C1S587 - Artificial Intellgence

Bayesian Networks
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KB for medical diagnosis. Example.

We want to build a KB system for the diagnosis of pneumonia.
Problem description:
» Disease: pneumonia
» Patient symptoms (findings, lab tests):
— Fever, Cought, Paleness, WBC (white blood cells) count,
Chest pain, etc.
Representation of a patient case:
» Statements that hold (are true) for that patient.
E.g: Fever Jrue
Cough False
WBCcountHigh

Diagnostic task: we want to infer whether the patient suffers
from the pneumonia or not given the symptoms
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Uncertainty

To make diagnostic inference possible we need to represent
rules or axiomsthat relate symptoms and diagnosis

Problem: disease/symptoms relation is not deterministic (things
may vary from patient to patient) — it is uncertain
Disease —» Symptomsuncertainty

— A patient suffering from pneumonia may not have fever all
the times, may or may not have a cough, white blood cell
test can be in a normal range.

Symptoms — Disease uncertainty

— High fever is typical for many diseases (e.g. bacterial

diseases) and does not point specifically to pneumonia

— Fever, cough, paleness, high WBC count combined do no
always point to pneumonia
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M odeling the uncertainty.

» Relation between the disease and symptoms is not
deterministicK ey issues:

» How to describe, represent the relations in the presence of
uncertainty?

* How to manipulate such knowledge to make inferences?
— Humans can reason with uncertainty.
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Methods for representing uncertainty

KB systems based on propositional and first-order logic often
represent uncertain statements, axioms of the domain in terms of

 rules with variougertainty factors
Very popular in 70-80s (MYCIN)

If 1. The stain of the organism is gram-positive, and

2. The morphology of the organism is coccus, and

3. The growth conformation of the organismis chains
Then with certainty 0.7

the identity of the organism is streptococcus

Problems:
» Chaining of multiple inference rules (propagation of uncertainty
« Combinations of rules with the same conclusions

« After some number of combinations results not intuitive.
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Probability theory

a well-defined coherent theory for representing uncertainty and
for reasoning with it

Representation:

Propositional statements— assignment of values to random
variables

Pneumonia=True  WBCcount = high

Probabilities over statements model the degree of belief in these
statements
P(Pneumonia=True) = 0.001

P(WBCcount = high) = 0.005
P(Pneumonia=Trueg Fever =True =0.0009
P(Pneumonia= False WBCcount = normal, Cough = False) =0.97
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Joint probability distribution

Joint probability distribution (for a set variables)

» Defines probabilities for all possible assignments to values of
variables in the set

P(pneumonia,WBCcount) 2x3table

WBCcount
high normal  low

P(Pneumonia)

Pheumonia True | 0.0008 0.0001 0.0001 0.001
False | 0.0042 0.9929 0.0019 0.999
0.005 0993  0.002 ‘
P(WBCcount)

Marginalization - summing out variables
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Conditional probability distribution

Conditional probability distribution:
* Probability distribution of A given (fixed B)
P(A B)
P(B)
» Conditional probability is defined in terms of joint
probabilities

» Joint probabilities can be expressed in terms of conditional
probabilities

P(A,B) =P(A|B)P(B)
» Conditional probability — is useful faliagnostic reasoning
— the effect of a symptoms (findings) on the disease
P(Pneumonia=True| Fever = Trug WBCcount= high,Cough=True)

P(A|B) =
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M odeling uncertainty with probabilities

* Full joint distribution: joint distribution over all random
variables defining the domain

— itis sufficient to represent the complete domain and to do
any type of probabilistic reasoning

Problems:

— Space complexity. To store full joint distribution requires
to rememberO(d") numbers.

n — number of random variables— number of values

— Inference complexity. To compute some queries requires
O(d") steps.

— Acquisition problem. Who is going to define all of the
probability entries?
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Pneumonia example. Complexities.

