
Journal of Network and Systems Management, Vol. 14, No. 2, June 2006 (c© 2006)
DOI: 10.1007/s10922-006-9027-8

Identifying Control and Management Plane Poison
Message Failure by K-Nearest Neighbor Method

Xiaojiang Du 1

Published online: 22 June 2006

Poison message failure is a mechanism that has been responsible for large-scale failures
in both telecommunications and IP networks. The poison message failure can propagate
in the network and cause unstable network. In this paper, we apply machine learning,
data mining technique in network fault management area. We use k-nearest neighbor
method to identify the poison message failure. Also we integrate the k-nearest neighbor
method with message filtering approach. We also propose a “probabilistic” k-nearest
neighbor method that outputs a probability distribution (rather than the identity) of
the poison message. Through extensive simulations, we show that k-nearest neighbor
method is very effective in identifying the responsible message type.

KEY WORDS: Fault management; Fault diagnosis; Poison message failure; K-
nearest neighbor method .

INTRODUCTION

There have been a number of incidents in which “bad behavior” has propagated
from network element to network element and resulted in a significant degradation
of network throughput and performance, e.g., routing system failures, routing
flaps, congestion and deadlock scenarios, system crash chain reactions, etc. In
the past, unintentional system faults and propagating failures have led to Internet
routing instabilities [1], major outages of AT&T and MCI-Worldcom frame relay
networks [2, 3], Signaling System No. 7 (SS7) common channel signaling network
outages of Regional Bell Operating Company in 1990 and 1991, and major service
disruption of the AT&T 4ESSTM switched voice telephone network in 1990 [4, 5].

The above incidents were caused by unintentional triggers activating under-
lying system defects (e.g., software bugs, protocol deficiencies and system design
problems) that create the propagation mechanism for instability. An important

1 To whom correspondence should be addressed at Department of Computer Science, North Dakota
State University, Fargo, ND 58105. E-mail: xiaojiang.du@ndsu.edu.

243

1064-7570/06/0600-0243/0 C© 2006 Springer Science+Business Media, Inc.

244 Du

aspect of the system defects is that they are very unlikely to be discovered in nor-
mal testing and operation. Since the details of the system defects are not known in
advance, effective control mechanisms tailored to the specifics of the vulnerability
are virtually impossible to achieve. And new defects are constantly introduced.
Furthermore, a serious concern is that we know there can be many such ‘unknown’
software bugs and protocol deficiencies lurking in deployed systems, and if these
become known by a malicious party the defects can be exploited to cause signifi-
cant harm. Thus, the network instability problems should be considered not only
as network fault management issues, but also as network security issues.

Previous efforts to address major network outages have focused on areas
such as software reliability, disaster prevention and recovery, network topological
design, network engineering, and congestion control. In relation to fault propaga-
tion, the main idea that has previously been considered is software diversity [6].
However, whenever network providers have studied software diversity they have
determined that to achieve it would be too costly and an unmanageable solution.
Furthermore, software diversity does not address flaws in a standardized proto-
col. Virtually all of the previous works related to this problem is directed at how
to design systems and protocols to be robust assuming complete knowledge and
control of the underlying protocols and systems. A typical example is the design
of system and network congestion control.

Our goal is to develop a fault management framework that can identify the
failure and protect networks from unstable behavior when the trigger mechanism
and defect causing instability are unknown. There are several generic failure
mechanisms that can cause unstable networks [4]. In this paper, we focus on one
type of the generic propagation mechanisms. This mechanism can occur in any
network that passes control or management messages between network elements,
and it involves a ‘poison’ message that propagates and induces system failures,
which we refer to as poison message failure.

The Poison Message Failure Problem

We present a description of the generic problem. A trigger event causes a
particular network control/management message (the poison message) to be sent
to other network elements. Some or all of the network elements have a software
or protocol ‘bug’ that is activated on receipt of the poison message. This activated
‘bug’ can cause the node to fail with some probability. If the network control or
management is such that this message is persistently passed among the network
nodes, and if the node failure probability is sufficiently high, large-scale instability
can result. Several such incidents have occurred in telecommunication and other
networks, such as an AT&T telephone switching network incident in 1990 [4, 5].
We are also aware of an incident in which malformed Open Shortest Path First

Identifying Poison Message Failure by K-Nearest Neighbor Method 245

(OSPF) packets functioned as poison messages and caused failure of the routers
in an entire routing area for an Internet Service Provider.

