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1 Introduction

Massive multiple input multiple output (MIMO) is considered one of the most
important technologies in the next generation, i.e., beyond 5G and 6G wireless
technology. Equipping a large number of antenna at the base state (BS), mas-
sive MIMO system is capable of providing increased system capacity, energy
efficiency, and robustness. Furthermore, in Millimeter-wave (mmWave) com-
munication, which allows exploiting the underutilized multi-gigabit bandwidth
available at the mmWave spectrum to address the ever-increasing demand for
higher data rates in future wireless systems, massive MIMO system is an inte-
gral part. This is because the poor propagation characteristics of a mmWave
channel can be addressed by forming highly directional beams exploiting the
large antenna array from a massive MIMO system. To form the directional
beams, it is very important to estimate the user signals direction of arrival
(DOA).

Figure 1: A massive MIMO system

Despite the advantages, the practical implementation of a massive MIMO sys-
tem is challenging due to the requirement of a large number of radio fre-
quency (RF) front-end circuits and high-resolution analog-to-digital convert-
ers (ADCs). An RF front-end chain generally consists of a band-pass filter,
a low-noise amplifier, a mixer and a low-pass filter. The ADC then digitizes
the analog signal to obtain the baseband digital signal to perform subsequent
signal processing. These components are the limiting factor from the perspec-
tive of cost and power consumption. To reduce the number of RF chains and
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ADCs, a hybrid analog-digital beamforming strategy is adopted, which will be
introduced in the next section.
To implement a hybrid beamforming strategy, we consider using a neural net-
work to optimize a compressive measurement matrix to project the high-dimensional
received signal into a lower-dimensional space. The most challenging part of
this process is that, the original high dimensional signal is not observable, and
the optimization procedure needs to be performed by observing only the low
dimensional signal. Additionally, we consider a reinforcement learning (RL)
framework to enhance the estimation of the week signals.

2 Hybrid beamforming strategy

Assume D uncorrelated users impinge on a massive MIMO array equipped with
N antennas from the directions θ = [θ1, θ2, · · · , θD]T. The received signal in
the baseband measured at the t-th sampling time , x(t) ∈ CN can be expressed
as

x(t) =
D∑
d=1

a(θd)sd(t)n(t)

= A(θ)s(t) + n(t),

(1)

where A(θ) = [a(θ1), · · · ,a(θD)] ∈ C(N × D) denotes the array manifold
matrix whose column a(θd) ∈ CN represents the steering vector of the d-th
user with DOA θd, s(t) = [s1(t), s2(t), · · · , sD(t)]T ∈ CD represents the signal
waveform vector, and n(t) ∼ CN (0, σ2

nI) represents the zero-mean additive
white Gaussian noise (AWGN) vector.
As shown in the system block diagram of Fig. 2, each antenna of the receive ar-
ray is equipped with a dedicated separate front-end chain. The front-end chain
transforms the received RF signal to the digital baseband signal by performing
low-noise amplification, down-conversion, low-pass filtering and analog-digital
conversion in turn, and the result is then fed to a digital signal processor for
further digital signal processing.
In massive MIMO systems, the number of users is typically much less than the
number of antennas at the base station. We, therefore, consider compressive
sampling of the array received signal, as depicted in the system block diagram
in Fig. 3 , where the array received signals are compressed in the analog domain
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Figure 2: Full digital beamforming. Here the solid lines denote analog signals and dashed
lines denote digital signals.

Figure 3: Hybrid analog-digital beamforming. Here the solid lines denote analog signals and
dashed lines denote digital signals.

before passing through much fewer number of front-end chains. In particular,
M ≪ N linear projections of the array received signal (in the analog domain),
xRF (t), onto a set of measurement kernels {ϕm,m = 1, · · · ,M} are computed.
Stacking the M measurement kernels as a compressive sampling matrix Φ =
[ϕT

1 , ϕ
T
2 , · · ·ΦT

M ]T ∈ CM×N yields an M -dimensional compressed measurement
vector in baseband, y(t) = [y1(t), y2(t), · · · , yM(t)]T ∈ CM , expressed as

y(t) = Φx(t) = ΦA(θ)s(t) +Φn(t), (2)

where ΦA(θ) ∈ CM×D is a compressed array manifold matrix with a signifi-
cantly reduced dimension because M ≪ N.

Optimizing the matrix Φ is particularly crucial so that the required information
about user signals DOA will remain in the compressed measurement to obtain
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Figure 4: Neural Network-Based optimization framework

accurate beams. To optimize the matrix, we use a fully connected neural net-
work, as described in the section.

