station and each sensor node. Sensor
nodes use this key to calculate the MACs on their mes-
sages to the base station like alert signals (reports on
abnormal nodes). In the same way, a base station can
use an individual key to send messages to each and every
node in the network.

• Pairwise shared key: This is a unique key that is shared
between each node and its neighboring node in the net-
work. A node can use it to transfer individual messages
like sharing a cluster key or sending data to an aggrega-
tor node.

• Cluster key: This is a key that is shared between a node
and its neighboring nodes, and is very important since it
supports In-network processing and passive participa-
tion. A node may elect not to send a message to the base
station if its neighboring node is sending the same mes-
sage with a better signal, a discovery that is only possible
to implement if a node shares a common key with its
neighboring nodes. With such a cluster key, a node
can select which messages to transfer, thereby reducing
the system communication overhead.

• Group key: The base station shares this key with all the
nodes in the network to send queries to them. Group
key used requires an efficient rekeying mechanism for
updating it as there is a chance for an adversary to know
the key whenever a node is compromised.

(1) Efficiently establishing LEAP [6]: Establishing indi-

vidual keys: Every node in a WSN shares a unique key with
the base station that is preloaded into each node’s memory
before being deployed. The individual key Km

u for node U is
calculated as Km

u ¼ fKmðuÞ. For this, f is a pseudo-random
function and Km is the master key known only to the
controller. There is no need for the base station to store
all the individual keys, because the base station generates
them on the fly whenever it attempts to communicate with
a node.

Establishing pairwise shared keys: The most common
key used in a WSN is the pairwise that is shared between
each node and its neighboring node. Sensor nodes are ran-
domly scattered in an area; therefore, the key establishment
technique used should guarantee that nodes discover neigh-
boring nodes when deployed. Because sensor nodes are sta-
tic, the key establishment technique does not have to
consider deployment knowledge of others before node
deployment. When an adversary obtains a sensor node, it
is assumed that the node cannot be compromised before
time tmin. Whenever a node is deployed in a WSN, it
requires some minimum time to identify neighbors and
establish keys with them, which will be test. It is expected
that tmin > test; otherwise, the adversary could easily cap-
ture all the nodes in the WSN and effectively take over
the entire system.
The process of establishing keys when nodes are already
deployed is similar to the process of key establishment
when a new node is added to the network. There are four
stages that represent the key establishment of new node
U deployed in the network: key predistribution, neighbor
discovery, pairwise key establishment, and key erasure.
During the initial stage of key predistribution, node U is
loaded with the key Ki by the controller and derives the
master key Ku using it. For neighbor discovery, node U
first initializes a timer to activate at time tmin, then starts
communicating with its neighbors by broadcasting a
HELLO message containing its ID. Node V responds to
this message with a reply containing its ID. The ACK of
V is then authenticated using its master key Kv derived
from Ki. Node U verifies the authentication of V by gener-
ating the master key Kv as node V shares Ki with it:
U fi *:U and V fi U:V,MAC(Kv, UjV).

For the third stage of pairwise key establishment, node
U computes the pairwise key Kuv with node V using V’s
identity. Node V can also do the same thing with U. There
is no need for authenticating node U to V as any future
messages authenticated with Kuv will prove node U’s iden-
tity. In the fourth and final stage, key erasure, node U
erases Ki and all the master keys of the other nodes after
the time expires. Then node U will not be able to establish
pairwise keys with any other nodes in the WSN so that,
though an adversary captures a node, the communications
between it and another node cannot be decrypted without
the key Ki.

Pairwise shared keys do have computational overhead
since each node U in the network must verify the MACs
generated by neighboring nodes and each must reply with
a message including its identity and an MAC. Each node
must also generate a pairwise key between every other
neighboring node in the network. Because a HELLO mes-
sage includes only a node ID and an ACK message has only
an ID and an MAC, both can be adjusted in a single
packet. Also the space required for storing a preloaded is
only one key Ki; therefore, the communication and storage
overheads are small.