In the AT&T incident above, the trigger event is the normal maintenance
event that caused the first switch to take itself out of service. The poison message
is the normal out-of-service message sent to neighboring switches informing them
that it is temporarily going out of service. The poison message creates a state in
the neighboring switches in which faulty code may be executed. In this case, an
auxiliary event must occur for the faulty code to be executed causing the node
to fail, namely the arrival of a pair of closely spaced call setup messages. The
dependence on the auxiliary event makes the node failure probabilistic with the
probability depending on network load (the rate of call setup messages). While in
this particular example, the poison message itself is not flawed; in other examples
such as the OSPF case referred to above, the poison message may be malformed
or contain fields with abnormal values. Obviously, the more challenging case is
the one in which the message itself is completely normal and is ‘poison’ only
because of software defects in the router or switch.

Our objective is to design a fault management framework that can identify
the message type, or at least the protocol carrying the poison message, and block
the propagation of the poison message to prevent network instability.

The Problem Features

This problem has several differences from traditional network fault manage-
ment problems. Typical network fault management deals with localized failure.
E.g., there is something wrong with a switch. What propagates is not the failure
itself but the consequences of the failure on the data plane–e.g., congestion builds
up at upstream nodes. Then multiple alarms are generated that need to be cor-
related to find the root cause. In our problem, the failure itself propagates, and
propagation occurs through messages associated with particular control plane or
management plane protocols. It is also different from worms or viruses in that
worms and viruses propagate at the application layer.

A message type may have a characteristic pattern of propagation. For ex-
ample, OSPF uses flooding so a poison message carried by OSPF link state
advertisements is passed to all neighbors. In contrast, Resource ReSerVation Pro-
tocol (RSVP) path messages follow shortest paths so a poison message carried by
RSVP is passed to a sequence of routers along such a path. Consequently, we ex-
pect pattern recognition techniques to be useful in helping to infer the responsible
message type.

We make the following two assumptions:

1. The node status information (normal or failed) is available.

246 Du

2. Because the probability of two message types being the poison message
at the same time is extremely small, we assume there is only one message
type being the poison message when such failure occurs.

In the paper, we apply a data mining technique - K-Nearest Neighbor (KNN)
method to identify the poison message failure. The KNN method can be used
in different network management architectures, including centralized Network
Management System (NMS), hierarchical NMS, and distributed NMS. To apply
KNN method, only the node status information (normal or failed) is needed. We
assume the node status information is available to a certain node, which is referred
to as the management node. The training data for KNN method is stored in the
management node. In a centralized NMS, the node status information is available to
the centralized Network Manager. Distributed network management schemes [17,
19–21] have received increasing attention in recent years. In a hierarchical NMS or
a distributed NMS, a distributed Network Manager or Network Element (NE) can
be elected as the management node to collect node status information and perform
the KNN diagnosis. When a node fails, its neighbor can send this information to
the management node - the distributed Network Manager or NE, then the KNN
method can be applied there. Different distributed Network Managers or NEs may
serve the role in turn. The detail of the distributed solutions is out of the scope
of this paper. In this paper, we will focus on the diagnosis of the poison message
failure by using KNN method. In the extreme case, a node (say C) and all its
neighbors could fail at the same time, and the information of node C’s failure may
not be available to the management node. In such case, the management node can
still perform the KNN diagnosis, but the performance may degrade because the
information is not complete.

The rest of the paper is organized in the following way. Section 2 gives a
brief introduction of passive diagnosis and active diagnosis. Section 3 describes
our OPNET simulation testbed and the k-nearest neighbor method. In Section
4, we present various experimental results of using KNN to identify the poison
message failure. And Section 5 concludes the paper.

PASSIVE DIAGNOSIS AND ACTIVE DIAGNOSIS

For reader’s convenience, we briefly describe passive diagnosis and active
diagnosis in this section.

