
CIS-5603
Temple University
Fall 2023
Artificial Intelligence

Photo Culling using
Machine Learning
Sayantan Kundu - TUP47447

Abstract

Brief Overview of the Project

This project delves into the realm of photo culling, a vital process in digital imagery for

eliminating unsatisfactory images such as those that are blurred, overexposed, or

underexposed. Traditionally a labor-intensive task, the advent of machine learning (ML) offers a

promising avenue for automation, enhancing both efficiency and effectiveness. The project

harnesses ML to transform the photo culling process, demonstrating its potential to significantly

reduce manual effort in digital image processing.

Key Objectives

The primary goal of this initiative was to create an end-to-end application utilizing a

Kaggle-sourced dataset of human portraits. This dataset was meticulously transformed into a

custom dataset, labeled with specific photographic flaws, to serve as the cornerstone for ML

training. The project emphasized the application of transfer learning to fine-tune advanced

neural network models such as VGG16, EfficientNetB0, and ResNet50. The focus was on their

capability to classify images accurately according to the custom labels. A significant aspect of

this project was also the development of a user-friendly interface (UI) application, designed to

employ the most effective model for real-time, automated photo culling on user-uploaded

images.



2

Summary of Findings

The project yielded impressive results, with the ResNet50 model standing out for its exceptional

performance. It achieved a remarkable accuracy of 99% on a dataset comprising only 1700

images. This high level of accuracy in identifying quality-related issues in images marks a

significant advancement in automated photo-culling technology. When deployed through the

developed UI on custom images, the model maintained its high performance, effectively

demonstrating its practical utility in real-world situations. This breakthrough not only

underscores the efficacy of ML in automating the photo culling process but also paves the way

for future innovations in digital image management.

Introduction

Background of the Project

Photo culling stands as a pivotal yet daunting task in the world of photography, where

professionals and hobbyists alike spend considerable time sifting through vast collections of

images. This process involves meticulously reviewing each photograph to identify and eliminate

those that do not meet certain quality standards, such as being blurred, poorly lit, or incorrectly

composed. In the digital age, where the volume of photos captured is exponentially higher than

in the era of film, the task of photo culling has become increasingly overwhelming.

Photographers often find themselves spending more time on this laborious task than on the

creative aspects of their work. The necessity for a streamlined and efficient culling process is

more pressing than ever, as the digital revolution continues to flood our world with images.

Problem Statement

The challenge addressed by this project lies in the time-consuming and subjective nature of

manual photo culling. The traditional process is not only labor-intensive but also prone to

inconsistency due to the variability in human judgment. As photographers grapple with

ever-growing image libraries, the need for an automated, reliable, and efficient method of photo

culling is evident. This project seeks to address these challenges by harnessing the power of



3

machine learning to automate the photo culling process, thus reducing the time burden on

photographers and increasing the consistency of outcomes.

Importance of Photo Culling in Digital Imagery

In the realm of digital imagery, photo culling is a crucial step in the workflow of photographers

and image editors. It is the gatekeeper of image quality, ensuring that only the best photographs

make it to the final album, publication, or digital gallery. Efficient photo culling not only enhances

the overall quality of visual content but also streamlines the workflow, allowing photographers to

focus more on creative pursuits rather than the monotonous task of sorting through thousands

of images. In industries where image quality is paramount, such as in media, advertising, and

photography, effective photo culling can significantly impact the final output's success and

appeal.

Objectives of the Project

The primary objective of this project is to revolutionize the process of photo culling by

employing artificial intelligence (AI). By leveraging machine learning algorithms, the project aims

to automate the culling process, making it faster, more accurate, and less dependent on human

intervention. The goal is to develop a system that can accurately identify and categorize images

based on common quality issues, thereby assisting photographers in quickly filtering out

undesirable photos from their collections. In essence, this project seeks to blend the precision

and speed of AI with the nuanced needs of photo culling, providing a modern solution to a

long-standing challenge in the field of digital imagery.

