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Abstract

This paper explores a novel application of Deep AUC maximization (DAM) within the
context of multi-instance learning (MIL), focusing on scenarios where a singular class label is
assigned to a collection of instances. An inherent computational challenge arises in MIL when
applying DAM, specifically when the bag size exceeds the capacity of GPU memory during
backpropagation—a necessity for standard pooling methods in MIL. To overcome this compu-
tational challenge, this study proposes the utilization of stochastic pooling methods inspired
by stochastic optimization. This approach involves the strategic sampling of a limited number
of instances from each bag for computing prediction scores and subsequent model parameter
updates. To validate the proposed methodology, a comparative analysis is conducted between
AUC maximization and the conventional cross-entropy score across various medical classifica-
tion tasks. The experimentation reveals the superior efficacy of the AUC score, particularly
when confronted with imbalanced datasets. This research not only sheds light on the neglected
yet crucial computational challenge in MIL within the DAM framework but also underscores
the advantages of leveraging AUC as a robust evaluation metric in medical classification tasks.

1 Introduction

Within the expansive landscape of machine learning, weakly supervised learning stands as a distinc-
tive paradigm, steering away from the conventional supervised learning framework by incorporating
a nuanced layer of uncertainty and incompleteness into the labeling process. A significant facet of
weakly supervised learning is Multi-Instance Learning (MIL)(Dietterich et al., 1997), specifically
tailored for tasks where training data is organized into bags, each comprising multiple instances.
Remarkably, only the label of the bag is known in MIL, leaving the individual instances within the
bag unlabeled.

Initially conceptualized for drug activity prediction within medical classification tasks, MIL
innovatively modeled molecules as bags(Dietterich et al., 1997), and the conformations of the
molecules as instances, with only bag-level labels known. Since its inception, MIL has traversed
diverse applications. For instance, in text categorization (Andrews et al., 2002), (Ji et al., 2020),
articles are treated as bags of sentences with solely article-level labels, and in image classifica-
tion(Oquab et al., 2015), Yao et al. (2020), images are segmented into bags of patches with only
image-level labels.

The application of Multi-Instance Learning has been particularly impactful in the field of med-
ical task classification. For example, a bag can be conceptualized as representing a medical image,
such as an X-ray or MRI scan, where the instances within the bag correspond to distinct regions
of interest within the image. These regions of interest may hold critical diagnostic information,
but their precise location or extent of abnormality might be uncertain or variable across different
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patients. The bag, in this case, is labeled to indicate the presence or absence of a specific medical
condition.

However, when confronted with large bags containing multiple instances, the computational
challenge from the multi instance learning arises from the practical limitations of available resources,
such as the constrained memory size of GPUs. This constraint may hinder the simultaneous loading
of all instances within a bag during training, leading to a significant computational bottleneck. This
scenario is exacerbated when dealing with medical tasks.

A potential approach to circumvent this computational hurdle involves the adoption of a mini-
batch stochastic pooling strategy. This entails the selective sampling of a subset of instances from a
given bag for computing the pooled prediction and subsequently conducting the necessary parameter
updates. This approach provides a pragmatic solution to the memory constraints imposed by large
bags.

Recently, Deep AUC Maximization (DAM) (Liu et al., 2019) has demonstrated remarkable suc-
cess across various AI applications by adeptly handling imbalanced data in traditional supervised
learning settings. The integration of AUC into multi-instance learning for medical task classifi-
cation introduces an intriguing dimension, elevating the complexity of the multi-instance learning
paradigm.

Hence, for this project, an exploration into whether AUC scores can also excel in the context
of multi-instance learning is warranted. The main tasks for this endeavor include:

• Clarify Stochastic Pooling Methods: Rigorously elucidate stochastic pooling methods to
strategically reduce the computation budget, addressing the challenges posed by large bags
in the context of MIL.

• Optimize DAM and Minimax Framework: Enhance the DAM optimization process to facil-
itate parameter updates, seamlessly integrate it into the minimax framework, and provide
clarity on the chosen optimizer.

• Conduct Experiments Across Diverse Scenarios: Implement experiments across various datasets
and scenarios, presenting results that substantiate the superiority of Deep AUC Maximization
in multi-instance learning. This involves showcasing its efficacy in handling imbalanced data
and highlighting performance improvements compared to conventional methods.

2 Related Work

2.1 Multi-instance learning

Multiple-instance learning (MIL) has been instrumental in shaping the landscape of machine learn-
ing, showcasing its adaptability across diverse paradigms. n the arena of conventional learning
applied to tabular data, various strategies (Babenko, 2008), (Carbonneau et al., 2018) have been
advanced. Concurrently, the rise of deep learning has ushered in inventive methodologies specifically
tailored for unstructured data (Oquab et al., 2015), (Qi et al., 2017). Groundbreaking contributions
underscore the significant headway in effectively leveraging deep learning techniques to tackle the
intricacies inherent in unstructured information.