Passive Diagnosis

Passive diagnosis includes several real-time inference and reasoning tech-
niques. It only observes information from the network. Passive diagnosis includes
analyzing protocol events at an individual failed node, correlating protocol events

Identifying Poison Message Failure by K-Nearest Neighbor Method 247

across multiple failed nodes, and classifying the observed pattern of failure prop-
agation. The details of the above passive diagnosis approaches can be found in
our previous works [4, 7, 9]. The output of passive diagnosis is a probability
distribution of each suspected message type being the poison message.

In our previous work, we used neural network approach to identify the poison
message in [7, 9]. Here we want to give a comparison between neural network
approach and the K-Nearest Neighbor method, which is discussed in this paper.
Although they both are adaptive learning methods, we notice there are several dif-
ferences between these two approaches after applying them to the poison message
problem:

(1) A major difficulty in applying neural network approach is that neural
networks need large amount of training data. A lot of training data is
needed for a neural network to perform well, while KNN only needs rela-
tively small amount of training data. For example, in the poison message
problem, more than 500 set of data is needed to train the neural network
designed for a 50-node communication network, while only 50 set of
training data is needed by KNN for the same communication network.
This is a great reduction in the complexity.

(2) Large neural networks may not converge. So the neural network approach
may not work well for large communication networks. However, KNN
does not have this problem. Our simulations show that KNN performs
well for large networks, i.e., it has good scalability.

(3) KNN is a simple algorithm, it is easier to understand and implement in
real communication networks than neural network approach. This is an
important reason that we still want to investigate KNN method after using
neural network approach.

In summary, KNN needs much less training data, has better scalability and
robustness than neural network approach. Also, KNN is easier to be implemented
in real networks than neural network approach.

Active Diagnosis

Active diagnosis intervenes with the network and changes the dynamic of
the network. Active diagnosis can be very effective in many fault identification
problems [18]. For the poison message failure, active diagnosis uses message
filtering to block suspected message type. From passive diagnosis we have an
estimated probability distribution over the possible poison message types. In active
diagnosis, filters are dynamically configured to block suspected message types.
Message filtering can be a valuable tool in helping to identify the culprit message
type. For example, if a single message type is blocked and the failure propagation
stops, this provides strong evidence that the blocked message type is the poison

248 Du

message. On the other hand, if the propagation continues, that message type can
be ruled out.

In addition to its use as a diagnostic tool, filtering offers the possibility of
interrupting failure propagation while the culprit message type is being identi-
fied. For example, all suspected message types can be initially blocked to stop
failure propagation. Then message types can be turned on one-by-one until prop-
agation resumes. While this approach may be attractive in preventing additional
node failures during the diagnostic process, disabling a large number of control or
management messages may result in unacceptable degradation of network perfor-
mance. Consequently, the decision making for filter configuration must take into
account tradeoffs involving the time to complete diagnosis, the degradation of net-
work performance (node failure) due to poison message propagation, and the cost
to network performance of disabling each of those message types. Each decision
on filter configuration leads to further observations, which may call for chang-
ing the configuration of the filters. This suggests that policies for dynamic filter
configuration may be obtained by formulating and solving a sequential decision
problem.

The Sequential Decision Problem

The sequential decision problem is stated in the following.

• At each stage, the state consists of the recent history of the node failures,
and a probability distribution vector where each element is the probability
of a suspected message type being the poison message.

• Based on the current state, a decision (action) is made as to how to con-
figure filters.

• When new node failures are observed, the state is updated based on the
current state, action and new observation.

Actions are chosen according to a policy that is computed off-line based on
optimizing a proper objective function. There are three possible outcomes when
message filtering is used.

(1) If message filtering is used and the propagation is stopped within a certain
time, then either the poison message type is found (if only one message
type is filtered) or the types that are not filtered are ruled out (two or more
types are filtered).

(2) If message filtering is used but the propagation is not stopped within a
certain time, then the responsible message type is not found. The filtered
message types are removed from the possible suspect set. Collect more
information, update the probability vector and reconfigure the filters.

Identifying Poison Message Failure by K-Nearest Neighbor Method 249

(3) If the current action is not to filter any message types, then we simply
take another observation. Several other nodes may fail as the poison
message propagates in the network. This information is used to update
the probability vector. Based on the updated state, a new action is taken
to configure the filters.