Literature Review

Resources Looked into for this project

1. PhotoML: Photo culling with Machine Learning

2. The Role of AI in Photo Culling and Editing: Revolutionizing Every Photographer's

Workflow

3. Camera Futura uses ML.NET to automate photo culling and organizing.

https://utorontomist.medium.com/photoml-photo-culling-with-machine-learning-908743e9d0cb
https://filterpixel.com/blog/posts/the-role-of-ai-in-photo-culling-and-editing-revolutionizing-every-photographers-workflow/
https://filterpixel.com/blog/posts/the-role-of-ai-in-photo-culling-and-editing-revolutionizing-every-photographers-workflow/
https://dotnet.microsoft.com/en-us/platform/customers/camera-futura


4

Overview of Existing Methods and Technologies in Photo Culling and Machine
Learning

Photo culling, a vital step in a photography workflow, involves selecting the best images from a

shoot, often a time-consuming and subjective task. Recent developments in machine learning

(ML) have opened avenues for automating this process. ML-based solutions like Camera

Futura's Futura Photo software utilize algorithms to automate culling and organizing photos,

thereby addressing the challenges of time and subjectivity inherent in manual culling. This

software focuses on enthusiast photographers and employs ML.NET, a framework allowing

seamless integration with existing .NET applications, to power its machine learning features.

Discussion of Similar Works or Studies

In the field of automated photo culling, one notable study, PhotoML, demonstrates the

application of ML in culling photos based on technical quality. This project mirrors the broader

trend in the photography industry, where ML is increasingly being utilized to address the

repetitive and tedious aspects of photo management, especially culling and organizing.

Relevance of These Works to Your Project

Both the Camera Futura case and the PhotoML study provide valuable insights into how ML can

be effectively utilized in photo culling, highlighting the potential for significant time savings and

improved consistency in results. These examples are particularly relevant to our project as they

showcase successful implementations of ML in addressing the same problem our project aims

to solve. The use of ML.NET in Camera Futura's solution is also noteworthy, as it demonstrates

the feasibility of integrating machine learning capabilities into existing software frameworks, a

consideration crucial for our project's development pathway.

Methodology

1. Dataset Preparation



5

a. Source of the Base Dataset

The base dataset for this project was sourced from Kaggle, specifically the

Human Faces (Object Detection) dataset available at Kaggle's Human Faces

Dataset. This dataset comprises a comprehensive collection of human portrait

images, which serve as the foundational data for the project's photo culling

model. It provides a diverse range of human faces, essential for developing a

robust and versatile culling system.

b. Steps for Creating a Custom Dataset for Culling

The custom dataset for culling was crafted using a Python script that employs

several libraries and techniques to simulate common photographic flaws:

Libraries Used: The script uses OS for directory operations, cv2 (OpenCV) for

image processing, NumPy for numerical operations, and CSV for data storage.

Image Transformations:

Blurring: Applied Gaussian blur with varying intensities to simulate

blurred images.

Camera Shake: Added a shake effect using random displacements and

image remapping to mimic camera movement.

X-axis Distortion: Distorted images along the X-axis to varying degrees to

represent lens or perspective distortions.

Exposure Adjustments:Modified image exposure to create underexposed

and overexposed variants, simulating common exposure issues.

Image Sampling: The script randomly selected a subset of images (120 in this

case) from the input directory for transformation. This approach ensures

diversity and reduces the computational load.

Saving Transformed Images: Each transformed image was saved in

corresponding folders (like 'blurred', 'camera_shake', etc.), creating a structured

dataset.

https://www.kaggle.com/datasets/sbaghbidi/human-faces-object-detection


6

Data Recording: The paths of transformed images along with their labels

(indicating the type of transformation) were stored in a CSV file. This file serves

as a reference point for model training, linking each image to its respective label.

Duplicate Handling and Cleaning: The script also manages duplicates and

removes unselected images from the original dataset to maintain dataset

integrity and relevance.

This meticulous and systematic approach to dataset creation ensures that the

machine learning model is trained on a wide range of image qualities, enhancing

its ability to accurately perform photo culling.

c. Preprocessing and Data Cleaning Techniques

The preprocessing and data-cleaning stage of the project involved several key

steps:

Data Loading and Preparation:

The dataset was loaded using pandas.

The dataset was divided into training, validation, and test sets, with a standard

split ratio.

Image Resizing and Batch Processing:

Images were resized to a uniform size (224x224 pixels) for consistency.

Batch processing was set with a batch size of 32, optimizing the training process

for efficiency.