The HELLO message in our scheme is not authenti-
cated, so an adversary may try to attack the network by
constantly sending these messages, which will drain a
WSN’s resources. There are two solutions for this attack:
the controller may try to load each new node with the
group key of the network so that the nodes can verify the
authentication of the message by verifying the group key
in the message, or else the controller might try to add some
randomness into the IDs of the newly added nodes such
that false ones will be detected and dropped. The assump-
tion made here is that the sensor nodes are able to perma-
nently eliminate the master key Ki from their memory,
which may not be possible in all cases. One of the unique
advantages of the scheme above is that once pairwise keys
are established between neighboring nodes in an area of a
WSN, they cannot be established again, which protects
the network from clone attacks. In clone attacks, an



2336 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
adversary tries to attack the network by installing a
number of nodes with keys acquired from compromised
nodes, which then establish pairwise keys with other nodes
in the network and compromises the entire WSN with just
a few nodes. The scheme stated above restricts this kind of
attack to a local area as the cloned nodes cannot establish
pairwise keys with other nodes in the network that are not
neighboring nodes of the one compromised.

The security of the above scheme can be even increased
by regularly changing the master key Ki. If an adversary
compromises the sensor node before the establishment
time, the master key Ki can be obtained and then the whole
network can be compromised. By changing the master key
regularly, not only is this attack averted, but also attacks
caused later by the same adversary are averted, as the mas-
ter key could still be acquired by compromising a node and
deriving the key from its memory. There is one more secu-
rity threat that must be addressed here: if an adversary
attacks the WSN and succeeds in compromising the nodes
before key establishment time test, the network can then be
attacked through new nodes added into the network using
the correct master key. This problem, however, can be
solved. Suppose that the controller wants to add Ni nodes
into the network in the time interval Ti, Ni ID’s are gener-
ated for the nodes based on a random seed Si and each of
the Ni nodes is loaded with a unique ID. The nodes can
now establish pairwise keys as stated and when the control-
ler later broadcasts Ni and Si into the network using a
broadcasting scheme like lTESLA, the nodes verify
whether those attempting communications are valid or
not based on Ni and Si. The pairwise keys of nodes that
are not valid are then deleted from the memory of all the
nodes. Compared to other approaches, this method offers
greater efficiency and smaller overhead, while also protect-
ing the network from clone attacks and other serious
attacks.

Establishing cluster keys: The cluster key establishment
is based on the pairwise key establishment. If node U wants
to establish a cluster key with its neighbors v1, v2, v3, . . . ,vn,
first it generates a key Kc and then encrypts that key using
the pairwise key which it shares with each neighbor. Node
U then transmits this encrypted message to its neighbors.
Node v1 decrypts the key using the pairwise key which it
shares with U, and then stores the key in a buffer. Next it
sends back its own cluster key to node U. When any of
the nodes are revoked, node U generates a new cluster
key in the same way and transmits the key to all remaining
nodes.

Establishing group keys: A group key, which is shared
between a base station and all the nodes in a WSN, is
needed when the base station wants to send a message or
query to all the nodes of that WSN. One way of achieving
this is using the hop-by-hop method in which the base sta-
tion encrypts messages using the cluster key which it has
and then broadcasts the message to all the nodes in its
neighborhood. The nodes would decrypt the message and
then encrypt it using the cluster key which they share with
their neighbors. In this way, the message can be received by
all the nodes in the network. This is efficient, but has an
overhead of encryption and decryption at every node.

A simple method to establish a group key is to preload
each node with the group key before deployment, but this
is still within the scope for rekeying the group key which
will be necessary. Unicast-based group rekeying can also
be considered for which the base station needs to send
the group key to each node in the network, but this
involves much communication overhead. However, Zhu,
Setia, and Jajodia [6] proposed an efficient scheme based
on cluster keys in which the transmission cost will only
be one key. In WSNs, all messages sent by the base station
must be authenticated or an adversary may impersonate it.
The group key must be updated every time when a node is
revoked. Therefore the first issue to consider is how node
revocation can be done in this scheme. lTESLA, based
on a one-way key chain and delayed disclosure of keys, is
an efficient method to broadcast messages into a WSN,
as previously discussed. To bootstrap lTESLA, each node
should be preloaded with the commitment of the key chain.
If Kg is the new group key and U is the node to be revoked,
the base station broadcasts the following message:
M : Controller! � : u; fK 0gð0Þ;MACðkT

i ; ujfK 0gð0ÞÞ, where
fK 0gð0Þ is the key that enables the node to verify the authen-
tication of the group key. The server then distributes the
MAC key kT

i after one lTESLA interval. After a node V
receives the message M, it verifies the authenticity of the
message using lTESLA. If node V is neighbor of U, V will
remove its pairwise key shared with U and update its clus-
ter key. This process can also be used for updating the
group key.