The sequential decision problem is modeled as a Partially Observed Markov
Decision Process (POMDP) in [8].

K-NEAREST NEIGHBOR METHOD

In this paper, we apply machine learning, data mining [10, 11] technique
in network fault management. We use k-nearest neighbor method to identify the
poison message failure in communication networks.

The OPNET Simulation Testbed

We have implemented an OPNET testbed to simulate an MPLS network
in which the poison message can be a message in Border Gateway Protocol
(BGP), Label Distribution Protocol (LDP), or OSPF. The training data for k-
nearest neighbor method is generated from the simulation testbed. The testbed has
50 routers, and the testbed topology is shown in Fig. 1.

For each simulation run, one message type in BGP, LDP or OSPF is randomly
selected as the poison message. When a node in the network receives the poison
message, it fails with certain probability. Simulations are run with different mes-
sage types being the poison message and different node failure probabilities. For
each simulation, the node status vector is recorded at every time step (a pre-defined
time interval). After extensive simulations, large amount node status vectors are
obtained. And these node status vectors are used as the base data in the k-nearest
neighbor method. Table I gives an example of the node status vectors, where the
Poison Message is OSPF update message.

The node status vector in Table I looks like a matrix. But actually it is a
vector. We just split it into four rows to correspond to the four subnetworks in the
testbed. In the node status vector, “1” means the node is failed, and “0” means the
node is normal.

K-Nearest Neighbor Method

Here we give a brief introduction about the k-nearest neighbor method. Given
a training set M of m labeled patterns, a nearest neighbor procedure decides that
some new pattern X belongs to the same category as do its closest neighbors in
M. More generally, a k-nearest neighbor method assigns a new pattern X to that

250 Du

Fig. 1. The OPNET simulation testbed.

category to which the plurality of its k closest neighbors belong. Using relatively
large values of k decreases the chance that the decision will be unduly influenced
by a noisy training pattern close to X. But large values of k also reduce the acuity
of the method. The k-nearest neighbor method can be thought of as estimating
the values of the probabilities of the classes given X. Of course the denser are
the points around X, and the larger the value of k, the better the estimate [12].
The k-nearest neighbor method is simple but could be very powerful in some

Table I. The node status vector

Failed Nodes
Node Status
Vector

at2, at3, at4 at5, at7,
da1 da5, da6, da7,
dc5, dc6, dc8,
po1, po2, po5, po6, po7

[01111010
10001110
00001101
11001110]

Identifying Poison Message Failure by K-Nearest Neighbor Method 251

Fig. 2. K-nearest neighbor method.

applications [13, 14]. There have been several practical applications of k-nearest
neighbor method [15, 16].

We need to have a metric to measure the distance between two patterns. The
distance metric used in nearest neighbor methods for numerical attributes can be
simple Euclidean distance. That is the distance between two patterns (x11, x12, . . . ,
x2n) and (x21, x22, . . . , x2n) is

√∑
(x1i − x2i)2. This distance measure is often

modified by scaling the features so that the spread of attribute values along each
dimension is approximately the same. In that case the distance between the two
vectors would be

√∑
ai(x1i − x2i)2, where ai is the scale factor for dimension

i. An example of 8-nearest neighbor decision problem [12] is shown in Fig. 2.
In the figure, the class of a training pattern is indicated by the number next
to it.

In this problem, we use number 1 and 0 to represent the pattern. So we
can use another metric-the Hamming distance. The Hamming distance between
two vectors X1 = (x11, x12,K, x1n) and X2 = (x21, x22,K, x2n) is defined as the
number of different bits between vector X1 and X2. Since the bit is either 1 or 0,
the Hamming distance metric is equivalent to the Euclidean distance metric.