* Space complexity.
— Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F)
WBCcount (3: high, normal, low), paleness (2: T,F)
— Number of assignments: 2*2*2*3*2=48
— We need to define at least 47 probabilities.
* Time complexity.
— Assume we need to compute the probability of
Pneumonia=T from the full joint

P(Pneumonia=T) =

= ;ﬁ ;F Z ;FP(Fever =i,Cough = j,WBCcount =k, Pale=u
itr,F jOr,F k=h,n,l ulIT,

— Sum over 2*2*3*2=24 combinations
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M odeling uncertainty with probabilities

* Knowledge based system era (70s — early 80’s)
— Extensional non-probabilistic models

— Probability techniques avoided because of space, time an
acquisition bottlenecks in defining full joint distributions

— Negative effect on the advancement of KB systems and A
in 80s in general

» Breakthrough (late 80s, beginning of 90s)
— Bayesian belief networks
 Give solutions to the space, acquisition bottlenecks
« Partial solutions for time complexities
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Bayesian belief networks (BBNS)

Bayesian belief networks.

* Represent the full joint distribution more compactly with a
smaller number of parameters.

» Take advantage of conditional and marginal independences
among components in the distribution

* A and B areindependent
P(A B) =P(A)P(B)
* A and B are conditionally independent given C
P(A,B|C)=P(A[C)P(B|C)
P(A[C,B)=P(A[C)
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Alarm system example.

* Assume your house has alarm system againsturglary.
You live in the seismically active area and the alarm system
can get occasionally set off by earthquake. You have two
neighborsMary andJohn, who do not know each other. If
they hear the alarm they call you, but this is not guaranteed.
* We want to represent the probability distribution of events:

— Burglary, Earthquake, Alarm, Mary calls and John calls

Causal relations

e

C atarm )
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Bayesian belief network example.

P(B)

P(E)
Burglary 0.001 Earthquake 0.002

B E |P(A|B,E)
T T 0095
T F | 0.94
F T |0.29
F F | 0.001

PAIA) A | P(M|A)
T 090 T|0.70
F]0.05 F | 0.01

CIS587 - Al




Bayesian belief networks (general)
Two components: B = (S,0,) () B E
» Directed acyclic graph \
— Nodes correspond to random variables A
— (Missing) links encode independences / \@
J M

» Parameters
— Local conditional probability distributions

— for every variable-parent configuration | B_E | P(AIB,E)
T T o095
P(X; | pa(X,)) T F | 094
F T |0.29
Where: F F | 0.001

pa(X;) -stand for parents oX;
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Joint distribution in Bayesian networks

Full joint distribution is defined in terms of local conditional
distributions (via the chain rule):

P(Xy, Xy X)) = |_| P(X; | pa(X;))

i=1,..n

ON: E
Example: \J)
Probability for one possible assignments /
of values: J M

PB=T,E=T,A=T,J=T,M =F) =

?
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (viathe chain rule):

P(Xy, Xy X)) = |_| P(X; | pa(X;))

i=1,.n
ON: E
Example: \ ﬁ
Probability for one possible assignments /
of values: J M

PB=T,E=T,A=T,J=T,M=F)=
AB=T)PE=T)MA=T|B=T,E=T)RI=T|A=T)RM=F| A=T)
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| ndependencesin BBNs

» 3basicindependence structures

1. Burglary

«»

1. JohnCallssindependent of Burglary given Alarm

2. Burglaryisindependent of Earthquake (not knowing Alarm)
Burglary and Earthquakar e not independent given Alarm !!

3. MaryCallsisindependent of JohnCalls given Alarm
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I ndependencesin BBNs

Other dependences/independences in the network

RadioRepoh

o
\.
Gomes o

Earthquake and Burglary anet independent given MaryCalls

Burglary and MaryCallsre not independent (not knowing
Alarm)

Burglary and RadioRepoat e independent given Earthquake

Burglary and RadioRepoat e not independent given
MaryCalls
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Parameter complexity problem

