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Abstract

In recent years, artificial intelligence (AI) has become increasingly important in various domains in
our modern society. However, its lack of complete accuracy presents challenges, especially in critical
areas like healthcare where precision is crucial. Motion analysis has emerged as a promising solution
that can enhance the accuracy of AI applications in healthcare. By incorporating advanced motion
tracking technologies, artificial intelligence (AI) systems have the ability to extract intricate information
from movements, thereby enhancing the dependability of healthcare AI in diagnostic procedures.

1 Introduction
In an era filled with some of the most advancing

technology, the integration of cutting-edge technolo-
gies remains both a promise and a challenge. Ex-
plainable Artificial Intelligence (XAI), while holding
tremendous potential for enhanced decision-making,
often grapples with the intricacies of transparency
and interpretability. Amid this uncertainty, the field
of motion analysis emerges as a pivotal ally, offering a
tangible pathway to augment XAI’s decision-making
capabilities.By analyzing intricate patterns in human
motion, motion analysis acts as a supplementary in-
strument that can aid in the improvement of XAI al-
gorithms. This collaboration presents fresh opportu-
nities for healthcare applications, leading to advance-
ments in diagnostic techniques, tailored treatment
plans, and visualizes a future where ambiguity is re-
placed by accuracy in healthcare decision-making.

2 Method
This analysis takes a dive into the powerful com-

bination of Explainable Artificial Intelligence (XAI)
and motion analysis, focusing on the OpenPose algo-
rithm. While we delve into the emerging possibilities
of XAI, specifically in terms of transparency and trust
in artificial intelligence systems, we also analyze the
strong capabilities of OpenPose in extracting detailed
human motion data.

2.1 XAI Potential in Healthcare
Mental health challenges are highlighted, noting

the difficulty in direct observation and the impact on

overall well-being, with depression cited as a lead-
ing cause of lost working hours globally which leads
to conditions affecting the way people think, feel
and behave...poor quality of life, degenerated phys-
ical health [1]. The text emphasizes the complex-
ity of mental disorders, their early onset, and the
challenges in patient responsiveness such as hetero-
geneous, dynamic, and multi-causal phenomena and
patients tend to be less responsive and compliant [1].
It introduces the potential of Artificial Intelligence
(AI) and Machine Learning (ML) to provide clini-
cal decision support, particularly in analyzing diverse
datasets for early detection and diagnosis of disor-
ders. Individualized medical data has enabled tech-
nologies such as Artificial Intelligence (AI) and Ma-
chine Learning (ML) which is employed to analyze
big and diverse data to identify patterns that asso-
ciate mental disorders with clinical data, biometrics,
behaviors, and social interactions” [1].

Over the past two decades, there has been a spe-
cific emphasis on utilizing technology, specifically ma-
chine learning (ML), to assist in the identification and
evaluation of mental health concerns. The direct ob-
servation of indicators related to mental health can
often be a complex task. However, by applying ML
techniques to brain scans and medical data, it be-
comes possible to obtain ”proxy measures” that can
provide valuable insights into brain-related health is-
sues [2]. We also acknowledges the limitations of
black box ML models, which lack interpretability,
hindering understanding and trust in mental health
applications. As expected, complex models tend
to outperform simpler ones, however, these high-
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performant models come with the trade-off of black
box functionality [2]. Explainable Artificial Intelli-
gence (XAI) can be used as a solution to address these
drawbacks, aiming to enhance transparency, trust,
and understanding among medical experts while im-
proving mental health interventions. Explainable Ar-
tificial Intelligence (XAI) approaches aim to address
these drawbacks. Without explainability, developed
methods are incapable of devising new theories and
leading to incremental science. For instance, a re-
cent review pointing to pitfalls and misconducts in
the proposals of new DL approaches may represent
this state of affairs [3].

Explainable Artificial Intelligence (XAI) is a re-
search focus aiming to enhance transparency in AI
systems, particularly deep learning models. It en-
sures accountability, transparency, and model im-
provement. XAI benefits various applications like
medical diagnosis, employing techniques such as visu-
alization for mammography image analysis [2]. The
text emphasizes the importance of explainability in
deep learning, preventing pitfalls and misconduct.
It explores the rule extraction technique, transfer-
ring feature maps from a CNN to a Discretized In-
terpretable Multi-Layer Perceptron for enhanced in-
terpretability. Challenges in XAI are acknowledged,
prompting the exploration of hybrid approaches and
collaboration with clinicians for real-world evalua-
tions. The ultimate goal is to integrate AI technolo-
gies into clinical pathways for improved diagnosis and
treatment processes [2].