252 Du

Table II. The test result of k-nearest neighbor method when k = 1

Test 1 Test 2 Test 3 Test 4

Failed Nodes at2, at4 at5, at7,
da6, da7,
dc2, dc6

at2, 3, 4, 5, 6, 7,
da1,da5, da6, da7,
dc2, dc5, dc6, dc8,
po1, 2, 5, 6, 7

at1, at5, at6, at8,
da2, da4,
dc1, dc4, dc7,
po1, po8

at1, at2, at3, at4, at8,
da3, da4, da8,
dc3, dc5, dc7,
po4, po5

Testing Data [01011010
00000110
01000100
00000000]

[01111110
10001110
01001101
11001110]

[10001101
01010000
10010010
10000001]

[11110001
00110001
00101010
00011000]

Nearest
Neighbor

[01011011
00000110
01000100
00000000]

[01111110
11001110
01001101
11001111]

[10000101
01011000
11010010
10000001]

[11100001
00110001
01101010
00011000]

Output Message BGP open alive BGP keep alive OSPF update LDP label release
Poison Message BGP open alive BGP keep alive OSPF update LDP label request

EXPERIMENTAL RESULTS

Test Results from K-Nearest Neighbor Method

After obtaining enough training data, we run new simulations and obtain
new node status vectors to test the k-nearest neighbor method. First we test the
k-nearest neighbor method when k is 1. And the results are very good. We tested
30 new node status vectors by using the nearest neighbor method, and in 26 cases
the poison message type is correctly identified. Parts of the results are given in
Table II.

In Table II, the red underlined numbers are the different bits between the
input node status vector and its nearest neighbor. From Table II, we can see that
test 1, test 2 and test 3 all give correct diagnosis. The nearest neighbor indicates
the poison message type correctly. But in test 4, this method gives the wrong
diagnosis. In that case, the poison message is LDP label request message, but the
nearest neighbor method outputs LDP label release message.

To reduce the influence of noise, we also tested nearest neighbor method
when k is larger than one. In particular, we did test when k equals 3, 5 and 7. Some
test results for k = 3 are reported in Table III. In Table III, the 2nd row from the
bottom is the output message types from the 3 nearest neighbors. The last row is
the actual poison message. In k = 3 case, if the nearest three neighbors are three
different message types, we choose the message type with the minimum Hamming
distance. If the Hamming distances are also the same, a message type is chosen
randomly. (Note: Keep denotes keep alive message).

Identifying Poison Message Failure by K-Nearest Neighbor Method 253

Table III. Test results for k-nearest neighbor method (k = 3)

Test 1 Test 2 Test 3

Testing Data [01011000
00010110
01000000
00000000]

[01001010
00000110
01000100
00000000]

[01011100
01000000
01000100
00000000]

Nearest Neighbor 1 [01011000
00010110
00000001
00000000]

[01011010
00000110
01000100
00000000]

[01011100
01000000
00000000
00000000]

Nearest Neighbor 2 [01011000
00010110
01000100
00000000]

[01011000
00010110
01000100
00000000]

[01011101
01000100
01000000
00000000]

Nearest Neighbor 3 [01011000
00010110
01000100
00000000]

[01001010
10000000
01000100
00000000]

[01011010
01000010
01000100
00000000]

Output Message 1. Open 1. Keep 1. Update
2. Open 2. Open 2. Open
3. Open 3. Keep 3. Keep

Poison Message BGP open BGP keep alive BGP update

As we can see from Table III, in test 2 even the 2nd nearest neighbor indicates
the wrong message type–BGP open message, the output is still correct since the
1st and 3rd nearest neighbors all indicate the poison message–BGP keep alive
message. Thus larger k value does reduce the noise influence. In test 3, three
nearest neighbors belong to three different message types: BGP update message,
open message and keep alive message. The output is BGP update message. Be-
cause BGP update message has the minimum Hamming distance with the testing
data.

Comparison of Different K Values

We have tested k-nearest neighbor method with k being 1, 3, 5 and 7. And
we compared the performance for different k values. The correct percentage for
different k value nearest neighbor method is plotted in Fig. 3.

From Fig. 3, we can see that the larger k value, the better testing result.
This is due to large k reduce the noise influence. However, large k also means
more computation is needed to search the nearest neighbor. We find out that the
testing result is already pretty good when k = 3, where the correct rate is 92.3%.
Increasing k does not improve the testing result very much. The correct rate is

254 Du

60

70

80

90

100

Different K

K=1

K=3

K=5

K=7

Fig. 3. Performance of different k-nearest neighbor method.

