
Two Vulnerabilities in Android OS Kernel
Xiali Hei, Xiaojiang Du and Shan Lin

Department of Computer and Information Sciences
Temple University

Philadelphia, PA 19122, USA
Email: {xiali.hei, dux, shan.lin}@temple.edu

Abstract—Android Honeycomb operating system is widely
used for tablet devices, such as Samsung Galaxy Tab. The
Android system programs are usually efficient and secure in
memory management. However, there has been a few security
issues reported that show Android’s insufficient protection to
the kernel. In this work, we reveal a new security pitfall in
memory management that can cause severe errors and even
system failures. Existing security software for android do not
detect this pitfall, due to the private implementation of Android
kernel. We then discuss two vulnerabilities introduced by this
pitfall: 1) malicious programs can escalate the root-level privilege
of a process, through which it can disable the security software,
implant malicious codes and install rootkits in the kernel; 2)
deny of service attacks can be launched. Experiments have been
conducted to verify these two vulnerabilities on Samsung Galaxy
Tab 10.1 with Tegra 2 CPU. To protect systems from these
vulnerabilities, we proposed a patching solution, which has been
adopted by Google.

Index Terms—Android Honeycomb OS; Kernel privileges ele-
vating; DoS; Nvidia Tegra

I. INTRODUCTION

As the mobile computing technology advances, the Linux-
based Android operating system specially designed for touch
screen mobile devices are becoming more and more popular.
International Data Corporation [2] believes that Android will
maintain its overall leadership position in mobile device mar-
ket throughout 2016, but competition among BlackBerry, iOS,
and Windows Phone will shift position each year. Secure and
reliable Android operating system is critical for its success.

A central principle of the Android security architecture is
that no application, by default, has permission to perform any
operation that would adversely impact other applications, the
operating system, or the user [24]. To meet this principle,
Android sandboxes each application by combining Virtual
Machines together with the Linux access control. These two
mechanisms are well studied to achieve a high level of security.
Basically, each application is considered as an individual
Linux user. However, the Linux kernel that Android built upon
may still hide unchecked vulnerabilities. Such kernel level
vulnerabilities could be fatal.

We reveal a previously unknown pitfall in the Tegra 2 CPU
driver of the Android Honeycomb operating system. All of
the early dual-core Android devices were running on Nvidia’s
Tegra 2 platform, such as Samsung Glaxy Tab, LTE Galaxy
Tab 10.1, and Motorola Atrix and Droid X2 [1], etc.. Using this
pitfall, malicious memory access can be executed for system
breach. In particular, we present two new vulnerabilities raised

by this security issue in Android OS: 1) a malicious user
can overwrite a system parameter to escalate his privilege
to the root level, then he can disable the antivirus-software
and deploy malware and other programs to collect critical
system users’ information. 2) a malicious user can force the
system to shut down unexpectedly, and even launch a Denial-
of-Service (DoS) attack. The DoS attack can make the device
completely unresponsive. These vulnerabilities potentially can
be exploited remotely. In the worst case, thousands of Android
devices could be affected.

Android requires each app to explicitly request permissions
before accessing personal information and phone features.
The requested permissions allow a user to evaluate the app’s
capability and determine whether or not to install the app
firstly. Due to the dominant role of the permission-based
model in running Android apps, it is critical that this model
is properly enforced in existing Android smart phones. If
malicious applications exploit the two vulnerabilities in our
paper, all the users run this kind of malicious applications
will be out of service.

To overcome these two vulnerabilities, we propose a so-
lution that requires small changes in the Android OS. We
have reported these two vulnerabilities to Google. Google has
verified and accepted them. Moreover, our proposed solution
has been adopted; and a security patch will be published to
fix the problem.

We conducted experiments on Android Honeycomb 3.1
using the Samsung Galaxy Tab 10.1 with Nvidia Tegra CPU.
And the results show that we can easily exploit these vulner-
abilities and we can solve them with our fix methods.

The contributions of our work is summarized as follows:
• We revealed a security pitfall in the Tegra 2 CPU driver

program on the Android operating system. A couple
severe security vulnerabilities are exposed by exploiting
this pitfall.

• We demonstrated how to perform system privilege es-
calation and denial-of-service attack using real Samsung
Galaxy Tablet.