Another foundational concept in MIL is the prediction function(Zaheer et al., 2017). The pro-
cess of classifying a bag of instances involves splitting it into individual instances, pooling these
transformed instances using a symmetric function, and further aggregating the pooled representa-
tion. The key lies in selecting the symmetric function, commonly known as the pooling operation,
which takes the transformations of all instances as input and produces a cohesive output. Various
pooling strategies have been explored for these steps, encompassing traditional techniques like max
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pooling, average pooling, and smoothed-max pooling of predictions (Ramon et al., 2000). More-
over, recent advancements incorporate attention-based pooling of feature representations(Ilse et al.,
2018).

2.2 Deep AUC Maximization

Recently, there has been a surge in research on DAM, particularly in the context of imbalanced
datasets. (Ying et al., 2016) proposed a significant advancement in optimizing AUC. Their work
revolves around optimizing pairwise square loss and introduces an equivalent min-max formulation.
This decomposable reformulation allows for the development of efficient stochastic methods based
on mini-batches of data without the need for explicit pair construction. The min-max formula-
tion laid the groundwork for subsequent advancements in DAM, notably in works by ((Liu et al.,
2019);(Yuan et al., 2020)). (Liu et al., 2019) is the first work that explicitly considers DAM opti-
mization and pioneers practical stochastic algorithms for DAM based on the minimax formulation
but limits experiments to basic datasets. Later, (Yuan et al., 2020) further introduced a novable
robust loss in the minimax form for DAM, showcasing DAM’s success in various medical image
classification tasks.

3 Methodology

The proposed algorithm extends the principles of Multi-Instance Learning with stochastic pooling
operations. Incorporating Deep AUC Maximization, emphasis is placed on accurate classification
in the context of imbalanced datasets. The design utilizes bag-level labels and instance-level in-
formation to refine the learning process, enhancing the model’s capability to handle uncertainties
associated with classification tasks.

3.1 Stochastic Pooling Methods

Large bags with multiple instances pose a computational challenge in multi-instance learning, es-
pecially given resource constraints like limited GPU memory. Loading all instances at once during
training can be hindered, creating a significant bottleneck. To address this, a potential solution
involves adopting a mini-batch stochastic pooling strategy. This approach selectively samples a
subset of instances from a bag to compute pooled predictions, facilitating necessary parameter
updates.

Consider Xi = {x1i , · · · , x
ni
i } as a bag of data instances, D = {(Xi, yi), i = 1, · · · , n} represent

the set of labeled data. Difine h(w;Xi) ∈ [0, 1] as the pooled prediction score for bag i over all its
instances:

h(X ) = g(
∑
x∈X

ϕ(x)) (1)

For stochastic pooling operation, we have following definition

Assumption 3.1. The mini-batch mean pooling can be computed as:

h(w;Bi) = max
x∈Bi

ϕ(w;x) (2)

where Bi ∈ Xi only holds part of instances randomly sampled from the bag of all instances.
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Assumption 3.2. The mini-batch max pooling can be computed as:

h(w;Bi) =
1

|Bi|
∑
x∈Bi

ϕ(w;x)) (3)

where Bi ∈ Xi only holds part of instances randomly sampled from the bag of all instances.

Assumption 3.3. The mini-batch smoothed-max pooling can be computed as:

h(w;Bi) = τ log
( 1

|Bi|
exp(ϕ(w;x)/τ)

)
(4)

where Bi ∈ Xi only holds part of instances randomly sampled from the bag of all instances.

Assumption 3.4. The mini-batch attention pooling can be computed as:

h(w;Bi) = σ
( ∑

x∈Bi

exp(g(w;x))δ(w;x)∑
x′∈Bi

exp(g(w;x′))

)
(5)

where Bi ∈ Xi only holds part of instances randomly sampled from the bag of all instances.

3.2 Deep AUC Maximization

Training classifiers through AUC optimization ((Hanley and McNeil, 1982)) proves effective for
managing highly imbalanced datasets. Yet, conventional AUC maximization models often rely on
pairwise sample input, restricting their applicability to large-scale data. Recently, (Ying et al.,
2016) innovatively formulated the AUC maximization model as a minimax optimization problem,
defined as follows:

min
w,a,b

max
α

LAUC(w, a, b, α; z) ≜ (1− p)(hw(x)− a)2I[y=1] − p(1− p)α2

+ p(hw(x)− b)2I[y=−1] + 2(1 + α)(phw(x)I[y=−1] − (1− p)hw(x)I[y=1]) ,
(6)

where h represents the classifier parameterized by w ∈ Rd, while a ∈ R, b ∈ R, α ∈ R serve as
parameters for measuring the AUC score, z = (x, y) denotes the sample’s feature and label, p
substitutes the prior probability of the positive class, and I is an indicator function that evaluates
to 1 if the argument is true and 0 otherwise. This minimax objective function effectively decouples
the dependence of pairwise samples, enabling its application to large-scale datasets.