3 Neural network approach to optimize the compressive
measurement matrix

3.1 Theoritical framework

We consider a neural network framework as depicted in Fig. 4 to optimize the
matrix Φ in an iterative process. We denote p(t) as the discretized posterior
distribution of the direction of arrivals (DOAs) at time sample t. The posterior
of DOAs at time sample t − 1 can be regarded as the sufficient statistic for
designing the matrix Φ at next time sample t as

Φ(t) = F̂(p(t− 1)), (3)

where F̂ is a mapping function.
we consider an L-layer FC network to obtain the compressive sampling matrix
Φ(t) based on the DOA distribution p(t − 1) from the previous time frame.
Define t̃ = (t−1)/T as the normalized time index, where T is the total number
of samples. We use the posterior p(t−1) and the normalized time index t̃ as the
input to the neural network at time t, i.e., v(t−1) = [pT(t−1) t̃]T. For a total of
B observations in a particular batch of the training data, the complete training
dataset G(t− 1) is formed by concatenating vectors vb(t) corresponding to the
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observations b ∈ {1, 2, · · · , B} as G(t− 1) = [vT
1 (t− 1),vT

2 (t− 1), · · · ,vT
B(t−

1)]. The neural network output provides the compressive sampling matrix for
the next measurement as

Φ̃(t) = AL (W LAL−1(· · · A1(W 1G(t− 1) + b1) · · · ) + bL) , (4)

where {W l, bl,Al}Ll=1 are the weights, biases, and nonlinear activation func-
tion corresponding to the lth layer, respectively. Φ̃(t) is an augmented matrix
that denotes the real-valued representation of the complex-valued compressive
sampling matrix at time t, i.e., Φ̃(t) = [R(Φ(t)) I(Φ(t))]. The required Φ(t)
can then be extracted from Φ̃.
Using the neural network output Φ(t), we then form an analog beamformer
to obtain compressed measurements y(t) from x(t) at time t. We use the
minimum variance distortionless response (MVDR) spatial spectrum estimator
based on the compressed measurement vector to find the spatial spectrum as

P
(t)
CS-MVDR(θ) =

1

N

aH(θ)ΦH(t)Φ(t)a(θ)

aH(θ)ΦH(t)R̂
−1
yy(t)Φ(t)a(θ)

, (5)

where R̂yy(t) is the sample covariance matrix of y estimated at time t.
The normalized spatial spectrum can be considered as the posterior distribution
of the DOAs at time t, i.e.,

p(t) =
[P

(t)
CS-MVDR(θ1), · · · , P

(t)
CS-MVDR(θK)]∑K

k=1 P
(t)
CS-MVDR(θk)

(6)

The obtained posterior distribution p(t) is then fed to the neural network again
for sequential optimization of Φ. Once the iterations through all time samples
are completed, we update the neural network parameters by minimizing a MSE
loss function, expressed as

Loss =
1

BK

B∑
i=1

∥∥pi(T )− pitrue

∥∥2 . (7)

3.2 Neural Network Architecture

Our neural network is composed of 4 fully connected layers where each layer
contains 500 nodes. We generate 10000 different angular distribution scenarios
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(a) After 30 time sample
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(b) After 50 time sample
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(c) After 100 time sample

Figure 5: Direction of arrival (DOA) estimation performance
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Figure 6: Performance curves

to train the network, and 1000 scenarios for testing. ADAM optimizer is used
to optimize the MSE loss function with learning rate progressively decreasing
from 0.1 to 0.001. T = 100 time samples are considered.

3.3 Simulation result

We consider N = 50 received antenna at the base station. We also consider a
compression ratio of 5 to yield the dimension of the compressed measurement
of 10.
Fig. 5 depicts the estimation performance of developed approach. For illustra-
tion, an example is considered with DOAs −6◦,−4◦,−2◦, 0◦, 2◦, 4◦, 6◦. Starting
from uniform distribution of DOAs, Fig. 5 shows that the posterior of DOAs
converge to the actual DOAs as the time samples increase once the training is
complete.
Fig. 6a demonstrates the convergence of training and test losses. We also eval-
uate the performance based on the root mean squared error (RMSE), defined
as
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(b) After 50 time sample

-80 -60 -40 -20 0 20 40 60 80
Angle (degree)

0

500

1000

1500

2000

2500

3000

3500

Es
tim

at
ed

 s
pe

ct
ru

m

(c) After 100 time sample

Figure 7: Misdetection of weak signals

RMSE =

√√√√ 1

QD

Q∑
q=1

D∑
d=1

(θ̂q,d − θd)2 (8)

where Q is the number of trials and θ̂q,d is estimated DOA for the dth source
of the qth trial. We performed 100 trials to compute the RMSEs. From both
Figs. 6b and 6c, it is evident that the RMSE decrease as the signal to noise
ratio (SNR) and number of time sample increase.