• We proposed a solution to fix the pitfall, our report to the
problem has been accepted by Google.

The rest of the paper is organized as follows. In Section
II we provide a brief background introduction on Android
OS. In Section III, we discuss two identified vulnerabilities
in Android kernel. In Section IV we illustrate two solutions
respectively. In Section V we present real system experimental

2

results that verify the two vulnerabilities and their solutions.
In Section VI we investigate works related to this work. We
conclude the paper in Section VII with some final remarks.

II. BACKGROUND

A. The Android Architecture

The Android Architecture consists of 5 layers. Other than
the Linux kernel at the bottom layer, there are four Android-
specific layers. From top to bottom, they are the Application
layer, the Application Framework layer, the Android Runtime
layer, and the Libraries layer. In this study, we focus on the
Linux kernel layer of the system. We also briefly introduce
the Android developer bridge and the Nvidia Tegra 2 in this
section. The Android developer bridge allows a basic physical
attack approach to the system. And the Nvidia Tegra 2 CPU
driver in Linux kernel layer is where we found the security
pitfall.

B. The Linux Kernel Layer

Android Honeycomb relies on Linux kernel version 2.6.36
for core system services, such as process management, inter
process communication, security service, memory manage-
ment, network stack, and driver models. Linux is a macro-
kernel operating system. The CPU and IO drivers are located
within the kernel (the same address space) for high efficiency.
However, the kernel is exposed to more security risks, es-
pecially when kernel components, like drivers, have security
issues.

The hardware abstraction layer (HAL) library works on
the kernel and interact with the Linux kernel through system
calls. Some of the system calls exposed by the Motorola
Droid Bionic are normally not available to user space because
they’re excluded by the use of the #ifdef KERNEL and
#endif guards. By including a system call in its new C library,
Android can define any system call to the kernel from the user
space as a “normal system call”. So many kernel function are
exposed to Android users.

C. Android Developer Bridge (ADB)

Android Debug Bridge (ADB) is a command line tool that
allows your local computer to communicate with an connected
Android-powered device or an emulator. It is a client-server
program that includes a client, a daemon, and a server. ADB
makes a connection between your telephone or other personal
wireless devices and a local computer, creating the possibility
to interact with your telephone or tablets on your desktop
through the command line. An attacker can obtain privileged
access through physical access to a device that has ADB
enabled [25]. If the attacker can access the physical computer,
he/her can easily determine whether ADB is enabled or not
by executing adb get-serialno on the computer. The device’s
serial number would be returned if the ADB is enabled. Once
the attacker knows that ADB is enabled on the device, he
can use ADB’s push command to implant an exploit on the
device, and use ADB’s shell command to launch the exploit
and escalate his privilege.

An attack on an ADB enabled device does not require
any action from the user and it is more cleaner compared
with remote attacks. Privilege escalation using ADB has a
drawback that depends on the availability of an enabled debug
bridge. However, if the device is not password-protected,
the attacker could simply connect with the common device
interface and enable ADB. For instance, Super One-Click
desktop application in paper [27] can gain privileged access
from Android devices with enabled ADB and give the user
privileged access. ADB-based attacks do not need install new
application and reboot.

The lack of device modification in ADB-based attacks
makes it much more difficult to trace than other attacks. It
is unlikely to be detected by security applications on unrooted
devices.

D. Nvidia Tegra 2

Tegra developed by Nvidia is a system on a chip (SoC)
series using ARM architecture processor CPU and GPU for
mobile devices such as smart phones, personal digital assis-
tants, and mobile Internet devices. Specially, it emphasizes
low power consumption and high performance for playing
audio and video. Tegra 2 is the world’s first mobile dual-core
CPU, which integrated ARM Cortex-A9 and allowed a out-of-
order execution for more efficient processing and better overall
performance.

III. THE TWO VULNERABILITIES

We examine the source codes of two packages: GT-
P7500 OpenSource.zip and GT-P7510 OpenSource.zip
[28], and we find two vulnerabilities in the
nvhost ioctl ctrl module regrdwr function in the file
dev.c.