However, there are several challenges that need to
be addressed. One of the challenges is the influence
of intricate correlations among diagnostic features,
which can make it difficult to interpret the results
accurately. Additionally, the current interpretability
methodologies have their limitations, further compli-
cating the process [2]. To overcome these challenges,
researchers are exploring hybrid approaches, particu-
larly neurosymbolic ones. These approaches combine
the strengths of neural networks and symbolic rea-
soning to enhance the interpretability of AI models
in mental health diagnosis. From an understanding of
human brain development [4] to analyzing biomark-
ers for AD [5, most would agree that this approach is
very useful for adding to the knowledge accumulated
so far. Nevertheless, while the solutions this brings
are promising, at present we are still a long way from
achieving them [8].

2.2 Motion Analysis
Motion analysis combines biomechanics, com-

puter vision, and AI to analyze human or object
movement, using technologies like motion capture

systems and algorithms such as Openpose. It is cru-
cial in sports science, rehabilitation, and ergonomics,
enhancing performance, preventing injuries, and con-
ducting biomechanical assessments. AI integration
automates the extraction of movement parameters,
revolutionizing our understanding of human motion.

2.2.1 Openpose Technology
The research employs the Openpose algorithm to

facilitate the identification of anatomical keypoints
from video footage, with the primary objective of
converting this keypoint data into clinically signifi-
cant health indicators. Openpose is utilized to pro-
cess video inputs, generating output data on 25 body
keypoints and 21 finger/hand keypoints. The exper-
imental focus centers around six fundamental move-
ments: bow squat, full squat, lying down and raising
the feet, sitting and turning at the waist, touching
the back with hands from top to bottom, and touch-
ing the back with hands from bottom to top. Ten
health indicators, classified as primary and secondary,
are established to clinically evaluate the movements.
These indicators encompass angles and distances rel-
evant to torso stability, joint mobility, and movement
accuracy. The process entails meticulous configura-
tion and calculation of health indicators, taking into
account primary and secondary observations. Follow-
ing the application of the Openpose algorithm, the
study progresses through film pre-processing, Open-
pose image processing, keypoint processing, and a fi-
nal comparison of results with manual measurements,
thereby demonstrating the feasibility of Openpose for
detecting and analyzing physical health.

� Film Pre-processing

An initial stage where video inputs undergo trans-
formations, including flipping footage for specific
movements like lying down, raising the feet, and
touching the back. This step is critical for stan-
dardization, ensuring optimal detection accuracy
in subsequent stages.

Sample Collections

Bow squat, Full squat, Lying down and raising the
feet, Sitting and turning at the waist, Touching the
back with hands from top to bottom, Touching the
back with hands from bottom to top.

� Openpose Image Processing

Openpose identifies 25 body keypoints and 21
finger/hand keypoints from the processed videos.
These keypoints serve as foundational data for the
subsequent calculation of health indicators, form-
ing the basis for further analysis of human move-
ments [6].
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Body Keypoints

In total, there are 25 body keypoints (as in Fig-
ure 1 ), including ears, eyes, nose, the center point
of the shoulders and limb joints (shoulder, elbow,
wrist, hip, knee and ankle). The data used in this
research mainly relate to body keypoints, and these
were used for the purposes of detecting the location
of limbs.

Figure 1: The 25 keypoints recognized by Openpose.

Figure 2: The 21 keypoints recognized by Openpose.

Finger/Hand Keypoints
In total, there are 21 keypoints in the hand (as in
Figure 2 ), including the three joints of each finger,
the fingertips and the heel of the palm. This paper
is intended to be used as a reference point for
specific movements and limb keypoints. The point
mix is used as the reference basis for completion of
the action [6].