For secure key distribution, this scheme uses a protocol
that is the same as the beaconing protocol for which all the
nodes are organized in a breadth-first spanning tree where
each node not only remembers the parent and children of a
spanning tree, but also the other neighbors. The new group
key K 0g is distributed to all the nodes in the network using
the spanning tree established by the routing protocol. The
base station initiates the process by sending the group key
to all its neighbors in the network. The nodes that receive
the message verify its authentication by calculating fK 0g
and by checking whether it is the same as the verification
key received earlier in the node revocation message. The
algorithm continues recursively down the spanning tree
with the help of each node, which transmit the group key
to neighbors while encrypting the message using their clus-
ter keys. As discussed earlier, this hop-by-hop scheme does
not involve much overhead as only one key is encrypted
and decrypted, and as rekeying of the group key is infre-
quent. However, it is desirable to change the group key
more often or an intruder may compromise the entire
WSN by obtaining one node and, thereby, deriving the
group key.

(2) Local broadcast authentication: Local broadcast is
different from global broadcast in that in local broadcast
a node generally does not know what packet it is going



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2337
to generate next and messages generally consist of aggre-
gated sensor readings or routing protocols. lTESLA is
not suitable for local broadcasting because lTESLA does
not provide authentication immediately, which is needed
in some local broadcast cases. Also, in lTESLA nodes
need to keep the packets in their buffers until the authenti-
cating key arrives, which increases the storage space
required. A packet that has to travel L nodes will at least
need L lTESLA intervals, thereby affecting latency of the
network. Pairwise keys cannot be used for local broadcast
because, if a node has n neighbors, the approach requires
the sender node to calculate n MACs for each message.
Local broadcast needs a method where a node can broad-
cast a message to all its neighbors using a single MAC and
cluster keys, with a problem as follows. If an adversary can
compromise a node, the cluster key from that node is avail-
able and can be used to attack the network by impersonat-
ing that node or a neighboring node. If nodes X, U, and V
are three vertices of a triangle, X is compromised, and U
wants to send messages to X and V, X can use node U’s
cluster key to impersonate it and send false messages to V.

Fortunately, Zhu, Setia, and Jajodia [6] have designed a
scheme called One-Way Key Chain-Based Authentication
for defeating this attack totally. This scheme is based on
lTESLA in that each node generates a one-way key chain
and sends the commitment of it to their neighbors. This
transferring is done using the pairwise keys already shared
with neighbors. If a node wants to send a message to its
neighbors, it attaches the next authorization key from its
key chain to the message. The receiving node can verify
the validation of the key based on the commitment it has
already received. The One-Way Key Chain-Based Authen-
tication is designed based on two observations: a node only
needs to authenticate to its neighbors and that a node V
will receive a packet before a neighboring X receives it
and resends it to V. This observation is true because of
the triangular inequality among the distances of nodes
involved. An adversary may still try to attack the nodes
by shielding node V while U is transmitting a message,
and then later send a modified packet to V with the same
authorization key; but this attack can be prevented by com-
bining the authorization keys with the cluster keys. When
this is done, the adversary does not have the cluster key
and so cannot impersonate node U. However, this scheme
does not provide a solution for attacks from inside where
the adversary knows U’s cluster key.

(3) LEAP performance evaluation: Overhead: Since the
performance of the pairwise key establishment have
already been discussed, here we review other factors of per-
formance like the computational cost, communication cost
and storage requirement of this approach. As mentioned, a
cluster key is established based upon the pairwise keys of
a node. Let us suppose that the number of neighbors to a
node is n; if the cluster key has to be updated the scheme
must perform n encryptions, which is computationally
expensive. The value of n depends upon the density of
the scheme; the computational cost increases as the
network is denser. While for securing distribution of a
group key, the number of decryptions is equal to the size
of the network. The total number of encryptions is also
equal to the size of the network; so if the size of the net-
work is M, the total number of symmetric operations will
be 2M. From these derivations, the computational cost of
the scheme is dependent upon the density of the network
d. Zhu, Setia, and Jajodia [6] stated that the average num-
ber of symmetric operations of the scheme is about
2(d � 1)2/(M � 1) + 2. If the density of the network is rea-
sonable, the computational cost may not be a bottleneck to
the scheme.

