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CIS587 - Artificial Intellgence

Bayesian Networks
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KB for medical diagnosis. Example.
We want to build a KB system for the diagnosis of pneumonia.

Problem description:
• Disease: pneumonia

• Patient symptoms (findings, lab tests):
– Fever, Cought, Paleness, WBC (white blood cells) count, 

Chest pain, etc.

Representation of a patient case: 
• Statements that hold (are true) for that patient.

E.g:

Diagnostic task: we want to infer whether the patient suffers 
from the pneumonia or not given the symptoms

Fever =True
Cough =False
WBCcount=High
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Uncertainty
To make diagnostic inference possible we need to represent 

rules or axioms that relate symptoms and diagnosis 
Problem: disease/symptoms relation is not deterministic (things 

may vary from patient to patient) – it is uncertain
• Disease           Symptoms uncertainty

– A patient suffering from pneumonia may not have fever all 
the times, may or may not have a cough, white blood cell 
test can be in a normal range.

• Symptoms          Disease uncertainty
– High fever is typical for many diseases (e.g. bacterial 

diseases) and does not point specifically to pneumonia

– Fever, cough, paleness, high WBC count combined do not 
always point to pneumonia
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Modeling the uncertainty.
• Relation between the disease and symptoms is not 

deterministic. Key issues:
• How to describe, represent the relations in the presence of 

uncertainty? 

• How to manipulate such knowledge to make inferences?

– Humans can reason with uncertainty. 
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Methods for representing uncertainty

KB systems based on propositional and first-order logic often  
represent uncertain statements, axioms of the domain in terms of

• rules with various certainty factors
Very popular in 70-80s (MYCIN)

Problems: 
• Chaining of multiple inference rules (propagation of uncertainty)
• Combinations of rules with the same conclusions
• After some number of combinations results not intuitive.

1. The stain of the organism is gram-positive, and
2. The morphology of the organism is coccus, and
3. The growth conformation of the organism is chains
with certainty 0.7
the identity of the organism is streptococcus

If

Then
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Probability theory

a well-defined coherent theory for representing uncertainty and 
for reasoning with it

Representation:
Propositional statements – assignment of values to random 

variables

Probabilities over statements model the degree of belief in these 
statements 

001.0)( == TruePneumoniaP

0009.0),( === TrueFeverTruePneumoniaP

97.0),,( ==== FalseCoughnormalWBCcountFalsePneumoniaP

005.0)( == highWBCcountP

TruePneumonia = highWBCcount =
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Joint probability distribution
Joint probability distribution (for a set variables)
• Defines probabilities for all possible assignments to values of 

variables in the set

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia True
False

WBCcount

0008.0
0042.0

0001.0
9929.0

0001.0
0019.0

)(PneumoniaP

001.0
999.0

Marginalization - summing out variables

table32×
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Conditional probability distribution

Conditional probability distribution:
• Probability distribution of A given (fixed B)

• Conditional probability is defined in terms of joint 
probabilities

• Joint probabilities can be expressed in terms of conditional 
probabilities

• Conditional probability – is useful fordiagnostic reasoning
– the effect of a symptoms (findings) on the disease

),,|( TrueCoughhighWBCcountTrueFeverTruePneumoniaP ====
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Modeling uncertainty with probabilities

• Full joint distribution: joint distribution over all random 
variables defining the domain
– it is sufficient to represent the complete domain and to do 

any type of probabilistic  reasoning 

Problems:
– Space complexity. To store full joint distribution requires 

to remember             numbers.
n – number of random variables, d – number of values

– Inference complexity. To compute some queries requires        
.            steps. 

– Acquisition problem. Who is going to define all of the 
probability entries?       
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Pneumonia example. Complexities.

• Space complexity. 

– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 
WBCcount (3: high, normal, low), paleness (2: T,F)

– Number of assignments: 2*2*2*3*2=48

– We need to define at least 47 probabilities.

• Time complexity.

– Assume we need to compute the probability of 
Pneumonia=T from the full joint

– Sum over 2*2*3*2=24 combinations

== )( TPneumoniaP

∑ ∑ ∑ ∑
∈ ∈ = ∈

=====
FTi FTj lnhk FTu

uPalekWBCcountjCoughiFeverP
, , ,, ,
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Modeling uncertainty with probabilities

• Knowledge based system era (70s – early 80’s)

– Extensional non-probabilistic models 

– Probability techniques avoided because of space, time and 
acquisition bottlenecks in defining full joint distributions

– Negative effect on the advancement of KB systems and AI 
in 80s in general 

• Breakthrough  (late 80s, beginning of 90s)

– Bayesian belief networks
• Give solutions to the space, acquisition bottlenecks

• Partial solutions for time complexities
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Bayesian belief networks (BBNs)

Bayesian belief networks.
• Represent the full joint distribution more compactly with a 

smaller number of parameters. 