4 Reinforcement learning based weak signal enhancement

The digital beamforming approach like MVDR as described in the previous
section, generally favors strong signals in the presence of signals with mixed
strengths. It may even progressively decrease the weak signals as the iteration
progresses. As illustrated in Fig. 7, the true DOAs are−40◦,−30◦,−20◦,−10◦, 0◦,
10◦, 20◦, 30◦, 40◦ with SNR corresponding to the −40◦ and −20◦ signals being
0dB, and the rest of them are 10dB, i.e., two signals are weaker. It is clear from
Fig. 7 that the weak signal disappears from the spectrum as the number of it-
erations increases. To address this issue a reinforcement learning framework is
considered to protect weak signals. Particularly, SARSA (state-action-reward-
state-action), which is a on policy RL framework, is adopted here. The idea
is instead of directly use the normalized power spectrum as prior for next it-
eration, the PMF is adjusted based on SARSA strategy. The basic steps are
described in the following subsections.
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Figure 8: Selection of states

4.1 Selection of state

To obtain the current state, we empirically choose a threshold δ such that

p̃t(θ) =

{
1, if pt(θ) ≥ δ,

0, otherwise.
(9)

p̃(i)(θ) signifies candidate angular bins that likely contain signals. The number
of angular bins where the spatial spectrum is above the threshold constitutes
the state of the environment. As such, the state at the ith iteration denotes
the total number of angular bins that likely contain signals and is given as

st =
K∑
k=1

p̃t, (10)

with st ∈ {1, 2, · · · , K}. As shown in Fig. 8, 7 sources are above the threshold,
so the state is 7.

4.2 Selection of Action

By considering that the other angular bins potentially contain weak signals, we
enhance the power of other angular bins by a factor of 5 as

p̂t(θ) =

{
pt(θ), pt(θ) ≥ δ,

5pt(θ), pt(θ) < δ.
(11)
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Figure 9: Selection of actions

And we denote candidate action as the number of peaks are now above the
threshold. For example, in Fig. 9 after power enahncing, 24 peaks are above the
threshold. So, the candidate action is acandidate,t = 24. Based on these, an action
space at time t is formed, which is a set of numbers ranging from current state
to the current candidate action, i.e., At = {st, · · · , acandidate} = {7, · · · , 24}.
From these, the action is selected using the ϵ greedy strategy as

at =

{
arg max

a∈A
Q(st, a), with probability 1− ϵ,

random action, with probability ϵ.
(12)

. The state action matrix Q is initialized randomly, and updated as

Q(st, at)← Q(st, at) + α(rt+1 + γQ(st+1, a+ t+ 1)

−Q(st, at),
(13)

Once the action is chosen, the at angular bins having the highest power p̂(θ)
from Fig. 9 is utilized to generate PMF for next iteration. The overall RL based
weak signal protection schemen is depicted in Fig. 10.

5 Reward function

rt+1 =
∑

θm∈Θs,t

pt+1(θm)−
∑

θn∈Θ−Θs,t

pt+1(θn)− |at − st + 1|, (14)

where Θs,t denotes the collection of angular bins based on st and Θ denotes the
collection of all angular bins. The reward function has three parts,
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Figure 10: Weak signal protection scheme

1. A positive reward for the accurate detection of angular bins from the pre-
vious state. (Possibly strong sources)

2. Penalizes detection at other angular bins (probably false detection).

3. The third part imposes a penalty if the action from the previous step differs
from the current state.

(a) The state defines angular bins corresponding to strong sources.
(b) The action defines angular bins corresponding to combinations of

strong sources, possibly some weak sources, and possibly some un-
wanted sources.

(c) This penalty imposes the removal of unwanted bins.
(d) If a weak signal containing bin is part of the action, a high PMF

assigned to this bin may cause the power spectrum at this bin to
exceed the threshold, which can be detected as a state. And the first
part of the reward will ensure its survival

6 Conclusion

n this project, we developed a neural network framework to optimize the com-
pressive measurement matrix in a massive MIMO system. By exploiting this
optimized measurement matrix, effective hybrid beamforming becomes possi-
ble, ultimately reducing the number of RF front-end circuits and consequently
lowering the system complexity. Additionally, as the strengths of weak signas
gradually decrease in an iterative process, we consider a reinforcement learning
framework to enhance the detection of weak signals.
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