* In the BBN the full joint distribution is expressed as a product
of conditionals (of smaller) complexity

P(Xy, X5, X)) = l_l P(X; | pa(X,))

Parameters:
full joint: 2° =32

BBN: 2% +2(2%)+2(2) =20

Parameters to be defined:
full joint: 2°-1=31

BBN: 2% +2(2)+2(1) =10
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M odel acquisition problem

The structure of the BBN typically reflects causal relations
« BBNSs are also sometime referred tacassal networks

» Causal structure is very intuitive in many applications domain
and it is relatively easy to obtain from the domain expert

Probability parameters of BBN correspond to conditional
distributions relating a random variable and its parents only

* Their complexity much smaller than the full joint

» Easier to come up (estimate) the probabilities from expert or
automatically by learning from data
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Inferencein Bayesian networks

* BBN models compactly the full joint distribution by taking
advantage of existing independences between variables

» Simplifies the acquisition of a probabilistic model
* But we are interested in solving varida$er ence tasks:
—Diagnosis
— Prediction
Require to compute a variety of probabilistic queries:
P(Burglary| JohnCalls=T)
P(JohnCalls| Burglary =T)

P(Alarm)
* Question: Can we take advantage of independences to
construct special algorithms and speeding up the inference?
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I nference in Bayesian networ k

Bad news:

— Exact inference problem in BBNs is NP-hard (Cooper)
— Approximate inference is NP-hard (Dagum, Luby)

But very often we can achieve significant improvements
Assume our Alarm network

-~

C atarm )

ST

Assume we want to compute:P(J =T)
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Inferencein Bayesian networks

Approach 1. Blind approach.

* Sum over the joint distribution for all uninstantiated variables,
express the joint distribution as a product of conditionals

P(J=T) :-;p ;ﬁ ;ﬁ ;:P(B:i,E: ,A=k,J=T,M =I)
:i; _;%I;P(J =T|A=KP(M =I | A=K)P(A=kB=i,E=j)P(B=1)P(E=])
Computational cost:

Number of additionsl6
Number of products: 16*39
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Inferencein Bayesian networks

Approach 2. Interleave sums and products

» Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

PJ=T)=
:,;& ;gp ;:P(J =T| A=K)P(M =I | A=K)P(A=K[B=i,E = j)P(B=i)P(E=])

:;gp ;:P(J =T|A=KRM =l IA:k)P(B:i)[_;:P(A:kl B=i,E=)RE=))]
= YPUTIA=K[ Y PM=1]A=K)][) PB=i)[ ) AA=k|B=i,E=)AE=])]

100, F i,k jar,F
Computational cost:
Number of additions: 2*(4+2)2
Number of products: 2*8+2*4+3*2= 2*(1580
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I nference in Bayesian networ k

» Exact inference algorithms:
— Symbolic inference (D’Ambrosio)
— Pearl’'s message passing algorithm (Pearl)
— Clustering and Join tree approach (Lauritzen, Spiegelhaltg
— Arc reversal (Olmsted, Schachter)

* Approximateinference algorithms:
— Monte Carlo methods:
» Forward sampling, Likelihood sampling
— Variational methods
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BBNsbuilt in practice

* Invariousareas:
— Intelligent user interfaces (Microsoft)
— Troubleshooting, diagnosis of a technical device
— Medical diagnosis:
 Pathfinder (Intellipath)
* CPSC
* Munin
« QMR-DT
— Collaborative filtering
— Military applications
— Insurance, credit applications
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(ICU) Alarm network
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CPCS

» Computer-base@atientCaseSimulation system (CPCS-PM)
developed by Parker and Miller (at University of Pittsburgh)

* 422 nodes and 867 arcs
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QMR-DT

* Medical diagnosisin internal medicine

Bipartite network of disease/findings relations

OMR-DT derived from Internist-1/ QMR KB

534 discases

Oao0 oo

agoa an0o

40740 arcs 4040 findings

CIS587 - Al

15