Also, the cost decreases with the increases of M. The
communication cost of the scheme is the same as the com-
putational cost. The average number of keys a node has to
transfer for updating keys due to revocation is (d � 1)2/
(N � 1) + 2. Just like computational cost, communication
cost increases with a increase in the density of the network
and decreases with an increase in the size of the network.
The storage requirement of this scheme is a bit high
because each node must store four types of keys in it. Con-
sidering the degree of node to be d, a node has to store one
individual key, d pairwise keys, d cluster keys, and one
group key. Also, a node must store a one-way key chain
and a commitment for each neighbor for local broadcast.
If L is the number of keys stored in a key chain, the total
number of keys the node has to store in this scheme will
be 3d + 2 + L. Again, the storage requirement of LEAP
depends upon the density of the network.

Resilience to attack: An adversary might launch a selec-
tive forwarding attack in which a compromised node drops
the packets containing the routing information of selected
nodes and forwards the other packets normally. LEAP
can minimize the affects of the scheme by minimizing this
problem to a local area. As LEAP uses local broadcast,
the attack’s effects will not transfer to more than 2-hops,
which will result in defeating the purpose of such an attack.
LEAP can also prevent a HELLO attack in which an
adversary attacks the network by repeatedly transmitting
HELLO messages and thereby depletes the network’s
resources. This attack is averted since the nodes in a LEAP
scheme accept packets only from authenticated neighbors.
The sinkhole and wormhole attacks, however, are difficult
to solve. In the sinkhole attack, a compromised node
attracts packets by advertising information like high bat-
tery power, etc., then later drops all the packets. In the
wormhole attack an adversary launches two nodes in the
network, one near the target of interest and the other near
the base station. The adversary then convinces the nodes
near the target, which would generally be multiple hops
away from the base station, that they are only two hops
away thereby creating a sinkhole. Also, nodes that are
far away think that they are neighbors because of the
wormhole created. In LEAP an adversary cannot launch
a wormhole attack after key establishment as at that point
every node has knowledge about its neighbors so it is
not easy to convince a node that it is near a particular



2338 Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341
compromised node. An insider node must then succeed in
compromising two nodes for creating a wormhole and
those nodes must be near the target of interest and the base
station after the key establishment phase is complete.
Although an adversary may try, it is difficult to create an
attractive sinkhole without being detected.

LEAP includes efficient protocols for supporting four
types of key schemes for different types of messages broad-
casted in WSNs and includes an efficient scheme for local
broadcast authentication. LEAP is an efficient scheme for
key establishment that resists many types of attacks on
the network, including the sybil, sinkhole, wormhole, and
so on. LEAP also provides efficient schemes for node rev-
ocation and key updating in WSNs.

Advantages of this scheme include that it offers efficient
protocols for supporting four types of key schemes for dif-
ferent types of messages broadcasted, reduces battery usage
and communication overhead through In-Network Pro-
cessing, and uses a variant of lTESLA to provide local
broadcast authentication. Disadvantages of this scheme
include that it requires excessive storage with each node
storing four types of keys and a one-way key chain, compu-
tation and communication overhead dependant upon net-
work density (the more dense a network, the more
overhead it has).

6.2. Key managements for heterogeneous sensor networks

Previous research on sensor network security mainly
considers homogeneous sensor networks. Research has
shown that homogeneous ad hoc networks have poor per-
formance and scalability. Furthermore, many security
schemes designed for homogeneous sensor networks suffer
from high communication overhead, computation over-
head, and/or high storage requirement. Recently deployed
sensor network systems are increasingly following hetero-
geneous designs. In [24,25], Du et al. considered key man-
agement in a Heterogeneous Sensor Network (HSN) that
consists of a small number of powerful High-end sensors
(H-sensors, e.g., PDAs) and a large number of Low-end
sensors (L-sensors, e.g., the MICA2-DOT nodes).

In [24], Du et al. present an effective key management
schemes – the asymmetric predistribution (AP) scheme
for HSNs. The powerful H-sensors are utilized to provide
simple, efficient and effective key set up schemes for L-sen-
sors. Although tamper-resistant hardware is too expensive
for L-sensors, it is reasonable to assume that powerful H-
sensors are equipped with this technology. The basic idea
of the AP key management scheme is to pre-load a large
number of keys in each H-sensor while only pre-loads a
small number of keys in each L-sensor. An H-sensor has
much larger storage space than an L-sensor, and the keys
pre-loaded in an H-sensor are protected by the tamper-
resistant hardware. The performance and security analysis
shows that the AP key management scheme can signifi-
cantly reduce the sensor storage requirement while achiev-
ing better security (e.g., better resilience to node
compromise attack) than several existing sensor network
key management schemes.

