
ASL2TEXT
Ferran Vera Filella

AI

Introduction
The intersection between artificial intelligence and language translation has seen significant

advances in recent years, revolutionizing the way we communicate between diverse

communities. In this project, I present a comprehensive exploration and implementation of an

innovative system aimed at transforming American Sign Language (ASL) into text. This

innovative effort is an example of the power of AI to improve accessibility and inclusion for the

hearing impaired. Throughout this project, I delve into the ins and outs of our ASL-to-text

translation system, describing its development process, the methodologies employed, and the

challenges encountered.

Literature Review
American Sign Language (ASL) is a complex and expressive visual language used

predominantly by the deaf and hard of hearing communities in the United States and parts of

Canada, possesses its own grammar, syntax, and semantics. Its evolution, linguistic structure,

and regional variations have been extensively studied, highlighting the need for nuanced

translation systems that capture the subtleties of this visual language.

Advances in computer vision involve sophisticated algorithms capable of interpreting visual

data, crucial for understanding sign language gestures. These systems use machine learning

models to learn and identify patterns from visual data, making it possible to interpret sign

language movements.

These sign language recognition systems are designed to use cameras as input devices,

capturing the movements and gestures inherent in sign language communication. Using

machine learning algorithms, these movements are interpreted and translated into written or

spoken language.

Data processing
For this project I have used a dataset provided by Kaggle[1] “Google - American Sign Language

Fingerspelling Recognition”. The ASL Fingerspelling Recognition Corpus is a collection of hand

and facial landmarks generated by Mediapipe on videos of phrases, addresses, phone

numbers, and urls fingerspelling by over 100 Deaf signers. This dataset includes fingerspelling



of letters, numbers, and symbols at real world speeds. This may help move sign language

recognition forward, making AI more accessible for the Deaf and Hard of Hearing community.

The data was stored in parquet files, so kaggle provided us[2] a file to transform files from

parquet to TFrecords. The transition to TFRecords was driven by two primary advantages.

Firstly, TFRecords exhibited a marked improvement in data processing speed, enhancing the

overall efficiency of our pipeline. Secondly, the TFRecord format facilitated a more seamless

and efficient handling of both landmark and phrase data within our workflow. This strategic shift

from Parquet files to TFRecord format stands as a critical methodological choice, optimizing

data organization and processing, thus laying a robust foundation for the subsequent phases of

our project.

Feature Selection and Processing

Within the dataset I identified specific columns corresponding to X, Y, Z coordinates, and

relevant labels associated with pose and hand gestures. Through careful selection, columns

pertinent to hand and pose-related indices were chosen, enabling the extraction and processing

of essential features required for subsequent modeling.

Model architecture
The most important part of our ASL-to-text translation system lies in the adoption of the

Transformer architecture, a robust model known for its high success rate in processing

sequential data. At its core, this architecture employs an encoder-decoder framework, a

fundamental structure that enables the understanding and translation of ASL gestures into

coherent textual representations.

Within this architecture, the encoder serves as the initial processing unit for the input ASL

landmarks. It operates through a series of layers, each comprising distinctive sub-layers. These

sub-layers encompass a multi-head self-attention mechanism and subsequent feed-forward
neural networks. The multi-head self-attention fosters comprehensive interaction among

diverse segments of the input sequence, allowing the model to discern intricate relationships

within the ASL landmarks. This mechanism is complemented by feed-forward neural networks,

adding depth and non-linearity to the encoded representations, further enriching the model's

understanding of the input.



Conversely, the decoder component of the architecture is tasked with generating textual

representations based on the encoded ASL landmarks. Similar to the encoder, the decoder

incorporates multiple layers housing essential sub-layers, including self-attention and

encoder-decoder attention mechanisms. The self-attention capability enables the decoder to

focus on different facets of the output sequence during the translation process, ensuring

generation of textual tokens. Additionally, the encoder-decoder attention facilitates the decoder's

concentration on pertinent aspects of the encoded input (ASL landmarks), facilitating

contextually accurate translations.