Visualization:

A function was created to display random images from the dataset along with

their labels. This visual inspection ensures diversity and correctness in the

dataset. As shown in Figure 1.

Data Augmentation:



7

For the training set, augmentation techniques like shearing, zooming, and

horizontal flipping were applied. These augmentations help the model generalize

better by introducing variations in the training data.

Generators for Data Flow:

ImageDataGenerator was used for rescaling and augmenting the images.

Separate generators were created for the training, validation, and test sets to

streamline the flow of data during model training.

These steps ensure that the data is well-prepared, augmented, and fed into the

machine learning model in an efficient and structured manner, thereby enhancing

the model's training process and performance.

Figure 1: Sample Image Visualization



8

2. Model Development and Testing

a. Description of the Models Used (VGG16, EfficientNetB0, ResNet50)

1. VGG16: Developed by the Visual Graphics Group at Oxford, VGG16 is a deep

convolutional neural network known for its simplicity and depth. It has 16 layers

and is known for its excellent performance on image recognition tasks. The

architecture diagram is shown in Figure 2. (sourced from -

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%

2Ffigure%2FAn-overview-of-the-VGG-16-model-architecture-this-model-uses-simp

le-convolutional-blocks_fig2_328966158&psig=AOvVaw1e2eeK8gJLyvuJ2DTUeG

RG&ust=1702687878075000&source=images&cd=vfe&ved=0CBIQjRxqFwoTCIiV

o-mckIMDFQAAAAAdAAAAABAI )

Figure 2: VGG16 Model Architecture:

https://www.researchgate.net/figure/An-overview-of-the-VGG-16-model-architecture-this-model-uses-simple-convolutional-blocks_fig2_328966158
https://www.researchgate.net/figure/An-overview-of-the-VGG-16-model-architecture-this-model-uses-simple-convolutional-blocks_fig2_328966158
https://www.researchgate.net/figure/An-overview-of-the-VGG-16-model-architecture-this-model-uses-simple-convolutional-blocks_fig2_328966158
https://www.researchgate.net/figure/An-overview-of-the-VGG-16-model-architecture-this-model-uses-simple-convolutional-blocks_fig2_328966158
https://www.researchgate.net/figure/An-overview-of-the-VGG-16-model-architecture-this-model-uses-simple-convolutional-blocks_fig2_328966158


9

2. EfficientNetB0: EfficientNetB0, part of the EfficientNet family, represents a

breakthrough in scaling CNNs. Developed by Google researchers, it

systematically scales network width, depth, and resolution with a set of fixed

scaling coefficients. EfficientNetB0, as the baseline model, achieves remarkable

efficiency and accuracy due to this balanced scaling, making it superior for tasks

that require both high performance and computational efficiency. The

architecture diagram is shown in Figure 3. (sourced from -

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%

2Ffigure%2FThe-structure-of-an-EfficientNetB0-model-with-the-internal-structure-

of-MBConv1-and_fig2_351057828&psig=AOvVaw0b7O3sEqnnr5sSX5vhuwnT&us

t=1702688132134000&source=images&cd=vfe&ved=0CBIQjRxqFwoTCIjl0NydkI

MDFQAAAAAdAAAAABAE )

Figure 3: EfficientNetB0 Model Architecture:

https://www.researchgate.net/figure/The-structure-of-an-EfficientNetB0-model-with-the-internal-structure-of-MBConv1-and_fig2_351057828
https://www.researchgate.net/figure/The-structure-of-an-EfficientNetB0-model-with-the-internal-structure-of-MBConv1-and_fig2_351057828
https://www.researchgate.net/figure/The-structure-of-an-EfficientNetB0-model-with-the-internal-structure-of-MBConv1-and_fig2_351057828
https://www.researchgate.net/figure/The-structure-of-an-EfficientNetB0-model-with-the-internal-structure-of-MBConv1-and_fig2_351057828
https://www.researchgate.net/figure/The-structure-of-an-EfficientNetB0-model-with-the-internal-structure-of-MBConv1-and_fig2_351057828


10

3. ResNet50: ResNet50, a key model in the ResNet family, stands out with its

deep 50-layer architecture. Its primary innovation is the introduction of 'skip

connections' or residual connections, allowing layers to skip one or more layers.