In [25], Du et al. design an efficient key management
scheme for HSNs by utilizing the special communication
pattern in sensor networks. In most wireless sensor net-
works, the many-to-one traffic pattern dominates, where
a large number of sensors send data to one (or a few)
sink. Hence, a sensor node may only communicate with
a small portion of its neighbors. Most existing sensor
key management schemes try to establish shared keys
for all pairs of neighbor sensors, no matter whether these
nodes communicate with each other or not, and this
causes large communication and computation overhead.
In the paper, the authors adopt an HSN model for better
performance and security. In [25], Du et al. propose a
routing-driven key management scheme, which only
establishes shared keys for neighbor sensors that commu-
nicate with each other. Elliptic Curve Cryptography is uti-
lized to further increase the efficiency of the key
management scheme. The performance evaluation and
security analysis show that the routing-driven key man-
agement scheme provides better security with significant
reductions on communication overhead, storage space
and energy consumption than some existing sensor key
management schemes.

6.3. Pairwise keys in heterogeneous sensor networks

Similar to [24,25], Traynor et al. [29] also assume that
there are nodes in the network that are more powerful
and more secure than others, and these more powerful
nodes are also in tamper proof boxes or well guarded. A
node that has limited memory and processing power is
identified as L1 and a node that have more memory and
more processing power is identified as L2 [29]. L2 nodes
act as head nodes for the L1 nodes and have the responsi-
bility of routing packets throughout the network. These L2

nodes have access to gateway servers which are connected
to a wired network.

In [29], there are three keying and trust models for the
heterogeneous network. The first is called backhaul, in
which the L1 nodes only send data to L2 nodes and only
do this if they both directly share a key. The second scheme
is called the peer-to-peer with limited trust, in which two L1

nodes wish to exchange data and they only trust each other
or another L2 node. If the two L1 nodes can establish a
pairwise key, they communicate with each other. If they
are unable to establish a key, they turn to the L2 node
for assistance in establishing one. The third scheme is
peer-to-peer with liberal trust, which works like the second
scheme, but instead of L1 nodes’ only trusting the other L1

it wants to communicate with and other L2 nodes, the L1

nodes trust all other L1 nodes and L2 nodes in the network
[29].

In the heterogeneous scheme, compromised nodes are
unable to eavesdrop on messages other than the ones
meant for it directly [29]. The following scenarios are



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2339
examined under the peer-to-peer with liberal trust model.
The first situation explored is the level 1 node compromise.
Nodes in the sensor network are likely to be compromised,
especially L1 nodes in the heterogeneous networks. Com-
promised nodes in a level 1 compromise are limited to
sending false data into the network or learning new keys
that are generated. If the compromised node is highly con-
nected with other nodes, the information on keys it receives
is higher than if it were a node on the edge of the network
[29]. Since compromised L1 nodes want to establish secure
connections to receive data from its neighbors, most likely
it would have to go through an L2 node for help with key
generation. Since this is the case, the L2 nodes can sense
irregular keying patterns from suspicious L1 nodes that
may indicate a compromised node [29].

The second type of compromise is an L2 node compro-
mise. These nodes are usually placed in tamper proof cases,
but no sensor node can be 100 percent resistant to compro-
mise [29]. Since L2 nodes hold far more keys in its memory
than L1 nodes, a compromised L2 node may affect a large
portion of the network.

Another threat to the wireless sensor network is the cap-
ture and pooling of keys from compromised L1 nodes. If
the adversary can capture a larger number of L1 nodes
and pool the keys from these nodes, they have a higher
probability of generating keys between other un-compro-
mised L1 nodes [29].

7. Conclusion

Key management for Wireless Sensor Networks (WSNs)
is a critical issue that has been addressed through many
proposed schemes presented in various papers. This paper
provides an overview of these techniques, each of which
offers different advantages and disadvantages. A balance
between the requirements and resources of a WSN deter-
mines which key management scheme should be employed.
A WSN used in a battlefield demands more security than
one used in places like shopping centers; also, the former
can be made more costly but the later needs to be as cheap
as possible. Decisions regarding the key management
scheme to be used must be based on these requirements
for efficiency.

The study of key management in wireless sensor net-
works still has abundant research opportunities in the
future. As electrical systems become smaller, more power-
ful, and use less energy, the security restraints will become
more complex. As for now, key management systems are a
trade-off of performance and security to low overhead in
memory usage and message transmissions [30]. Key man-
agement systems sole purpose is to supply secure communi-
cation in wireless sensor networks without producing much
overhead.