93.6% when k is 7, only 1.3% increase compared to k = 3. This suggests that we
should choose a proper k value that obtains good result while does not need too
much computation. In this test, k = 3 seems to be a good choice.

The Second Nearest Neighbor

When k = 1, the correct rate of the k-nearest neighbor method is about 86%.
And we observe that for most of the wrong diagnosis cases, the second nearest
neighbor indicates the poison message correctly. We summarize the result of
correct identification rate in Table IV. From Table IV, we can see that in 97%
cases, the poison message is either given by the nearest neighbor or the second
nearest neighbor.

The Serial Tests

In the previous tests, we use the node status vector at one time step as input
to find out the k-nearest neighbors. And then decide the poison message type.
Another approach could be to use the node status vectors at several consecutive
time steps as input, and combine the results to decide the poison message type –
the serial test. An example of the serial test is given in Table V.

The serial test can give more robust results. One way to combine several test
results is to use a voting algorithm. All the tests vote for the poison message, and
the plurality wins. In case tie happens, the poison message is chose randomly.

Table IV. Correct diagnosis ratio when k = 1

The Nearest Neighbor The 2nd Nearest Neighbor Totally

86% 11% 97%

Identifying Poison Message Failure by K-Nearest Neighbor Method 255

Table V. Serial test result

Time t = 1 t = 2 t = 3

Failed Nodes at2, at4, at5, at7,
da1, da5,
dc2, dc6

at3,
da6,
dc5, dc8,
po1, 2, 5, 6, 7, 8

at6,
da2

Testing Data [01011010
10001000
01000100
00000000]

[01111010
10001100
01001101
11001111]

[01111110
11001100
01001101
11001111]

Nearest Neighbor [01001010
10001000
01000100
00000000]

[01111010
11001100
01001101
11001111]

[01111110
11001100
01001101
11001111]

Output Message BGP open BGP keep alive BGP keep alive
Voting BGP keep alive
Poison Message BGP keep alive BGP keep alive BGP keep alive

In Table V, the poison message is BGP keep alive message. At time t = 1, the
nearest neighbor method outputs the wrong message type–BGP open message.
But at time t = 2 and t = 3, the nearest neighbor method all diagnosis correctly.
And by combining the results at the three time steps, the final result is correct.

Integrating K-Nearest Neighbor Method with Sequential Decision Problem

The nearest neighbor method provides good result to identify the poison
message. But we still need some actions to confirm that we find the poison message.
One action is to use message filtering–block the possible poison message, and see
if the failure propagation stops in a certain time. If it stops, then the identity of the
poison message is confirmed. On the other hand, if failures continue, then we will
observe some other node failures and use the nearest neighbor method to test the
new node status vector again. Since a previously filtered message will not be the
poison message, we need to take into account the knowledge about past filtering.
I.e., the previously filtered messages should be excluded.

One of the integration test results is given in Table VI. At time t = 1, the
nearest neighbor method determines the poison message is BGP open message.
Then BGP open message is blocked in the network. But the failure propagation
does not stop in a certain time. This means BGP open message is not the poison
message. Then three more node failures–at2, at4 and da4 are observed. The new
node status vector is tested by the nearest neighbor method. And the nearest
neighbor still belongs to BGP open message. But we already know that BGP open
message is not the poison message. So we forget about this nearest neighbor, and

256 Du

Table VI. Integration test

Time
Failed
Nodes

Testing
Data

Nearest
Neighbor

2nd Nearest
Neighbor

Output
Message

Poison
Message

t = 1 at5 at6,
da6,
dc2

[00001110
00000100
01000000
00000000]

[00001110
01100100
01000000
00000000]

BGP open BGP update

BGP open message is filtered, but the failure is not stopped
t = 2 at2 at4,

da2
[01011110
01000100
01000000
00000000]

[01011110
01100100
01000100
00000000]

[01001110
01000000
00000000
00000000]

BGP update BGP update

find the 2nd nearest neighbor. And the 2nd nearest neighbor indicates the exact
poison message–BGP update message. In Table VI, the underlined number means
the different bit between the node status vectors. The italic vector is the node status
vector that we should exclude based on previous filtering information.