This design counters the vanishing gradient problem in deep networks,

maintaining performance even as depth increases. ResNet50's architecture

makes it adept at handling complex image recognition tasks, and its success has

led to wide adoption in various deep-learning applications. The architecture

diagram is shown in Figure 4. (sourced from -

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%

2Ffigure%2FOutline-of-ResNet-50-architecture-a-A-3-channel-image-input-layer-Th

e-LL-LH-and-HH_fig3_343233188&psig=AOvVaw02MOkaFKG7lgN7JlwUo55z&us

t=1702688218622000&source=images&cd=vfe&ved=0CBIQjRxqFwoTCOilrYeekI

MDFQAAAAAdAAAAABAE )

Figure 4: ResNet50 Model Architecture:

https://www.researchgate.net/figure/Outline-of-ResNet-50-architecture-a-A-3-channel-image-input-layer-The-LL-LH-and-HH_fig3_343233188
https://www.researchgate.net/figure/Outline-of-ResNet-50-architecture-a-A-3-channel-image-input-layer-The-LL-LH-and-HH_fig3_343233188
https://www.researchgate.net/figure/Outline-of-ResNet-50-architecture-a-A-3-channel-image-input-layer-The-LL-LH-and-HH_fig3_343233188
https://www.researchgate.net/figure/Outline-of-ResNet-50-architecture-a-A-3-channel-image-input-layer-The-LL-LH-and-HH_fig3_343233188
https://www.researchgate.net/figure/Outline-of-ResNet-50-architecture-a-A-3-channel-image-input-layer-The-LL-LH-and-HH_fig3_343233188


11

The table below outlines the key similarities and differences between these models:

b. Hyperparameter Tuning and Optimization Strategies

Hyperparameter tuning involves adjusting parameters like learning rate, number

of layers, and activation functions to optimize model performance. Strategies like

grid search or random search can be used to experiment with different

combinations. For fine-tuning, parts of pre-trained models are often re-trained on

new data to adapt to specific tasks, which is crucial for achieving high accuracy

in tasks like image culling.

Model Compilation: Each model is compiled using categorical cross-entropy loss

and Adam optimizer. The learning rate is set at 1e-4, which is a crucial

hyperparameter for training efficiency.

Model Training:Models are trained using the fit method on the augmented

training data, with epochs and validation data specified. This process iteratively

updates model weights to minimize loss and improve accuracy.

Model Evaluation: After training, models are evaluated on a test dataset to obtain

test accuracy, providing an unbiased performance metric.

Feature VGG16 EfficientNetB0 ResNet50

Depth 16 layers Scalable (B0 baseline) 50 layers

Key Characteristics Deep with sequential layers
Balanced scaling of depth,

width, resolution

Skip connections for

deeper networks

Use Case Image recognition
Efficient performance and

scalability

Deep learning with reduced
gradient problems



12

Experiments with VGG16: Various VGG16 configurations were tested,

including base models, increased dense layers, additional convolutional layers,

and transfer learning without freezing layers. Each experiment was logged for

comparison.

Loss Visualization: Training and validation loss curves for each experiment were

plotted to track overfitting or underfitting and to understand the model's learning

pattern.

Experiments with EfficientNet and ResNet: Similar strategies were applied to

EfficientNetB0 and ResNet50, including modifications to dense layers, increased

dropout, additional layers, and fine-tuning.

Fine-Tuning: For EfficientNet and ResNet, some experiments involved fine-tuning

by making deeper layers trainable, which adapts the model more closely to the

specific dataset.

c. Training Process and Validation Methods

The models can be trained on the custom dataset by feeding them the

augmented image data, using techniques like batch normalization, dropout, and

appropriate activation functions to enhance learning. The training involves

monitoring loss and accuracy metrics, adjusting learning rates, and using

callbacks for optimal performance. Validation methods include using a separate

dataset to evaluate the model and visualizing loss and accuracy curves to

understand model performance over training epochs. This helps in identifying

overfitting or underfitting and in making necessary adjustments.

Training: The models are trained using the custom dataset, augmented with

various transformations. The training process involves iterating through epochs

while monitoring loss and accuracy.

Validation: Validation data is used alongside training to assess model

performance and generalization capability.



13

Loss and Accuracy Tracking: Loss and accuracy curves for both training and

validation phases are plotted. This visualization helps in identifying trends like

overfitting or underperformance and informs adjustments in model architecture

or training strategy.