More schemes should be developed to make efficient use
of sensor nodes’ limited resources. Greater emphasis
should be given to the security in key management schemes,
particularly as a majority of sensor node deployment is
in hostile environments where providing strong security
features is a must. Though receiving much attention
recently, there are many problems to be addressed in
WSNs such as finding the compromised nodes in a net-
work, making good use of deployment knowledge, making
nodes tamperproof without much overhead, decreasing the
bootstrapping time required for the network, and so on.
Future research should especially seek techniques for com-
promised node discovery and efficient methods to revoke
compromised nodes.

Numerous lives can be saved in wars with the data
collected by sensors, but WSNs in the near future will
offer many surprises for humans as they come to be used
in daily household matters like locking doors and switch-
ing off electronics, or controlling traffic in high-volume
areas. Sensors installed in big malls and shopping centers
can guide people to their required products easily while
those in hospitals can monitor patient condition and
those in forests can provide immediate knowledge about
disastrous hazards like wildfire. These advantages are
only a small fraction of what WSNs could potentially
offer when deployed more commonly. Future studies
can prove WSNs to be useful in a wider variety of
environments.

References

[1] L. Eschenauer, V.D. Gligor, A key management scheme for distrib-
uted sensor networks, in: Proceedings of the 9th ACM Conference on
Computer and Communication Security.

[2] H. Chan, A. Perrig, D. Song, Random key predistribution schemes
for sensor networks, in: Proceedings of the 2003 IEEE Symposium on
Security and Privacy, May 11–14, pp. 197– 213.

[3] D. Liu, P. Ning, Establishing pairwise keys in distributed sensor
networks, Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS ’03) (2003) 52–61.

[4] W. Du, J. Deng, Y.S. Han, P.K. Varshney, A pairwise key pre-
distribution scheme for wireless sensor networks, Proceedings of the
10th ACM Conference on Computer and Communications (Securi-
tyCCS’03) (2003) 42–51.

[5] A. Perrig et al., SPINS: security protocols for sensor networks,
Proceedings of ACM MOBICOM (2001).

[6] S. Zhu, S. Setia, S. Jajodia, LEAP: efficient security mechanisms
for large-scale distributed sensor networks, in: Proceedings of The
10th ACM Conference on Computer and Communications Security
(CCS ’03), Washington D.C., October, 2003.

[7] D. Carman, P. Kruus, B. Matt, Constraints and approaches for
distributed sensor network security, NAI Labs Technical Report No.
00-010, September 2000.

[8] W. Du, J. Deng, Y.S. Han, S. Chen, P.K. Varshney, A key
management scheme for wireless sensor networks using deployment
knowledge, in: Proceedings of IEEE INFOCOM 2004.

[9] R. Merkle, Secure communication over insecure channels, Commu-
nications of the ACM 21 (4) (1978) 294–299.

[10] R. Anderson, A. Perrig, Key infection: smart trust for smart dust,
Unpublished Manuscript, November 2001.

[11] R. Merkle, Protocols for public key cryptosystems, Proceedings of
1980 IEEE Symposium on Security and Privacy (1980).

[12] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory IT-22 (1976) 644–654.

[13] C. Karlof, D. Wagner, Secure routing in sensor networks: attacks and
countermeasures, First IEEE International Workshop on Sensor
Network Protocols and Applications (2003).



2340 Y. Xiao et al. / Computer Commun
[14] A.D. Wood, J.A. Stankovic, Denial of service in sensor networks,
Computer 35 (10) (2002) 54–62.

[15] C. Karlof, N. Sastry, D. Wagner, TinySec: a link layer security
architecture for wireless sensor networks, Proceedings of the Second
ACM Conference on Embedded Networked Sensor Systems (SenSys
2004) (2004).

[16] F. Ye, H. Luo, S. Lu, L. Zhang, Statistical en-route detection and
filtering of injected false data in sensor networks, Proceedings of
IEEE INFOCOM (2004).

[17] D.W. Carman, B.J. Matt, G.H. Cirincione, Energy-efficient and low-
latency key management for sensor networks, Proceedings of 23rd
Army Science Conference (2002).

[18] M. Chen, W. Cui, V. Wen, A. Woo, Security and Deployment Issues
in a Sensor Network, Ninja Project, A Scalable Internet ServicesAr-
chitecture, Berkeley.