Algorithm 1 PESG

Require: v0, α0, ηv ∈ (0, 1), ηα ∈ (0, 1), γ > 0, λ > 0.
1: for t = 0, · · · , T − 1 do
2: Compute ∇vF (vt, αt; zt) and ∇αF (vt, αt; zt)
3: Update primal variable: vt+1 = vt − ηv(∇vF (vt, αt; zt) + γ(vt − vref ))− ληvvt
4: Update dual variable: αt+1 = [αt + ηα∇αF (vt, αt; zt)]+
5: end for

This objective function with the minimax formulation decomposes over individual examples,
enabling the development of efficient primal-dual stochastic algorithms to update the model pa-
rameter w without the necessity of explicitly constructing positive-negative pairs.

Therefore, the proximal epoch stochastic method, denoted as PESG is proposed. Here, v =
(w, a, b) is used to represent all primal variables. Stochastic gradient descent methods are applied
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to update primal variables, with λ as the standard regularization parameter, γ as an algorithmic
regularization parameter enhancing generalization, and vrefas a periodically updated reference so-
lution, computed using the accumulated average of vt from the preceding stage before decaying the
learning rate. Additionally, for the update on the dual variable α, a projection step is enforced
after the gradient ascent.

4 Experiment

This section concentrates on medical experimental Multiple-Instance Learning (MIL) tasks. Ex-
periments are conducted on three medical datasets tailored for MIL tasks, and the dataset details
are outlined in the Table 1.

Dataset Pos Neg Avg Bag Size Features

MUSK1 47 45 5.17 166
MUSK2 39 63 64.69 166

Breast Cancer 26 32 672 32×32× 3

Table 1: Dataset Detail

(a) Mean pooling (b) Max pooling

(c) Softmax pooling (d) Attention pooling

Figure 1: The test auc score versus the number of training epoch on MUSK1 Dataset.

Concerning the MUSK1 and MUSK2 datasets, they encompass drug molecules either binding
strongly or not binding to a target protein. Each molecule, functioning as a bag, can assume various
shapes or conformations, representing instances. A positive molecule possesses at least one shape
conducive to strong binding though the specific shape is unknown, while a negative molecule lacks
any shapes supporting effective binding.(Dietterich et al., 1997)
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For these two datasets, a simple 2-layer feed-forward neural network (FFNN) serves as the
foundational model, with the neuron count matching the data dimension, which is 166 in this case.
The activation function for the middle layer is tanh, and sigmoid is employed as a normalization
function for predicting scores in computing the AUC loss function. Data is uniformly and randomly
split into training and testing sets with a ratio of 0.9/0.1, and 5-fold cross-validation experiments
are conducted to avoid overfitting. Here, use the traditional cross-entropy loss as the baselines. The
initial learning rate is 1e-1, and it decreases by 10 at the end of the 50th and 75th epochs within
the 100-epoch training period. For all experiments in this study, the weight decay remains fixed
at 1e−4. Each iteration involves sampling 8 positive bags and 8 negative bags. The testing AUC
score is then plotted against the number of epochs. From Figures 1 and 2, it is evident that the
application of Deep AUC Maxmization on Multiple-Instance Learning (MIL) tasks can outperform
traditional cross-entropy loss with a large margin.

(a) Mean pooling (b) Max pooling

(c) Softmax pooling (d) Attention pooling

Figure 2: The test auc score versus the number of training epoch on MUSK2 Dataset.

Figure 3: The test auc score on Breast Cancer

The Breast Cancer dataset consists of mi-
croscopic images used for examining tissues
in cancer diagnosis. The images are high-
resolution, making the analysis of the entire
picture challenging. To overcome this, the
896 × 768 images are partitioned into 32 × 32
patches, allowing for multi-instance learning.
Employing ResNet20 as the backbone model,
Figure 3 displays test auc score with stochasitic
max pooling. The application of Deep AUC
Maximization on this medical image dataset
yields improved performance, addressing reso-
lution challenges and highlighting its efficacy in
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enhancing accuracy for cancer diagnosis. The utilization of multi-instance learning, coupled with
deep AUC maximization, emerges as a promising strategy in advancing medical image classification.

5 Conclution

This report outlines a novel approach to medical classification tasks by combining stochastic Multi-
Instance Learning with the Deep AUC Maximization. The algorithm’s design and experimenta-
tion showcase promising results, highlighting its potential for improving model robustness in the
challenging context of medical tasks analysis. Further research and refinement of the proposed
algorithm could contribute significantly to the evolving landscape of machine learning applications
in healthcare.
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