Saving Experiments: Details of each experiment, including model configurations

and test accuracies, are stored for analysis and comparison, aiding in the

selection of the best-performing model.

3. Prototype User Interface

a. UI Design and Development:

The UI, designed using Flask, a Python web framework, offers a clean and

interactive user experience. The Flask application handles the backend

processes, including loading the machine learning model and handling image

uploads. The HTML and CSS, along with Bootstrap, are utilized for the front end,

creating a responsive and aesthetically pleasing interface. This combination

ensures the UI is adaptable to various devices and screen sizes. The design

emphasizes user-friendliness, with a focus on simplicity and efficient navigation,

allowing users to easily upload and view images. Figure 5 shows the UI prototype

window with custom images.

b. Integration with Machine Learning Model:

In the integration with the machine learning model, the Flask application loads

the pre-trained ResNet50 model (resnet_exp4.h5) and class labels

(class_labels.pkl). The code includes a function to preprocess uploaded images,

resizing them to 224x224 pixels and normalizing their pixel values. This

preprocessing ensures the images are compatible with the model's input

specifications. The application then uses the model to predict labels for these

images, employing the predict function on the processed image arrays. The

predicted labels are derived from the model's output, indicating the



14

classifications of the uploaded images. This integration demonstrates the

practical application of the ResNet50 model in a user-friendly web

application.

c. Features and Functionalities:

The UI's features and functionalities include a multi-image upload feature,

enabling users to upload several images simultaneously. Once uploaded, the

images are displayed on the UI alongside their predicted labels, as determined by

the machine learning model. This functionality enhances the user experience,

making the application a practical tool for tasks such as photo culling. Users can

easily view and interpret the model's predictions, streamlining the process of

categorizing and managing large sets of images.

Figure 5: UI Prototype with Custom Images:



15

Results and Discussion

1. Performance evaluation of the models

a. VGG16 Model Experiments:

Base Model Experiment: Started with the original VGG16 architecture, modified

by removing the top layers and adding a new set of layers tailored for the specific

classification task. This included a flattening layer, a dense layer with 256

neurons, a dropout layer for regularization to prevent overfitting, and a final

softmax layer for outputting the class probabilities. Figure 6 will show how the

model behaves as a base experiment.

Figure 6: VGG16 Base Model Experiment:

Increased Dense Layers: The complexity was increased from the base model by

adding more dense layers, which aimed to enhance the model's ability to learn

more complex features. However, this also increased the risk of overfitting due to



16

the greater number of trainable parameters. Figure 7 will show how the model

behaves with an increased dense layer in the VGG16 experiment.

Figure 7: VGG16 Increased Dense Layer Experiment:

Additional Convolutional Layer: A convolutional layer was added to the base

model to improve the feature extraction capabilities. This experiment was

designed to determine whether additional convolutional processing would result

in better performance on the image classification task. Figure 8 will show how

the model behaves with an additional convolutional layer in the VGG16

experiment.



17

Figure 8: VGG16 Additional Convolutional Layer Experiment:

Transfer Learning without Freezing Layers: Instead of freezing the pre-trained

layers of the model, they were left trainable to adapt more closely to the new

dataset. This approach can sometimes yield better performance as it allows the

model to fine-tune the pre-trained weights on the new data, but it also requires

careful tuning to avoid overfitting. Figure 9 will show how the model behaves with

transfer learning in the VGG16 experiment.

Figure 9: VGG16 Transfer Learning Experiment:



18

b. EfficientNetB0 Model Experiments:

Dense Layer Modification: The experiment began with incorporating a global

average pooling layer to the base EfficientNetB0 model, ensuring that the

subsequent dense layer with 256 neurons had a manageable input size. The

purpose was to capture the essence of the features extracted by the EfficientNet

architecture. Figure 10 will show how the model behaves with dense layer

modification in the EfficientNetB0 experiment.

Figure 10: EfficientNetB0 Dense Layer Modification Experiment:

Increased Dropout: To enhance the model's generalization, the dropout rate was

elevated. This experiment tested the hypothesis that a higher dropout would lead

to better generalization by forcing the network to learn more robust features that

do not rely on the presence of specific neurons. Figure 11 will show how the

model behaves with increased dropout in the EfficientNetB0 experiment.