The nvhost ioctl ctrl module regrdwr function has
two sub-functions: nvhost write module regs and
nvhost read module regs. The first vulnerability is in the
nvhost write module regs sub-function. The Get user(offs,
offsets) in Line 561 is used to get the offset from users. The
nvhost write module regs(&ctx->dev->cpuaccess, args->id,
offs, batch, vals) in Line 569 determines the location based
on offs from users (the offs are used as offset to write in
registers). Because there is no boundary check on “offs”,
it creates a kernel buffer overflow vulnerability that allows
arbitrary memory access. Hackers can exploit the vulnerability
to escalate kernel privileges. The nvhost read module regs
sub-function has similar vulnerability.

After exploiting the vulnerability, we have full control of the
Android device, i.e., as a root user in the shell. We can access
the kernel logs during the running of a fuzzy test. We write
the source code of the fuzzy test by ourselves. By analyzing
kernel logs during that period, we find the second vulnera-
bility, which is in Line 598: BUG ON(IOC SIZE(cmd)->
NVHOST IOCTL CTRL MAX ARG SIZE). The program
fails to check the size of IOC SIZE(cmd), and this can cause
a DoS attack to crash the operation system.

3

Fig. 1. The main exploit code of regrdwr.c

IV. EXPLOITING THE VULNERABILITIES

A. Exploiting Vulnerability #1

Since Android is based on a modified Linux kernel and
thus it applies the Discretionary Access Control (DAC) on the
filesystem level, which is based on user IDs (uid) and group
IDs (gid). If the uid = 0, this means that the user get root-level
privilege, which is the goal of exploiting privilege escalation
vulnerabilities.

The first vulnerability is referred to as the privilege escala-
tion vulnerability. Since we know this vulnerability related to
the address, we can scan the kallsyms log and find the offset
of the sys-setuid function. This means that we can find out
the address of the sys-setuid function. If we insert malicious
code here, then we can execute the malicious code to change
the uid. We overwrite the code of setuid using newvalues[0]
= 0 to get the root privilege, then setuid = 0. After that we
create a shell. Now, we have full control of the Android OS.
We tested the first vulnerability in regrdwr.c. Fig. 1 show the
main code of regrdwr.c.

By exploiting code as described above, we confirmed the
privilege escalation vulnerability on several currently available
versions of Android OS. We conducted the tests by using a
real Android device – a Samsung Galaxy tablet 10.1.

Fig. 1 is a screen copy of the result of exploiting the
vulnerability. Fig. 2 shows that after running the exploit code,
the uid was changed from 7d0 to 0. This validated that we
successfully escalated to root privileges.

B. Exploiting Vulnerability #2

The second vulnerability is referred to as the DoS vulner-
ability. We can easily exploit this vulnerability by a simply
fuzzy test. We tested the second vulnerability with nvfuzz.c.
Fig.3 shows the main code of nvfuzz.c. The Android OS
crashed several times. Fig.4 shows the kernel logs. If a
hacker inserts malicious codes in Android applications that are
available. to all the users, then thousands of Android devices
with Nvidia Tegra chips will crash.

If a hacker combines these two vulnerabilities, then he
can crash a lot of devices, disable anti-virus software, install
any malware, create malware, and even publish malicious
applications in Android application market with paying $25
register fee.

We confirmed the DoS vulnerability on several currently
available versions of Android Honeycomb OS by fuzzy tests.
We run the tests by using a real Android device – a Samsung
Galaxy tablet 10.1.

Fig. 2. The changing UID attack

Fig. 3. The main code of nvfuzz.c

Fig. 2 shows that after we run the exploit code, the kernel
is panic and the system is reset. If we continually run the
exploit code, the system cannot work any more. Hence, this
is an exploit that leads to the DoS attack.

We tested on different versions of Android Honeycomb
OS. For each version, we run the test many times. All our
tests have caused Android Honeycomb to crash. After we
explored the drivers source code for Tegra, we believe the two
vulnerabilities are universal in Android device with Tegra.

Fig. 4. Logs for Experiment 2 - Dos Vulnerability

4

V. COUNTERMEASURES

In this Section, we describe two approaches to fix the
two vulnerabilities described in Section IV. The fix for the
privilege escalation vulnerability consists of checking whether
offs in function nvhost read module regs and function n-
vhost write module regs is out of the boundary. The fix for
DoS vulnerability is to restrict the size of IOC SIZE(cmd).