� Keypoint Processing
Involving the establishment of ten health indicators,
categorized as main and secondary, for six
fundamental movements. These indicators assess
various aspects, including torso stability, joint
mobility, and movement correctness. The keypoints
identified by Openpose play a crucial role in
quantifying these indicators, facilitating a nuanced
evaluation of an individual’s physical health.
Setting and calculation of health indicators
The process for establishing health indicators begins
with using the Openpose algorithm on video
recordings. This yields data on 25 body keypoints
and 21 finger/hand keypoints. These keypoints are
used to derive clinical health indicators, following
clinical judgment standards. The subsequent
calculations are crucial for meaningful clinical
interpretation [6].
Step 1 (Bow Squat): This involves assessing the
stability of the torso during a bow squat. Key
indicators include the angle between specific lines on
the left and right sides, focusing on the vertical axis
and foot clamps.
Step 2 (Full Squat): The primary indicator for a
full squat is the minimum knee angle, which
provides important information about foot stiffness
and joint mobility. When assessing the squat, other
factors such as knee stability and the angle between
the calf bone and forearms are also considered.
Step 3 (Lying down and raising the feet: foot
angle): The foot angle, determined by specific lines,
is the primary measure in this stage. It reflects joint
flexibility and mobility. Knee flexion angles also
contribute to movement quality assessment.
Step 4 (Sitting and turning at the waist: rotation
angle): This step focuses on detecting the rotation
angle of the shoulder during sitting and turning at
the waist. It assesses the stiffness of the back and
hips, as well as the stability of the hip joint, crucial
for accurate testing posture.
Step 5 (Touching the back with hands from top to
bottom: back-touching position): Standards are set
using shoulder keypoints, considering variations in
camera distance and height. Stiffness and shoulder
injuries are considered in result interpretation.
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Step 6 (Touching the back with hands from bottom
to top: back-touching position): Similar to the
previous step, this assesses the back-touching
position but from bottom to top. Standards are
applied based on shoulder keypoints, considering
variations in camera distance and height, while
accounting for stiffness and shoulder injuries.

Rotating the left and right hand (foot)
The accuracy of data obtained from subjects lying
flat and performing movements was affected by the
rotation of hand and foot keypoints. An unexpected
data bounce during video detection led to further
investigation, revealing errors on both sides despite
successful detection of limb keypoints. This
challenge was more prominent when the subject’s
face was not captured and they wore black pants,
due to issues with face direction and light-shadow
dynamics. To overcome this, the left and right
keypoint coordinates were adjusted to ensure
accurate alignment with the designated action
standard. This adjustment was necessary for
movements like lying down, raising the feet, and
touching the back, as misalignment of keypoints
could lead to inaccuracies in the final health index.
Detection and correction of misaligned keypoints
were crucial to accurately represent the intended
movements and mitigate their impact on the overall
assessment [7].

Removing undetected points and offset points
Keypoint detection faced challenges, especially when
subjects went from lying flat to a 90-degree flip,
causing occasional offsets. This problem was
particularly noticeable in detecting feet movements,
leading to detection errors. The concern was the
potential for sudden signal jumps, which could
greatly affect the accuracy of health indicators. By
removing undetected and offset points, the values
became more consistent with the actual situation,
facilitating a clearer understanding of the maximum
values. This comprehensive keypoint processing
procedure was indispensable in refining the data,
ensuring that health indicators accurately reflected
the subjects’ movements and minimizing errors
attributable to detection challenges [6].

� Comparison of Results
The health indicators calculated by the system are
rigorously evaluated against manual measurements
conducted by physical therapists. This step serves
as a validation process, assessing the accuracy and
reliability of the Openpose-based system in
detecting and analyzing physical health, providing
insights into its clinical applicability.

2.2.2 Openpose Fall Detection
The extraction of key points using OpenPose is

prone to bias, which can adversely affect the accuracy
of fall detection. To address this issue, the proposed
algorithm combines OpenPose and MobileNetV2 to
improve the extracted features and minimize detec-
tion errors resulting from biased key point extraction.

� Features enhancement

The section on enhancing features addresses the
challenges faced when using OpenPose for extract-
ing key points in fall detection. The presence of
varying light conditions in the video data can in-
troduce bias in the extraction of key points, thereby
affecting the accuracy of detection. To tackle this
issue, OpenPose performs key point extraction, an-
notates the original image, and utilizes these anno-
tated images as input for fall detection with Mo-
bileNetV2. This process makes use of pose features
from the original image, which serve as a refer-
ence for subsequent classification detection. The
method involves preprocessing images, employing
VGG-19 for feature extraction, predicting position
confidence maps and part affinity fields, optimiz-
ing network parameters, and marking key points
in the original image [7]. The process primarily fo-
cuses on connecting body parts, starting from the
torso, and utilizes colorful annotations to differen-
tiate human torsos. This approach aims to enhance
feature extraction and enhance the accuracy of fall
detection by incorporating pose features from the
original image.