The Transformer architecture addresses the inherent lack of sequential information retention by

incorporating positional encodings to impart crucial sequence order information. Token
embeddings represent textual tokens as numerical vectors, while landmark embeddings
process raw ASL landmarks into suitable formats for the model's comprehension, ensuring the

model's ability to comprehend and translate complex ASL gestures effectively.

During the training phase, our system minimizes a defined loss function, categorical

cross-entropy with label smoothing, utilizing the Adam optimizer to optimize the model's

parameters. Paired ASL landmark sequences and their corresponding textual representations

comprise the training data, enabling the model to learn accurate translation patterns from

gestures to text.

The incorporation of attention mechanisms within both the encoder and decoder components is

pivotal to our system's success. These mechanisms allow for comprehensive dependencies

within the input sequence for the encoder and generation of output sequences in the decoder,

considering both previously generated tokens and input landmarks.

The Transformer architecture, with its attention-based design and parallelizability, stands as the

backbone of our ASL-to-text translation system. Its efficiency and efficacy empower the precise

and efficient translation of ASL gestures into their corresponding textual representations,

marking a significant stride in bridging communication barriers for the hearing-impaired

community.



Experiments
Training and Optimization
Before initiating the training, the dataset was meticulously split into distinct subsets: a training

set, a validation set, and a test set, with 60%, 20% and 20% of the total dataset respectively.

The training dataset consists of paired ASL landmark sequences and their corresponding

textual representations. This dataset serves as the foundation for the model's learning process,

allowing it to grasp and internalize the intricate correlations between ASL gestures and their

textual equivalents. Through this process, the model gradually hones its translation patterns,

learning to accurately convert gestures into meaningful text. Simultaneously, the validation set

aids in monitoring the model's learning progress, ensuring it doesn't overfit to the training data

by evaluating its performance on unseen samples. The test set, unseen during training, serves

as the ultimate evaluation benchmark, assessing the system's real-world applicability and

generalizability.

The optimization mechanism is fundamental to this learning process. Leveraging the Adam

optimizer, our system meticulously adjusts the model's parameters during training to minimize

the defined loss function. This optimizer, known for its efficiency and adaptability, enables the

model to navigate through the complex landscape of ASL landmarks and textual

representations, gradually improving its translation accuracy.

Label smoothing, a regularization technique, plays a pivotal role during training. By introducing

slight uncertainty into the true labels of the training data, label smoothing prevents the model

from becoming overconfident and overly reliant on specific patterns. This strategy encourages

the model to explore a broader spectrum of translation possibilities, fostering a more robust and

adaptable translation capability.

Results
The Model Architecture section provided insights into our application of a Transformer-based

framework characterized by 2 encoder layers and 1 decoder layer. Each encoder layer

incorporated a multi-head self-attention mechanism and a feed-forward neural network, while

the decoder layer featured self-attention and encoder-decoder attention mechanisms. This

configuration enabled our model to effectively comprehend the nuances of ASL gestures and

generate accurate textual representations. Key Transformer model hyperparameters included a

hidden dimension size of 200, employing 4 attention heads, a feed-forward network dimension



of 400, with 2 encoder layers and 1 decoder layer. I utilized categorical cross-entropy with label

smoothing (0.1) as the loss function and the Adam optimizer with a learning rate set at 0.0001.

During training, meticulous tuning of these parameters and strategies allowed to mitigate

overconfidence in the model. Employing a batch size of 32 facilitated efficient processing, and

our training regime spanned 13 epochs, empowering the model to progressively refine its

translation capabilities.

As you can see in the previous image, the model learns, but from epoch 8 onwards you can see

how the training loss keeps going down but the validation remains constant, this means that the

model is overfitting, so the next experiment would be the same but training the model for 8

epochs.

The image below shows the model’s training process using the same hyperparameters but

changing the number of epochs, now instead of training the model for 13 epochs we do it for 8

to try to prevent the overfitting. As you can see there is not as much separation between training

loss and validation loss as with 13 epochs.