[19] W. Zhang, G. Cao, Group rekeying for filtering false data in sensor
networks: a predistribution and local collaboration-based approach,
Proceedings of INFOCOM (2005).

[20] D. Liu, P. Ning, K. Sun, Efficient self-healing group key distribution
with revocation capability, Proceedings of the 10th ACM conference
on Computer and communication security (2003).

[21] J. Lee, D.R. Stinson, Deterministic key pre-distribution schemes for
distributed sensor networks, To appear in Lecture Notes in Computer
Science (SAC 2004 Proceedings) (2004).

[22] A. Leon-Garcia, Probability and Random Processes for Electrical
Engineering, 2nd ed., Addison-Wesley Publishing Company Inc.,
Reading, MA, 1994.

[23] S. Shakkottai, R. Srikant, N. Shroff, Unreliable sensor grids:
coverage, connectivity and diameter, in: Proceedings of the IEEE
INFOCOM, 2003, pp. 1073–1083.

[24] X. Du, Y. Xiao, M. Guizani, H.H. Chen, An Effective Key
Management Scheme for Heterogeneous Sensor Networks, Ad Hoc
Networks, Elsevier, vol. 5, issue 1, January 2007, pp. 24–34.

[25] X. Du, M. Guizani, Y. Xiao, S. Ci, H.H. Chen, A routing-driven
elliptic curve cryptography based key management scheme for
heterogeneous sensor networks, in: IEEE Transactions on Wireless
Communications, accepted for publication (to appear).

[26] D. Malan, M. Welsh, M.D. Smith, A public-key infrastructure for
key distribution in TinyOS based on elliptic curve cryptography, in:
Proceedings of 1st IEEE International Conference Communications
and Networks (SECON), Santa Clara, CA, October 2004.

[27] N. Gura, A. Patel, A. Wander, H. Eberle, S.C. Shantz, Compar-
ing elliptic curve cryptography and RSA on 8-bit CPUs, in:
Proceedings of the 6th International Workshop on Cryptographic
Hardware and Embedded Systems, Boston, Massachusetts, August
2004.

[28] A.S. Wander, N. Gura, H. Eberle et al., Energy analysis of public-key
cryptography for wireless sensor networks, in: Proceedings of the
Third IEEE International Conference on Pervasive Computing and
Communications (PERCOM), 2005.

[29] P. Traynor, H. Choi, G. Cao, S. Zhu, T. Porta, Establishing pair-wise
keys in heterogeneous sensor networks, in: Proceedings of IEEE
INFOCOM 06.

[30] M. Eltoweissy, M. Moharrum, R. Mukkamala, Dynamic key
management in sensor networks, IEEE Communications Magazine
44 (4) (2006) 122–130.

[31] P. Ning, R. Li, D. Liu, establishing pairwise keys in distributed sensor
networks, ACM Transactions on Information and System Security 8
(1) (2005) 41–77.

[32] F. Anjum, Location dependent key management using random key-
predistribution in sensor networks, in: Proceedings of WiSe’06.

[33] M.F. Younis, K. Ghumman, M. Eltoweissy, Location-aware combi-
natorial key management scheme for clustered sensor networks, IEEE
Transactions on Parallel and Distributed Systems 17 (8) (2006)
865–882.

[34] W. Du, J. Deng, Y. Han, P.K. Varshney, A pairwise key predistri-
bution scheme for wireless sensor networks, in: Proceedings of
CCS’03.
Yang Xiao worked at Micro Linear as an MAC
(Medium Access Control) architect involving the
IEEE 802.11 standard enhancement work before
he joined Department of Computer Science at The
University of Memphis in 2002. Dr. Xiao is cur-
rently with Department of Computer Science at
The University of Alabama. He was a voting
member of IEEE 802.11 Working Group from
2001 to 2004. He is an IEEE Senior Member. He is
a member of American Telemedicine Association.
He currently serves as Editor-in-Chief for Inter-

national Journal of Security and Networks (IJSN), International Journal of

Sensor Networks (IJSNet), and International Journal of Telemedicine and

ications 30 (2007) 2314–2341
Applications (IJTA). He serves as a referee/reviewer for many funding
agencies, as well as a panelist for NSF and a member of Canada Foundation
for Innovation (CFI)’s Telecommunications expert committee. He serves as
TPC for more than 90 conferences such as INFOCOM, ICDCS, ICC,
GLOBECOM, WCNC, etc. His research areas are wireless networks,
mobile computing, network security, and telemedicine. He has published
more than 200 papers in major journals (more than 50 in various IEEE
Journals/magazines), refereed conference proceedings, book chapters rela-
ted to these research areas. Dr. Xiao’s research has been supported by NSF.