A. Fix for the Privilege Escalation Vulnerability

As mentioned in Section IV, the nvhost read module regs
and nvhost write module regs functions do not perform any
specific check on the variable offs. Hence, the fix is to add a
check of the variable offs and see if it is out of the boundary.

B. DoS vulnerability fix

Because the program fails to check the size of
IOC SIZE(cmd), a malicious user can send a very long cmd

to overflow the kernel. This will cause a kernel panic. If we
add length check to check the size of IOC SIZE(cmd), then
this problem is solved.

C. Testing the Countermeasures

We implement the two countermeasures in our Samsung
Galaxy tablet 10.1. In particular, for the Android Honeycomb
3.0.1 version, we build one patched version that includes two
patches, by recompiling Android from scratch. Our tests show
that both patches are effective and prevent the exploit codes,
thereby fixing the two vulnerabilities.

VI. RELATED WORKS

Security of Android platform has been studied by many
researchers. There are three main trends:

• static analysis
• security scheme assessment
• malware and virus detection
Static analysis includes using the white box or black box

methodologies to detect malicious behaviors in Android ap-
plications before installing them on the devices. One paper by
Enck et al. [4] have a horizontal study of Android applications
to discover stealing of personal data. Fuchs et al. [5] propose
Scandroid, which is an automatical reasoning tool to find
security violations of Android applications. Static analysis
could help identifying vulnerabilities in the kernel.

The second trend of current research is to study access
control and permission schemes of Android. For example, [6]
proposes a scheme to assess the actual privileges of Android
applications and develops a tool named Stowaway, to detect
over-privilege in compiled Android applications. Nauman et
al. [7] propose Apex, which is a policy enforcement frame-
work for Android that allows a user to fine-grained grant
permissions to applications and impose constraints on the
usage of resources. Ongtang et al. [8] present an infrastructure
named Secure Application INTeraction (SAINT) to govern
permission assignment during installation. Many works focus
on the privilege escalation issues. Bugiel et al. [9] propose a
security framework named eXtended Monitoring on Android

(XManDroid) to extend the native monitoring mechanism of
Android for detecting the privilege escalation attack. The
privilege escalation attack on Android was first proposed by
Davi et al. [10] in which they demonstrated an example of
the attack. They showed that a genuine application exploited
at runtime or a malicious application can escalate granted
permissions. However, they did not suggest any defense for
the attack in the paper. Underprivileged applications under
the malicious user’s control can perform operations indirectly
by invoking other applications possessing desired privileges.
The attacks published are unauthorized phone calls [31], text
message sending [8] to illegal downloads of malicious files
[34], and context-aware voice recording [36], [32]. Most
privilege escalation attacks exploit vulnerable interfaces of
privileged applications. This attack is often referred to as
confused deputy attack [33], [30]. However, in general, the
adversary can design his own malicious applications which
collaborate to mount a collusion attack [36]: applications with
uncritical permissions can collude to generate a joint set of
permissions that enables them to perform unauthorized actions.
Some collusion applications [32] may exploit covert or overt
channels of the Android core system to avoid detection.

Note that the Android application distribution model allows
anyone who has registered as an Android developer (and
paid $25 fee) to publish applications on the Android market.
This scheme allows adversaries to easily upload malicious
applications on the market store: For instance, the recent
Android DroidDream Trojan (containing a root exploit) has
been identified in over 50 official Android market applications
and has been downloaded more than 10,000 times before it
has been detected [29]. Literature [11] focuses on possible
threats and solutions to mitigate privilege escalation problem
proposed by literature [12].

In the third trend - virus and malware detection, Dagon
et al. [13] assess many mobile viruses and malware that
could potentially affect Android devices. Crowdroid [14] is
proposed as a malware detector executing a dynamic analysis
on application behaviors. Schmidt et al. [15] inspect Android
executables to extract their function calls and compare them
with malware executables for classification purpose. Specific
malware signatures for exploiting the vulnerabilities described
in this paper could be generated too. All these works are to
protect user’s privacy and security. The authors of paper [16]
think that we may need an original privacy mode in Android
smartphones. Literature [23] presents a DoS attack that makes
devices totally unresponsive by repeatedly forking the Zygote
process. The vulnerabilities disclosed in this paper require
that the USB development debugging function is enabled. For
devices without Android Developer Bridge enabled, malicious
users still can use the recovery boot method [26] to exploit
the two vulnerabilities.