The evaluation metric utilized for this project is the normalized total Levenshtein[3] distance. To

elaborate, let's denote the total number of characters present across all labels as N and the total

Levenshtein distance calculated as D. The metric is formulated as follows: (N - D) / N.

This metric essentially quantifies the dissimilarity between predicted and reference texts. N

represents the total number of characters in all ground truth labels, while D signifies the total

Levenshtein distance, measuring the minimum number of single-character edits (insertions,

deletions, or substitutions) required to transform predicted text into the reference text.

The accuracy obtained when the model was trained with 13 epochs was 66.88%, which is quite

good, in the following image we can see an example of prediction, the first row is the true

phrase and the second row is the predicted. When the model was trained with 8 epochs, to

prevent what I thought it was overfitting, the accuracy obtained was

61.50%.



Prediction Example

Challenges and Future Work​
In developing this sign language interpreting system, I encountered significant challenges. One

of the main obstacles I faced was the complexity of finding a quality dataset that would allow me

to develop the project.

In addition, the duration required to train the model proved to be another major challenge.

Despite taking advantage of powerful GPU resources, using google colab, and using a sizable

data set, training our model for 13 epochs still required approximately 1 hour.

Looking to the future, this project opens the door to several avenues of work and improvement

that could revolutionize sign language interpreting technology. One of them is the development

of a real-time translation system. The creation of a platform capable of interpreting sign

language gestures instantaneously in real-life situations could be a game changer and greatly

facilitate communication and accessibility for the deaf and hard-of-hearing communities in

real-life environments.



In addition, it is interesting to explore the possibilities of bidirectional translation. Extending the

functionality of the system to translate from text and video formats into American Sign Language

(ASL) would greatly enhance inclusion. This advancement would not only enable seamless

communication from ASL to other linguistic forms, but would also facilitate translation in the

opposite direction, thus bridging communication gaps for people using different modes of

communication.

Conclusion
In conclusion, developing this project has been a very important experience because I have

been able to learn more about the deaf and hard-of-hearing community. By overcoming

challenges such as the complexity of the hand gestures, the complexity of the data, and the

length of the model training, I have gained valuable insights into the multifaceted nature of sign

language interpreting.

Looking ahead, the road ahead is lit by promising opportunities for innovation. The prospects of

real-time translation and two-way communication represent horizons yet to be explored. The

vision of a system capable of interpreting sign language gestures in real-life situations and

facilitating translation between different modes of communication opens up a range of

possibilities for social impact and inclusion.



References
[1] https://www.kaggle.com/competitions/asl-fingerspelling

[2] https://www.kaggle.com/code/shlomoron/aslfr-parquets-to-tfrecords-cleaned

[3]https://www.cuelogic.com/blog/the-levenshtein-algorithm#:~:text=The%20Levenshtein%20dis

tance%20is%20a,one%20word%20into%20the%20other.

[4 ]https://imatge.upc.edu/web/sites/default/files/pub/xCabot22.pdf

[5] https://aclanthology.org/2020.coling-main.525.pdf

[6]https://www.researchgate.net/publication/370215194_Artificial_Intelligence_for_Sign_Langua

ge_Translation_-A_Design_Science_Research_Study

https://www.kaggle.com/competitions/asl-fingerspelling
https://www.kaggle.com/code/shlomoron/aslfr-parquets-to-tfrecords-cleaned
https://www.cuelogic.com/blog/the-levenshtein-algorithm#:~:text=The%20Levenshtein%20distance%20is%20a,one%20word%20into%20the%20other
https://www.cuelogic.com/blog/the-levenshtein-algorithm#:~:text=The%20Levenshtein%20distance%20is%20a,one%20word%20into%20the%20other
https://imatge.upc.edu/web/sites/default/files/pub/xCabot22.pdf
https://aclanthology.org/2020.coling-main.525.pdf
https://www.researchgate.net/publication/370215194_Artificial_Intelligence_for_Sign_Language_Translation_-A_Design_Science_Research_Study
https://www.researchgate.net/publication/370215194_Artificial_Intelligence_for_Sign_Language_Translation_-A_Design_Science_Research_Study