Venkata Rayi did his master’s program in the
Computer Sciences Department at The University
of Memphis, Memphis, TN 38152 USA (e-mail:
Krishna.rayi@gmail.com). He is right now
working as Software Engineer for a software firm
called XINOPT in the state of MD.
Bo Sun (bsun@cs.lamar.edu) received his Ph.D.

degree in Computer Science from Texas A&M
University, College Station, U.S.A., in 2004. He is
now an assistant professor in the Department of
Computer Science at Lamar University, U.S.A.
His research interests include the security issues
(intrusion detection in particular) of Wireless Ad
Hoc Networks, Wireless Sensor Networks, Cellu-
lar Mobile Networks, and other communications
systems. His research is supported by 2006 Texas
Advanced Research Program (ARP) and NSF
DUE-0633445.
Xiaojiang (James) Du is an Assistant Professor in
the Department of Computer Science, North
Dakota State University. Dr. Du received his B.E.
degree from Tsinghua University, Beijing, China
in 1996, and his M.S. and Ph.D. degrees from
University of Maryland, College Park in 2002 and
2003, respectively, all in Electrical Engineering.
His research interests are heterogeneous wireless
sensor networks, security, wireless networks,
computer networks, network and systems man-
agement, and controls. Dr. Du is an Associate

Editor of Wireless Communication and Mobile Computing (Wiley), and
International Journal of Sensor Networks (InderScience). He is (was)

the Chair of Computer and Network Security Symposium of ACM
International Wireless Communication and Mobile Computing Confer-
ence 2007 (2006). He is (was) a TPC member for several major IEEE



Y. Xiao et al. / Computer Communications 30 (2007) 2314–2341 2341
conferences such as INFOCOM, ICC, GLOBECOM, WCNC, IM,
NOMS, BroadNet and IPCCC.

Fei Hu received the BS and MS degrees from
Shanghai Tongji University (China) in 1993 and
1996, respectively. He received the Ph.D. degree
from the Department of Electrical and Computer
Engineering at Clarkson University in 2002. His
Ph.D. research was on high-performance trans-
mission issues in wireless networks. He is cur-
rently an assistant professor in the Computer
Engineering Department at RIT, New York. He
served as a senior networking engineer at the
Shanghai Networking Lab and Shanghai Lucent

Inc. from 1996 to 1999, where he worked on several large projects on high-
performance networks. Dr. Hu is a full Sigmaxi member, a member of the

IEEE, and an IEEE chapter officer. His research interests are in ad hoc
sensor networks, 3G wireless and mobile networks, and network security.
His research has been supported by NSF, Cisco, Lockheed Martin, Sprint,
and so on.

Michael Galloway received the A.A.S. degree in
Electronics Technology from Central Alabama
Community College, Alexander City, AL in 2001.
He received the B.W.E. degree in Wireless Soft-
ware Engineering from Auburn University,
Auburn, AL in 2005. He is currently enrolled as a
Ph.D. student in the Department of Computer
Science at the University of Alabama. His current
research interests are wireless networks, security
in wireless networks, cognitive radios, routing
protocols, and the OSI model. He is a student

member of IEEE and ACM. He is a member of the SIGMOBILE interest
group within ACM.


	A survey of key management schemes in wireless sensor networks
	Introduction
	Single network-wide key, pairwise key establishment, trusted base station, authentication
	Single network-wide key
	Pairwise key establishment scheme
	Trusted base station
	Authentication:  mu TESLA

	Public key schemes
	Public-key schemes: RSA and ECC
	TinyOS public-key implementation
	Key management using ECC

	Key predistribution schemes
	Random key predistribution scheme (Basic scheme)
	Q-composite random key predistribution scheme
	Multipath key reinforcement scheme
	Random pairwise key scheme
	Polynomial pool-based key predistribution
	Random subset key predistribution
	Grid-based key predistribution
	Hypercube key distribution scheme
	Key management schemes using deployment knowledge
	Location dependent key management scheme
	Location aware combinatorial key management

	Dynamic key management
	Hierarchical key management
	LEAP: Efficient security for large-scale WSNs
	Key managements for heterogeneous sensor networks
	Pairwise keys in heterogeneous sensor networks

	Conclusion
	References