VII. CONCLUSIONS

Android operation system is widely used in smartphones
and tablet devices. In this paper, we presented two new
vulnerabilities in Tegra driver programs located in Android

5

kernel. The first vulnerability can be used to escalate the kernel
privileges. The second vulnerability can be used to launch the
deny of service (DoS) attack. To verify these vulnerabilities,
we successfully exploited the two vulnerabilities on several
versions of Android by using a real device - a Galaxy tablet
device. We reported the two vulnerabilities to the Android
security team. Furthermore, we provided security patches to
fix the two vulnerabilities and we confirmed that the patches
work.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation under grants CNS-0963578, CNS-1022552, CNS-
1065444, CNS-1239108, IIS-1231680 and CNS-1218718.

REFERENCES

[1] http://soltesza.wordpress.com/2010/01/08/nvidia-leading-the-smartbook-
revolution/

[2] IDC. Worldwide Smartphone 2012-2016 Forecast and Analysis.
http://www.idc.com/getdoc.jsp?containerId=233553

[3] Gartner Group. Press Release, November 2011. Available at http://www.
gartner.com/it/page.jsp?id=1848514.

[4] W. Enck, D. Octeau, and P. McDaniel et al. A study of android application
security. In Proc. of the 20th USENIX conf. on Security, SEC’11, pp. 21-
21, Berkeley, CA, USA, 2011. USENIX Association.

[5] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. Scandroid: Automated
security certification of android applications.

[6] A. P. Felt, E. Chin and S. Hanna et al. Android permissions demystified. In
Proc. of the 18th ACM conf. on Computer and communications security,
CCS’11, pp. 627-638, 2011.

[7] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permission
model and enforcement with user-defined runtime constraints. In Proc.
of the 5th ACM Symp. on Information, Computer and Communications
Security, ASIACCS’10, pp. 328-332, New York, NY, USA, 2010. ACM.

[8] M. Ongtang, S. Mclaughlin, and W. Enck et al. Semantically rich
application-centric security in android. In In ACSAC’09: Annual Com-
puter Security Applications Conference, 2009.

[9] S. Bugiel, L. Davi, and A. Dmitrienko et al. Xmandroid: A new android
evolution to mitigate privilege escalation attacks. Technical Report TR-
2011-04, Technische Univ. Darmstadt, Apr 2011.

[10] L. Davi, A. Dmitrienko, and A. Sadeghi et al. Privilege escalation attacks
on android. In Mike Burmester, Gene Tsudik, Spyros Magliveras, and
Ivana Ilic, editors, Information Security, vol. 6531 of LNCS, pp. 346-
360. 2011.

[11] E. Chin, A. P. Felt, and K. Greenwood et al. Analyzing inter-application
communication in Android. In Proc. of the 9th Intl. Conf. on Mobile
systems, applications, and services, MobiSys’11, pp. 239-252, New York,
NY, USA, 2011. ACM.

[12] A. Shabtai, Y. Fledel, and U. Kanonov et al. Google android: A state-
of-the-art review of security mechanisms. CoRR, abs/0912.5101, 2009.

[13] D. Dagon, T. Martin, and T. Starner. Mobile phones as computing
devices: The viruses are coming! IEEE Pervasive Computing, vol. 3, no.
4, pp. 11-15, 2004.

[14] I. Burguera, U. Zurutuza, and S. Nadjm-Therani. Crowdroid: behav-
iorbased malware detection system for android. In Proceedings of the
1st ACM workshop on Security and privacy in smartphones and mobile
devices (SPSM’11), 2011.

[15] A.-D. Schmidt, R. Bye, and H.-G. Schmidt et al. Static analysis of
executables for collaborative malware detection on android. In Commu-
nications, 2009. ICC’09. IEEE Intl. Conf. on Communications, pp. 1-5,
June 2009.

[16] Y. Zhou, X. Zhang, and X. Jiang et al. Taming information-stealing
smartphone applications (on android). In Proc. of the 4th Intl. Conf. on
Trust and trustworthy computing, TRUST’11, pp. 93-107, 2011.