19

Figure 11: EfficientNetB0 Increased Dropout Experiment:

Additional Dense Layer: By introducing an additional dense layer with 512

neurons, the model's capacity for feature interpretation was extended. This layer

aimed to provide a deeper level of abstraction of the features, potentially

capturing more complex relationships in the data. Figure 12 will show how the

model behaves with additional dense layers in the EfficientNetB0 experiment.

Figure 12: EfficientNetB0 Additional Dense Layer Experiment:



20

Fine-tuning: The most advanced of the experiments, fine-tuning involved

strategically allowing the latter half of the EfficientNetB0 layers to adjust their

weights during training. This selective fine-tuning sought to strike a balance

between leveraging the pre-trained knowledge embedded in the model and

adapting to the nuances of the new dataset. Figure 13 will show how the model

behaves with fine-tuning the EfficientNetB0 experiment.

Figure 13: EfficientNetB0 Fine-tuning Experiment:

c. ResNet50 Model Experiments:

Dense Layer Modification: The initial experiment begins with a foundational

approach, leveraging the ResNet50 model's powerful feature extraction

capabilities pre-trained on ImageNet, and tailoring it to a new classification task

by appending a series of layers designed to process the extracted features for a

six-class output. Figure 14 will show how the model behaves with dense layer

modification in the ResNet50 model experiment.



21

Figure 14: ResNet50 Dense Layer Modification Experiment:

Increased Dropout: In the second experiment, the dropout rate is increased to

combat overfitting, a strategy predicated on the hypothesis that by randomly

deactivating neurons during training, the model is forced to learn more robust

features. Figure 15 will show how the model behaves with increased dropout in

the ResNet50 model experiment.

Figure 15: ResNet50 Increased Dropout Experiment:



22

Additional Dense Layer: The third experiment introduces an additional dense

layer with a significant increase in neurons, testing whether this added

complexity enables the model to capture a richer representation of the data, thus

enhancing its ability to distinguish between more subtle variations within the

classes. Figure 16 will show how the model behaves with an additional dense

layer in the ResNet50 model experiment.

Figure 16: ResNet50 Additional Dense Layer Experiment:

Fine-tuning: The fourth and most intricate experiment employs a fine-tuning

strategy. By making the layers trainable halfway through the network, the model

can fine-tune the pre-learned features to the specific dataset, potentially leading

to an increase in accuracy and a better generalization to new images. Figure 17

will show how the model behaves with fine-tuning the ResNet50 model

experiment.



23

Figure 17: ResNet50 Fine-tuning Experiment:

2. Comparative analysis of VGG16, EfficientNetB0, and ResNet50

Table-1 shown below will show details of the Experiment with the Test Accuracy:

Sl No. Experiment Test

Accuracy

Model Variable Name

0 VGG16 - Base Model 0.949405 vgg16_base_model

1
VGG16 - Increased Dense

Layers

0.913690 vgg16_exp2



24

2
VGG16 - Additional

Convolutional Layer

0.925595 vgg16_exp3

3
VGG16 - Transfer Learning

without Freezing Layers

0.961310 vgg16_exp4

4
EfficientNetB0 - EfficientNet

Dense Layer Modification

0.369048 efficientnet_exp1

5
EfficientNetB0 - EfficientNet

Increased Dropout

0.497024 efficientnet_exp2

6
EfficientNetB0 - EfficientNet

Additional Dense Layer

0.782738 efficientnet_exp3

7
EfficientNetB0 - EfficientNet

Fine-tuning

0.949405 efficientnet_exp4

8
ResNet50 - ResNet Dense

Layer Modification

0.142857 resnet_exp1

9
ResNet50 - ResNet

Increased Dropout

0.136905 resnet_exp2

10
ResNet50 - ResNet

Additional Dense Layer

0.619048 resnet_exp3

11
ResNet50 - ResNet

Fine-tuning

0.991071 resnet_exp4



25

The VGG16model's performance across different experimental conditions shows

varied behavior in training and validation loss curves. Initially, the base model

demonstrates a steady decrease in both training and validation loss, suggesting good

learning with generalization. However, with increased dense layers, there's a spike in

validation loss, indicating potential overfitting where the model learns the training data

too well but fails to generalize. Adding an additional convolutional layer seems to

stabilize learning initially, but an eventual increase in validation loss again points toward

overfitting. Lastly, the experiment with transfer learning without freezing layers exhibits

fluctuating losses, which could imply that the model is too complex for the data size or

that it requires further fine-tuning of hyperparameters.

