Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

5.5 The SDN control plane

- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

Software defined networking (SDN)

- Internet network layer: historically has been implemented via distributed, per-router approach
 - monolithic router contains switching hardware, runs proprietary implementation of Internet standard protocols (IP, RIP, IS-IS, OSPF, BGP) in proprietary router OS (e.g., Cisco IOS)
 - different "middleboxes" for different network layer functions: firewalls, load balancers, NAT boxes, ..
- ~2005: renewed interest in rethinking network control plane

Recall: per-router control plane

Individual routing algorithm components *in each and every router* interact with each other in control plane to compute forwarding tables

Recall: logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs) in routers to compute forwarding tables

Software defined networking (SDN)

Why a logically centralized control plane?

- easier network management: avoid router misconfigurations, greater flexibility of traffic flows
- table-based forwarding (recall OpenFlow API) allows "programming" routers
 - centralized "programming" easier: compute tables centrally and distribute
 - distributed "programming: more difficult: compute tables as result of distributed algorithm (protocol) implemented in each and every router
- open (non-proprietary) implementation of control plane

Analogy: mainframe to PC evolution*

* Slide courtesy: N. McKeown

Network Layer: Control Plane 5-6

Traffic engineering: difficult traditional routing

<u>Q</u>: what if network operator wants u-to-z traffic to flow along *uvwz*, x-to-z traffic to flow *xwyz*?

<u>A:</u> need to define link weights so traffic routing algorithm computes routes accordingly (or need a new routing algorithm)!

Link weights are only control "knobs": wrong!

Traffic engineering: difficult

<u>Q</u>: what if network operator wants to split u-to-z traffic along uvwz and uxyz (load balancing)?
<u>A</u>: can't do it (or need a new routing algorithm)

Networking 401

Traffic engineering: difficult

<u>Q</u>: what if w wants to route blue and red traffic differently?

<u>A:</u> can't do it (with destination based forwarding, and LS, DV routing)

Software defined networking (SDN)

SDN perspective: data plane switches

Data plane switches

- fast, simple, commodity switches implementing generalized dataplane forwarding (Section 4.4) in hardware
- switch flow table computed, installed by controller
- API for table-based switch control (e.g., OpenFlow)
 - defines what is controllable and what is not
- protocol for communicating with controller (e.g., OpenFlow)

SDN-controlled switches

SDN perspective: SDN controller

SDN controller (network OS):

- maintain network state information
- interacts with network control applications "above" via northbound API
- interacts with network switches "below" via southbound API
- implemented as distributed system for performance, scalability, fault-tolerance, robustness

SDN perspective: control applications

network-control apps:

- "brains" of control: implement control functions using lower-level services, API provided by SND controller
- unbundled: can be provided by 3rd party: distinct from routing vendor, or SDN controller

Components of SDN controller

Interface layer to network control apps: abstractions API

Network-wide state management layer: state of networks links, switches, services: a *distributed database*

communication

layer: communicate between SDN controller and controlled switches

OpenFlow protocol

- operates between controller, switch
- TCP used to exchange messages
 - optional encryption
- three classes of OpenFlow messages:
 - controller-to-switch
 - asynchronous (switch to controller)
 - symmetric (misc)

OpenFlow: controller-to-switch messages

Key controller-to-switch messages

- features: controller queries switch features, switch replies
- configure: controller queries/ sets switch configuration parameters
- modify-state: add, delete, modify flow entries in the OpenFlow tables
- packet-out: controller can send this packet out of specific switch port

OpenFlow: switch-to-controller messages

Key switch-to-controller messages

- packet-in: transfer packet (and its control) to controller. See packetout message from controller
- flow-removed: flow table entry deleted at switch
- port status: inform controller of a change on a port.

Fortunately, network operators don't "program" switches by creating/sending OpenFlow messages directly. Instead use higher-level abstraction at controller

SDN: control/data plane interaction example

- 1 SI, experiencing link failure using OpenFlow port status message to notify controller
- (2) SDN controller receives OpenFlow message, updates link status info
- 3 Dijkstra's routing algorithm application has previously registered to be called when ever link status changes. It is called.
- (4) Dijkstra's routing algorithm access network graph info, link state info in controller, computes new routes

SDN: control/data plane interaction example

- (5) link state routing app interacts with flow-table-computation component in SDN controller, which computes new flow tables needed
- 6 Controller uses OpenFlow to install new tables in switches that need updating

OpenDaylight (ODL) controller

- ODL Lithium controller
- network apps may be contained within, or be external to SDN controller
- Service Abstraction Layer: interconnects internal, external applications and services

ONOS controller

- control apps separate from controller
- intent framework: high-level specification of service: what rather than how
- considerable emphasis on distributed core: service reliability, replication performance scaling

SDN: selected challenges

- hardening the control plane: dependable, reliable, performance-scalable, secure distributed system
 - robustness to failures: leverage strong theory of reliable distributed system for control plane
 - dependability, security: "baked in" from day one?
- networks, protocols meeting mission-specific requirements
 - e.g., real-time, ultra-reliable, ultra-secure
- Internet-scaling

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<u>Type</u>	<u>Code</u>	<u>description</u>
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to destination
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when datagram in nth set arrives to nth router:
 - router discards datagram and sends source ICMP message (type 11, code 0)
 - ICMP message include name of router & IP address

 when ICMP message arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

What is network management?

- autonomous systems (aka "network"): 1000s of interacting hardware/software components
- other complex systems requiring monitoring, control:
 - jet airplane
 - nuclear power plant
 - others?

"Network management includes the deployment, integration and coordination of the hardware, software, and human elements to monitor, test, poll, configure, analyze, evaluate, and control the network and element resources to meet the real-time, operational performance, and Quality of Service requirements at a reasonable cost."

Infrastructure for network management

definitions:

managed devices contain managed objects whose data is gathered into a Management Information Base (MIB)

SNMP protocol

Two ways to convey MIB info, commands:

SNMP protocol: message types

<u>Message type</u>	<u>Function</u>
GetRequest GetNextRequest GetBulkRequest	manager-to-agent: "get me data" (data instance, next data in list, block of data)
InformRequest	manager-to-manager: here's MIB value
SetRequest	manager-to-agent: set MIB value
Response	Agent-to-manager: value, response to Request
Тгар	Agent-to-manager: inform manager of exceptional event

SNMP protocol: message formats

More on network management: see earlier editions of text!

Chapter 5: summary

we've learned a lot!

- approaches to network control plane
 - per-router control (traditional)
 - logically centralized control (software defined networking)
- traditional routing algorithms
 - implementation in Internet: OSPF, BGP
- SDN controllers
 - implementation in practice: ODL, ONOS
- Internet Control Message Protocol
- network management

next stop: link layer!