� Fall Detection

The primary focus of the fall detection section is
to enhance the accuracy of fall detection by utiliz-
ing the lightweight neural network MobileNetV2.
In this study, MobileNetV2 is fine-tuned and em-
ployed for fall classification detection. A com-
parative experiment is conducted with Efficientnet
and EfficientnetV2, revealing that MobileNetV2
achieves higher accuracy in fall detection on both
the Le2i dataset (98.5% compared to 93.5% and
94.92%) and the UR dataset (96.3% compared to
95.93% and 96%) [7].

To address specific challenges, the network frame-
work is modified by incorporating additional com-
ponents. The original MobileNetV2 framework is
extended with a fully connected layer and a soft-
max classifier to ensure compatibility with the re-
quirements of fall detection. Furthermore, to en-
hance the network’s learning ability, a Convolu-
tional Block Attention Module (CBAM) attention
mechanism is integrated at the beginning of the
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network [7]. The overall architecture of the net-
work includes convolutional layers, the CBAM at-
tention framework, and seven bottlenecks with dif-
ferent blocks. To slow down the drop in feature
dimension, a fully connected layer is introduced at
the end of MobileNetV2, followed by the softmax
function for probability calculation [7].

For parameter optimization, the fall detection
model employs the cross-entropy loss function and
the Adam algorithm (Figure 3 ), where m is the
number of samples, y t is the real category, y p is
the prediction category, q is the sample.

Figure 3: Cross-Entropy Loss function..
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Figure 4: Overall Flow Framework.

Figure 5: Brightening Process.
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In order to enhance the accuracy of keypoint
extraction, we use equation Figure 6 to adjust the
brightness of excessively dark images. By
determining the average brightness value of typical
images from different scenes, we establish a
threshold of 130.7 for image brightness. By
calculating the pixel value distribution, we found
that the average value of most image pixels is
between 39 and 56. In order to contain more pixel
information, we set the pixel existence interval to
[1,99], discarding any values outside this range [7].
Subsequently, we normalize the image pixels by
mapping them back to the [0,255] interval, ensuring
that outliers are removed. To prevent pixel overflow,
we set the interval to [255*0.1,255*0.9]. Here, x o
represents the original pixel value, while x p
represents the highlighted pixel value.

Figure 6: Brightening Formula.

The final output, which indicates whether a fall has
occurred or not, along with its corresponding
probability, is determined through deep separable
convolution, average pooling, and fully connected
layers, ultimatelyyields great accuracy with 98.60%
and 99.75% for Le2i and UR datasets respectively.

� Overall Framework
Step 1: inputs the preprocessed image into the
OpenPose network.
Step 2: extracts features.
Step 3: predicts the position confidence map and
part affinity fields domain of the limbs, while
optimizing the network model parameters based on

the loss function.
Step 4: associates body parts with the human
body and marks the image with key points. These
four steps utilize the Openpose algorithm to label
human key points in the picture.
Step 5: inputs images with key point information
into MobileNetV2 and extracts features using the
deep convolution module.
Step 6: employs the Adam algorithm to optimize
the model parameters according to the loss function,
enabling fall detection.

3 Conclusion
Explainable Artificial Intelligence (XAI) has the

potential to greatly enhance transparency and trust
in AI systems, especially in complex models like deep
learning. In the realm of motion analysis, OpenPose
plays a crucial role by extracting human keypoints
from images in a way that can be easily interpreted.
In the proposed fall detection algorithm, OpenPose
is combined with a modified MobileNetV2 network
to detect falls based on keypoint and pose informa-
tion. This integration not only improves the accu-
racy of features without increasing the complexity
of the images, but also corrects any labeling errors
that may occur. By utilizing OpenPose in motion
analysis, XAI enables a clearer understanding of the
decision-making processes in intricate models, pro-
viding benefits such as increased confidence, error
analysis capabilities, and the potential for model re-
finement. The collaboration between OpenPose and
XAI, as exemplified in fall detection, demonstrates
how interpretable insights from motion analysis can
contribute to more reliable and transparent AI sys-
tems, opening up possibilities for applications in var-
ious domains, including healthcare.
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