• Take advantage of conditional and marginal independences 
among components in the distribution

• A and B are independent

• A and B are conditionally independent given C
)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Alarm system example.
• Assume your house has an alarm system against burglary. 

You live in the seismically active area and the alarm system 
can get occasionally set off by an earthquake. You have two 
neighbors, Mary and John, who do not know each other. If 
they hear the alarm they call you, but this is not guaranteed. 

• We want to represent the probability distribution of events:

– Burglary, Earthquake, Alarm, Mary calls and John calls
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Causal relations
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Bayesian belief network example.
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Bayesian belief networks (general)

Two  components:

• Directed acyclic graph
– Nodes correspond to random variables 

– (Missing) links encode independences

• Parameters
– Local conditional probability distributions

– for every variable-parent configuration

))(|( ii XpaXP
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)( iXpa - stand for parents of  Xi

Where:
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Joint distribution in Bayesian networks

Full joint distribution is defined in terms of local conditional 
distributions (via the chain rule):
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?

Probability for one possible assignments
of values:
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (via the chain rule):
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Probability for one possible assignments
of values:
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Independences in BBNs
• 3 basic independence structures

1. JohnCallsis independent of Burglary given Alarm

2. Burglary is independent of Earthquake (not knowing Alarm) 
Burglary and Earthquake are not independent given Alarm !!

3. MaryCalls is independent of JohnCalls given Alarm
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Independences in BBNs
• Other dependences/independences in the network

• Earthquake and Burglary are not independent given MaryCalls
• Burglary and MaryCalls are not independent (not knowing 

Alarm)
• Burglary and RadioReport are independent given Earthquake
• Burglary and RadioReportare not independent given 

MaryCalls

%XUJODU\

-RKQ&DOOV

$ODUP

(DUWKTXDNH

0DU\&DOOV

5DGLR5HSRUW

CIS587 - AI

Parameters:
full joint:

BBN:

Parameter complexity problem

• In the BBN the full joint distribution is expressed as a product
of conditionals (of smaller) complexity
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Model acquisition problem

The structure of the BBN typically reflects causal relations

• BBNs are also sometime referred to as causal networks
• Causal structure is very intuitive in many applications domain 

and it is relatively easy to obtain from the domain expert

Probability parameters of BBN correspond to conditional 
distributions relating a random variable and its parents only

• Their complexity much smaller than the full joint

• Easier to come up (estimate) the probabilities from expert or 
automatically by learning from data
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Inference in Bayesian networks 

• BBN models compactly the full joint distribution by taking 
advantage of existing independences between variables

• Simplifies the acquisition of a probabilistic model

• But we are interested in solving various inference tasks:
– Diagnosis
– Prediction

Require to compute  a variety of probabilistic queries:

• Question: Can we take advantage of independences to 
construct special algorithms and speeding up the inference?

)|( TJohnCallsBurglary =P
)|( TBurglaryJohnCalls =P

)(AlarmP
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Inference in Bayesian network

• Bad news: 
– Exact inference problem in BBNs is NP-hard (Cooper)
– Approximate inference is NP-hard (Dagum, Luby)

• But very often we can achieve significant improvements
• Assume our Alarm network

• Assume we want to compute:
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Inference in Bayesian networks
Approach 1. Blind approach.
• Sum over the joint distribution for all uninstantiated variables, 

express the joint distribution as a product of conditionals

Computational cost:
Number of  additions: 16
Number of products: 16*5=80
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Inference in Bayesian networks
Approach 2. Interleave sums and products
• Combines sums and product in a smart way (multiplications 

by constants can be taken out of the sum)

Computational cost:
Number of  additions: 2*(4+2)=12
Number of products: 2*8+2*4+3*2= 2*(15)=30
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Inference in Bayesian network

• Exact inference algorithms:
– Symbolic inference (D’Ambrosio)

– Pearl’s message passing algorithm (Pearl)

– Clustering and Join tree approach (Lauritzen, Spiegelhalter) 

– Arc reversal (Olmsted, Schachter)

• Approximate inference algorithms:
– Monte Carlo methods:

• Forward sampling, Likelihood sampling

– Variational methods 
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BBNs built in practice

• In various areas:
– Intelligent user interfaces (Microsoft)

– Troubleshooting, diagnosis of a technical device

– Medical diagnosis:

• Pathfinder (Intellipath)

• CPSC

• Munin

• QMR-DT

– Collaborative filtering

– Military applications

– Insurance, credit applications
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(ICU) Alarm network
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CPCS
• Computer-based Patient Case Simulation system (CPCS-PM) 

developed by Parker and Miller (at University of Pittsburgh)

• 422 nodes and 867 arcs
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QMR-DT 

• Medical diagnosis in internal medicine

Bipartite network of disease/findings relations