[17] Apple App Store. http://www.apple.com/iphone/ apps-for-iphone/.
[18] M. Egele, C. Kruegel, and E. Kirda et al. PiOS: Detecting Privacy Leaks

in iOS Applications. In Proc. of the 18th Annual Network and Distributed
System Security Symp., NDSS’11, February 2011.

[19] W. Enck, P. Gilbert, and B.-G. Chun et al. TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on Smartphones.
In Proc. of the 9th USENIX Symp. on the USENIX Symp. on Operating
Systems Design and Implementation (OSDI). Vancouver, BC, Oct. 2010.

[20] K. Mahaffey and J. Hering. App Attack-Surviving the Explosive
Growth of Mobile Apps. https://media.blackhat.com/bh-us-
10/presentations/Mahaffey Hering/Blackhat-USA-2010- Mahaffey-
Hering-Lookout-App-Genomeslides.pdf.

[21] Y. Zhou, X. Zhang, and X. Jiang et al. Taming Information-Stealing
Smartphone Applications (on Android). In Proc. of the 4th Intl. Conf. on
Trust and Trustworthy Computing, TRUST’11, June 2011.

[22] IPhone Stored Location in Test Even if Disabled.
http://online.wsj.com/article/SB10001424052748704123204576283580249
161342.html.

[23] A. Armando, A. Merlo, and M. Migliardi et al. Would You Mind
Forking This Process? A Denial of Service Attack on Android (and Some
Countermeasures). In IFIP SEC 2012 27th International Information
Security and Privacy Conf., D. Gritzalis, S. Furnell, and M. Theoharidou
(Eds.), pp. 13-24, June 2012, Heraklion, Greece, IFIP Advances in
Information and Communication Technology (AICT), Vol. 376, Springer,
2012.

[24] http://developer.android.com/guide/topics/security/security.html
[25] Rooting the droid without rsdlite. http: //androidforums.com/droid-

all-thingsroot/ 171056-rooting-droid-withoutrsd- lite-up-including-
frg83d.html, Dec. 2010.

[26] T. Vidas, C. Zhang, and N. Christin. Towards a general collection
methodology for android devices. DFRWS 2011, Aug. 2011.

[27] A. Waqas. Root any android device and samsung captivate with super
one-click app. http://www.addictivetips.com/mobile/ root-any-android-
device-and-samsungcaptivate- with-super-one-click-app/, Oct. 2010.

[28] https://opensource.samsung.com/reception/receptionSub.do?method
=list&menu item=mobile&classification1= % mobile phone
&classification2=&classification3

[29] T. Bradley. Droiddream becomes android market nightmare.
http://www.pcworld.com/ businesscenter/article/221247/droiddream
becomes android market nightmare.html, 2011.

[30] M. Dietz, S. Shekhar, and Y. Pisetsky et al. Quire: Lightweight prove-
nance for smartphone operating systems. In 20th USENIX Security
Symp., 2011.

[31] W. Enck, M. Ongtang, and P. McDaniel. Mitigating Android software
misuse before it happens. Technical Report NAS-TR-0094-2008, Penn-
sylvania State University, Sep 2008.

[32] G. Halfacree. Android trojan captures credit card details.
http://www.thinq.co.uk/2011/1/20/android- trojan-captures-credit-card-
details/, 2011.

[33] N. Hardy. The confused deputy: (or why capabilities might have been
invented). SIGOPS Oper. Syst. Rev., 22:36-38, Oct. 1988.

[34] A. Lineberry, D. L. Richardson, and T. Wyatt. These aren’t
the permissions you’re looking for. BlackHat USA 2010.
http://dtors.files.wordpress.com/ 2010/08/blackhat-2010-slides.pdf,
2010.

[35] Nils. Building Android sandcastles in Android’s sandbox. BlackHat
Abu Dhabi 2010. https://media.blackhat.com/bh-ad-10/Nils/Black- Hat-
AD-2010-android-sandcastle-wp.pdf, 2010.

[36] R. Schlegel, K. Zhang, and X. Zhou et al. Soundcomber: A Stealthy
and Context-Aware Sound Trojan for Smartphones. In Proc. of the 18th
Annual Network and Distributed System Security Symp. (NDSS), pp.
17-33, Feb. 2011.