The EfficientNetB0 loss curves indicate various outcomes from the experiments. The

first experiment shows a consistent decrease in training loss, suggesting that the model

is learning effectively, but the flat validation loss implies a plateau in learning from the

validation set. In the second experiment, the fluctuating validation loss might suggest

that the model struggles with generalization, possibly due to the increased dropout rate.

The third chart again shows volatility in validation performance, raising questions about

the model's stability. Finally, the fourth experiment presents a more stable decrease in

both training and validation loss, indicating a balance between learning and

generalization, which may be attributed to the fine-tuning process.

The ResNet50 loss curves for the experiments reveal a compelling story about the

model's learning process. Initially, with the Dense Layer Modification experiment, we

observe a descending training loss indicating learning progress. However, the validation

loss shows fluctuations, suggesting that the model may not be generalizing well.

Increased Dropout introduces more significant variability, particularly in the validation

phase, which could be due to the model's inability to establish stable patterns within the

data. The Additional Dense Layer's effect is somewhat mixed, with a general trend of

improvement but still some variability. Lastly, the Fine-tuning experiment shows a

promising reduction in loss, with both the training and validation losses decreasing,

indicating an effective learning and generalization balance.

The final experiment with ResNet50, which incorporated fine-tuning, achieved the best

results, likely due to a combination of factors. Fine-tuning allows the pre-trained layers of



26

the network, already skilled at extracting general features from the ImageNet dataset,

to adjust to the specifics of the new task. This process can capture more relevant

and subtle features important for the specific dataset used. Moreover, fine-tuning only a

portion of the layers prevents overfitting, as it retains some of the model's original,

generalized knowledge. This approach finds a balance between retaining learned

patterns and adapting to new data, resulting in a model that performs well on the test

set, as reflected in the highest test accuracy among all experiments.

3. Insights from the model testing and selection

Testing and selection of the model involved a structured approach, utilizing a dataset to

assess each model's performance rigorously. The best model was identified based on

test accuracy from a series of experiments logged in a CSV file. For a detailed analysis, a

subset of the test dataset was chosen randomly. This subset was used to evaluate the

model's predictive capabilities and to visually compare actual versus predicted labels.

The most accurate model, as determined from the experiments, was then loaded, and its

performance was further scrutinized on a random sample of images. Unique hashes of

the original images were created to check for duplicates, ensuring that the model's

performance was evaluated on distinct data points. The results were plotted to provide a

visual representation of the model's prediction against the actual labels, offering insights

into its accuracy and potential areas for improvement. This process exemplifies the

rigorous testing needed to select the most effective model for practical application.

Figure 18 shows what the best model ie, the ResNet50 model which has been fine-tuned

with the custom dataset is performing on an unseen random sampled dataset of 75

images out of which again 15 images are sampled each time to see how the model is

performing to predict on the image.



27

Figure 18: Random Sampled Image Test on Best Model:



28

4. Functionality of the prototype UI

The prototype UI, realized through Flask, is a web-based interface that interacts with a

pre-trained ResNet50 model. Users can upload images directly on the platform,

triggering a sequence of backend operations: the images are decoded, preprocessed to

conform to the model's input size, and normalized to match the training conditions. The

ResNet50 model then processes the images, predicting their categories. These

predictions are encoded and sent back to the UI, where users can view both the

uploaded images and their corresponding labels. This setup offers a practical and

user-friendly application for image classification tasks, enabling real-time predictions

without the need for manual coding or command-line interactions.

Conclusion

The project's foray into leveraging machine learning for photo culling culminated in a series of

experiments with various architectures, each with its strengths. The ResNet50 model, after

fine-tuning, stood out with exemplary performance, achieving near-perfect accuracy. This high

level of precision from ResNet50's fine-tuning underscores the potential for machine learning to

significantly enhance the photo selection process, traditionally a time-consuming task requiring

substantial manual effort.