Probabilistic K-Nearest Neighbor Method

The k-nearest neighbor method determines the class that the target belongs
to based on the class of the k-nearest neighbors. So the outputs of the k-nearest
neighbor method are always deterministic. I.e., which class the target belongs to.
However, sometimes the outputs are not the correct class. In order to increase
the robustness of the k-nearest neighbor method, we suggest a “Probabilistic”
K-Nearest Neighbor (PKNN) method. In PKNN method, the output is not a de-
terministic class, but rather is a probability distribution about the possible classes.
In the poison message problem, the output is the probability distribution about
the poison message (rather than the identity of the poison message in k-nearest
neighbor method). So the PKNN method does not completely rule out possible
classes other than the one that has the most nearest neighbors.

We also implemented simulations to test the performance of PKNN method.
In the simulation, the poison message is randomly selected according to a pre-set
probability distribution P0 from six different message types. The PKNN finds out
the ten-nearest neighbors for the node status vector and assign the probability
according to the number of different message types in the ten-nearest neighbors.
One of the examples is given in Table VII. In Table VII, the first row is the six
message types in the simulation. The second row is the numbers of each message
type in the ten-nearest neighbors. And the third row is the probabilities–the output
of the PKNN method.

Identifying Poison Message Failure by K-Nearest Neighbor Method 257

Table VII. Output of PKNN method

Ten-Nearest
Neighbors

Message
Type 1

Message
Type 2

Message
Type 3

Message
Type 4

Message
Type 5

Message
Type 6

Number of
Messages

2 5 0 1 0 2

Probability 0.2 0.5 0.0 0.1 0.0 0.2

Two hundred simulations are run to test PKNN method. We average the
probability outputs from these tests and the data is compared with the actually
probability distribution of each message type being selected as poison message in
the simulations. The results are presented in the Table VIII.

As we can see from Table VIII, the results are very good. The average output
of the poison message probability distribution from PKNN method is very close
to the pre-set probability distribution in the simulation. This shows that the PKNN
method work very well in providing a good probability distribution for the poison
message.

CONCLUSION

We have discussed a particular network failure propagation mechanism -
poison message failure. In this paper, we applied data mining technique – k-
nearest neighbor method to identify the poison message. We have built an OPNET
simulation testbed to generate training data as well as testing data. Our tests show
that the k-nearest neighbor method is very effective in identifying the identity
of the poison message. The correctness rate is greater than 86% even when k
is 1, and larger k value gives better result. However, the tests for different k
values show that performance does not increase much as k increases. The tests
suggest 3 is good choice for k value in this particular case, which balances the
testing performance and the computational complexity. We also performed serial
test that combined tests in several consecutive time steps, and the serial test
gives better result than standard test. In addition, we integrated the k-nearest
neighbor method with the sequential decision problem. Based on the past filtering

Table VIII. Average Probability Distribution from PKNN Method

Message
Type 1

Message
Type 2

Message
Type 3

Message
Type 4

Message
Type 5

Message
Type 6

Pre-Set Probability 0.16 0.36 0.10 0.15 0.05 0.18
Average Output 0.17 0.33 0.09 0.15 0.06 0.20

258 Du

information, the test excludes message types filtered before, and thus improves
the performance. We proposed a new approach – probabilistic k-nearest neighbor
method, which outputs a probability distribution rather than the identity of the
target. The probabilistic approach may be favorable in some situations. To sum
up, our experiments demonstrate that k-nearest neighbor method is very effective
in diagnosing the poison message failure. In our future work, we will study using
machine learning and data mining techniques for other network fault and security
management problems.

REFERENCES

1. C. Labovitz, C. Malan, and F. Jahanian, Internet routing instability, Proceedings of the ACM
SIGCOMM, Nice, France, August 1997.

2. AT&T, AT&T announces cause of frame-relay network outage, News Release, April, 22, 1998,
www.att.com/press/0498/980422.bsb.html.

3. T. Sweeny and C. Moozakis, MCI frame net melts down, Tech Web, August 12, 1999.
4. X. Du, M. A. Shayman, and R. Skoog, Preventing network instability caused by control plane

poison messages, Proceedings of the IEEE MILCOM 2002, Anaheim, CA, October 2002.
5. D. J. Houck, K. S. Meier-Hellstern, and R. A. Skoog, Failure and congestion propagation through

signaling controls, Proceedings of the 14th International Teletraffic Congress, Elsevier, Amster-
dam, pp. 367–376, 1994.

6. N. L. Hung, A. R. Jacob, and S. E. Makris, Alternatives to achieve software diversity in common
channel signaling networks, IEEE JSAC, Vol. 12, No. 3, pp. 533–538, 1994.

7. X. Du, M. A. Shayman and R. A. Skoog, Using neural networks to identify control and manage-
ment plane poison messages, Proceedings of the Eighth IFIP/IEEE International Symposium on
Integrated Network Management (IM 2003), Colorado Spring, Colorado, March 2003.

8. X. Du, M. A. Shayman and R. A. Skoog, Markov decision based filtering to prevent network
instability from control plane poison messages, Proceedings of the Conference on Information
Sciences and Systems (CISS) 2003, Baltimore, MD, March 2003.

9. X. Du, M. A. Shayman and R. A. Skoog, Distributed fault management to prevent network
instability from control and management plane poison messages, Proceedings of the IEEE Military
Communication (MILCOM) 2003, Boston, Massachusetts, Oct 2003.

10. M. A. Bramer, Knowledge Discovery and Data Mining, The Institute of Electrical Engineers,
1999.

11. A. A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algorithms, Springer,
2002.

12. N. J. Nilsson, Introduction to Machine Learning, robotics.stanford.edu/people/nilsson/mlbook.html
13. T. Mitchell, Machine Learning, McGraw Hill, 1997.
14. Z. Zhang, Association Rule Mining, Springer, 2002.
15. A. W. Moore, Fast, robust adaptive control by learning only forward models, Advances in Neural

Information Processing Systems, Morgan Kaufmann, 1992.
16. A. W. Moore, D. J. Hill, and M. P. Johnson, An empirical investigation of brute force to choose

features, smoothers and function approximators, Computational Learning Theory and Natural
Learning Systems, Vol. 3, Cambridge MIT Press, 1994.

17. G. Koutepas, F. Stamatelopoulos, and B. Maglaris, Distributed management architecture for
cooperative detection and reaction to DDOS attacks, Journal of Network and Systems Management,
Vol. 12, No. 1, March 2004.

Identifying Poison Message Failure by K-Nearest Neighbor Method 259

18. Y. Tang and E. S. Al-Shaer, Active integrated fault localization in communication networks,
Proceedings of the Ninth IFIP/IEEE International Symposium on Integrated Network Management
(IM 2005), Nice, France, May 2005.

19. A. L. dos Santos, E. P. Durate Jr., and G. M. Keeni, Reliable distributed network management by
replication, Journal of Network and Systems Management, Vol. 12, No. 2, June 2004.

20. D. Raz and Y. Shavitt, Toward Efficient distributed network management, Journal of Network and
Systems Management, September 2001.

21. K. Yoshihara, M. Isomura, and H. Horiuchi, Dynamic load balancing for distributed network man-
agement, Proceedings of the Eighth IFIP/IEEE International Symposium on Integrated Network
Management (IM 2003), Colorado Spring, Colorado, March 2003.

Xiaojiang (James) Du is an assistant professor in Department of Computer
Science, North Dakota State University. Dr. Du received his B.E. degree from
Tsinghua University, Beijing, China in 1996, and his M.S. and Ph.D. degrees
from University of Maryland, College Park in 2002 and 2003, respectively, all in
Electrical Engineering. His research interests are wireless sensor networks, mo-
bile ad hoc networks, network security and network management. Dr. Du is an
associated editor of Wiley Journal of Wireless Communication and Mobile Com-
puting. He is the program chair of Computer and Network Security Symposium of
IEEE International Wireless Communication and Mobile Computing Conference
(IWCMC) 2006. He is (was) a TPC member for many major IEEE conferences
such as INFOCOM, ICC, GLOBECOM, IM, and NOMS.