In the broader context of digital photography and media management, the implications of these

findings are profound. The integration of a machine learning model like the fine-tuned ResNet50

into the workflow of photo culling could revolutionize the process, drastically reducing the time

and resources required for manual curation. Such technology can assist photographers and

organizations in managing and utilizing visual assets more effectively, allowing for rapid sorting

and selection based on quality and content criteria predefined in the training of the model.



29

Despite the successes, the study acknowledges limitations, including the potential for

overfitting and the dependency on substantial and diverse datasets for training. The variability in

performance across different experiments also suggests room for improvement in model

architecture and hyperparameter optimization. Future work could explore advanced

regularization techniques, data augmentation strategies, and even the adoption of more

complex or novel machine learning models. Additionally, expanding the training dataset and

incorporating user feedback loops could further refine the model's accuracy and utility in

real-world applications.

Future Work

For further development, enhancing the model's ability to differentiate between shallow depth of

field and actual blurriness presents a promising challenge. This would require a more nuanced

understanding of focus cues within an image and might involve training on datasets specifically

labeled for depth-of-field variations.

Incorporating more realistic camera shake data could improve the model's accuracy in

distinguishing between true camera shake and intended motion blur. This could involve

gathering a dataset of images taken under varied conditions of movement to better represent

real-life scenarios.

The inclusion of eye blink detection and facial expression recognition is an intriguing area of

research that could provide additional filters for photo culling. By recognizing subtle facial cues,

the system could prioritize images where the subjects have their eyes open and are displaying

desirable expressions.

To enhance the user experience, the implementation of a triage system that sorts images into

"To be Deleted," "Must Haves," and "Maybes" would be valuable. This system would not only

streamline the culling process but also provide a more nuanced categorization of images, which

could be achieved by assigning priority labels during the training phase.



30

Lastly, incorporating compositional quality assessments, such as adherence to the rule of

thirds and the golden ratio, would add another layer of sophistication to the model. This might

involve more complex pattern recognition and aesthetic evaluation capabilities, potentially

drawing from the rich literature in the field of computational creativity and computer vision.

References & Acknowledgments

Acknowledgments

The project's success was significantly bolstered by various resources and guidance. Platforms

and tools like TensorFlow and the Intel® Distribution of OpenVINO™ toolkit played a pivotal role

in developing and optimizing our convolutional neural network (CNN) models. TensorFlow, in

particular, provided an essential framework for building and training our models, especially in the

context of image classification tasks, as highlighted in online resources and tutorials from

TensorFlow developers and Edureka.

The Intel® oneAPI DL Frame Developer Toolkit and the Intel® Distribution of OpenVINO™ toolkit

were instrumental in optimizing the neural networks, reducing model sizes, and improving

latency with minimal accuracy degradation. These tools streamlined the designing, training, and

validation of neural networks, contributing significantly to the project's progress.

In terms of learning and development, online courses and tutorials such as those offered by

DeepLearning.AI on Coursera, Data Flair, DataCamp, and Kaggle provided valuable insights into

the intricacies of CNNs and their application in computer vision. These resources were crucial in

understanding how to implement and leverage CNNs effectively for our project's objectives,

especially in the realm of photo culling and image recognition.



31

References

- TensorFlow developers' tutorial on building CNNs for image classification: This provided

foundational knowledge on CNN architecture and its application in image classification tasks

(TensorFlow).

- Edureka's tutorial on CNNs in Python using TensorFlow: Offered a practical guide on developing

an image classifier and understanding the architecture behind CNNs (Edureka).

- DeepLearning.AI's TensorFlow Developer Professional Certificate on Coursera: Advanced

techniques to improve computer vision models were learned here, including working with

real-world images in different shapes and sizes (Coursera).

- Data Flair's tutorial on CNNs: Helped in understanding the broader implications of CNNs in the

AI industry and their future shaping of various industries (DataFlair).

- Kaggle's practical course on CNNs: Assisted in learning hands-on implementation of CNNs

using Keras, crucial for practical application in our project (Kaggle).

Each of these resources played a crucial role in the successful development and

implementation of our project, providing both theoretical knowledge and practical skills

essential for navigating the complexities of deep learning and computer vision.

https://www.tensorflow.org
https://www.edureka.co
https://www.coursera.org
https://data-flair.training
https://www.kaggle.com

